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Ratchet transport of a two-dimensional electron gas at cyclotron resonance
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The driving of charge carriers confined in a quantum well lacking the center of space inversion by an alternating
electric field leads to the formation of a direct electric current. We develop a microscopic theory of such a quantum
ratchet effect for quantum wells subjected to a static magnetic field. We show that the ratchet current emerges
for a linearly polarized alternating electric field as well as a rotating electric field and drastically increases at the
cyclotron resonance conditions. For the magnetic field tilted with respect to the quantum well normal, the ratchet
current contains an additional resonance at the first subharmonic of the cyclotron resonance.
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I. INTRODUCTION

The response of a conducting system to an alternating elec-
tric field is one of the central topics of research in solid-state
electrodynamics. Besides the linear response, where the in-
duced electric current oscillates at the frequency of the electric
field and its amplitude linearly scales with the field amplitude,
an ac electric field can give rise to a direct motion of charge car-
riers. Such an electric rectification (or electronic ratchet effect)
naturally occurs in macroscopically inhomogeneous structures
such as diodes or field-effect transistors [1,2], asymmetric
lattices [3–8], or systems with asymmetric patterning [9–13].
The ratchet transport of carriers arises also in macroscopically
homogenous structures (homogenous in all three dimensions
for bulk materials or homogenous in the plane for two-
dimensional systems) provided the structures lack the center
of space inversion [14–18]. The ratchet effects are used for the
study of spatial symmetry of semiconductor structures [19]
and details of the electron energy spectrum [20,21] and also
underlie the operation of fast detectors of microwave and
terahertz radiation [2,22].

The efficiency of the generation of a dc current by an ac
electric field can be considerably enhanced in an external
magnetic field if the frequency of the ac field is close to the
carrier cyclotron frequency. Previously, such an enhancement
of the electric response at the cyclotron resonance conditions
was demonstrated for the spin currents in HgTe quantum wells
(QWs) [20] and HgTe-based three-dimensional topological
insulators [21], the electric currents of photon drag induced
by terahertz radiation [23,24], and surface photocurrent in
liquid helium [25]. The orbital ratchet transport of electrons
in macroscopically homogenous QWs in the presence of a
normal magnetic field has not been analyzed so far.

Here we develop a quasiclassical microscopic theory of the
orbital ratchet effect in QWs subjected to a static magnetic field
and show that the arising current drastically increases at the
cyclotron resonance. We consider the ratchet current caused by
the QW structure inversion asymmetry which may originate
from an asymmetry in the confinement potential or doping
profile, or induced by a gate voltage. Two geometries, at which
the ratchet current emerges and which can be experimentally
realized, are analyzed: (i) the static magnetic field is normal
to the QW plane and the ac electric field has both the in-plane
and the out-of-plane components and (ii) the magnetic field
is tilted with respected to the QW normal and the ac electric

field is polarized in the QW plane. For the latter geometry
we find that the dc electric current has an additional resonant
contribution. This resonance occurs when the frequency of
the ac field matches the double cyclotron frequency, in
the spectral range where the free-carrier absorption has no
peculiarity. We also calculate the spatial distribution of the
electrostatic potential induced by the ratchet current in infinite
and finite-size samples. We show that the distribution depends
on the magnetic field strength, the sample geometry, and the
boundary conditions used and provide a recipe for the optimal
contact geometry.

II. PERPENDICULAR MAGNETIC FIELD

We begin the study with the geometry of the static magnetic
field B pointing along the QW normal z; see Fig. 1. In this
configuration, a dc electric current jR emerges if the ac electric
field

E(t) = Ee−iωt + E∗eiωt , (1)

where E and ω are the field amplitude and frequency, has both
the in-plane E‖ and out-of-plane Ez components.

Figure 1 illustrates the microscopic mechanism of the
dc current formation. The in-plane component E‖(t) of
the electric field together with the static magnetic field B
causes the motion of electrons in elliptical orbits in the
QW plane at the field frequency ω. Synchronously with this
in-plane motions, the electric field out-of-plane component
Ez(t) pushes the electrons to the top or bottom interfaces of
the QW depending on the field polarity. The corresponding
distributions of the electron density in the QW cross section
for positive and negative eEz, where e is the electron charge,
are sketched in the insets. The shift of the electron density
along the z axis in the asymmetric QW results, in turn, in the
modulation of the electron mobility at the field frequency ω. In
the insets in Fig. 1, the QW asymmetry is modeled by placing
the δ layer of impurities (black dots), which cause electron
scattering and control the electron mobility, closer to the
bottom interface. As a result, the oscillating electron motion
in the QW plane driven by E‖(t) together with the mobility
modulation at the same frequency induced by Ez(t) leads to
the generation of a direct electric current jR. At the cyclotron
resonance conditions, the amplitude of the oscillating electron
motion in the QW plane increases and so does the efficiency
of the dc current generation.
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FIG. 1. Microscopic model of the generation of a dc electric
current jR by an ac electric field E(t) in an asymmetric QW subjected
to a static magnetic field B at the cyclotron resonance conditions. The
dc component of the electric current emerges due to the combined
action of the in-plane component of the electric field, which induces
the cyclotron motion of electrons in the QW plane (blue ellipse),
and the field out-of-plane component Ez, which causes the electron
mobility modulation at the same frequency. Insets show that the
electric force eEz shifts the electron density to the top (or bottom)
interface, thereby decreasing (or increasing) the electron scattering
by impurities (black dots).

A quasiclassical theory of the orbital ratchet effect de-
scribed above can be developed in the framework of the
Boltzmann transport equation. In this approach, the ac electric
field and the static magnetic field are considered as the electric
force and the Lorentz force, respectively, acting upon the
electrons. The approach is relevant if the energy �ω is much
smaller than the mean kinetic energy of the electrons and
the magnetic field is within the classical range. The electron
distribution in the momentum space is described by the
time-dependent function f p(t) which satisfies the Boltzmann
equation

∂f p

∂t
+ e

(
E‖(t) + 1

c
[v × B]

)
∂f p

∂ p
= Stf p, (2)

where p is the momentum, v = dεp/d p and εp are the electron
velocity and energy, respectively, and Stf p is the collision
integral. For elastic scattering, the collision integral has the
form

Stf p =
∑

p′
(W p p′f p′ − W p′ pf p), (3)

where W p p′ is the rate of scattering.
The rate of electron scattering in an asymmetric QW to first

order in Ez can be presented in the form

W p p′ = W
(0)
p p′ + eEz(t) W

(1)
p p′ , (4)

where W
(0)
p p′ is the scattering rate at zero electric field and W

(1)
p p′

is the field-induced correction. In the first Born approximation,

the term W
(0)
p p′ is given by

W
(0)
p p′ = 2π

�
〈|V11( p, p′)|2〉 δ(εp − εp′ ), (5)

where V11( p, p′) is the matrix element of intrasubband scat-
tering between the states with the momenta p and p′ and the
angle brackets denote averaging over the positions of scattering
centers. The second term on the right-hand side of Eq. (4)
originates from the admixture of excited-subband states to the
ground-subband states by the out-of-plane electric field and is
given by [16]

W
(1)
p p′ = 8π

�

∑
ν �=1

zν1

εν1
〈Re V ∗

11( p, p′)V1ν( p, p′)〉 δ(εp − εp′ ),

(6)

where ν is the index of the excited electron subbands, zν1 is the
intersubband matrix element of the coordinate operator, εν1 is
the energy separation between the subbands, and V1ν( p, p′)
is the matrix element of intersubband scattering. We note that
the use of the collision integral (3) with the time-dependent
scattering rate (4) is justified in the adiabatic regime, when
�ω is much smaller than the energy separation between the
excited and ground electron subbands.

To solve the Boltzmann equation (2) we decompose the
distribution function f p(t) in the Fourier series of frequency
and angular harmonics as

f p(t) =
∑
n,m

f n,m(p) exp(imϕ p − inωt), (7)

where ϕ p = arctan(py/px) is the polar angle of p. Ac-
cordingly, the collision integral for the scattering rate W p p′

dependent of |ϕ p − ϕ p′ | is rewritten in the form

Stf p = −
∑

n

∑
m�=0

[
f n,m

τm

+ eζm

(
Ezf

n−1,m + E∗
z f

n+1,m
)]

× exp(imϕ p − inωt). (8)

Here τm is the relaxation time of the mth angular harmonic of
the electron distribution function,

τ−1
m =

∑
p′

W
(0)
p p′[1 − cos m(ϕ p − ϕ p′)], (9)

and

ζm =
∑

p′
W

(1)
p p′[1 − cos m(ϕ p − ϕ p′)]. (10)

In the harmonics representation, the Boltzmann equa-
tion (2) has the form of the set of linear equations

�n,mf n,m + eζm(Ezf
n−1,m + E∗

z f
n+1,m)(1 − δm,0)

+ eE‖
2

· (o−K̂m
−f n−1,m−1 + o+K̂m

+f n−1,m+1)

+ eE∗
‖

2
· (o−K̂m

−f n+1,m−1 + o+K̂m
+f n+1,m+1) = 0, (11)

where �n,m = 1/τm − inω − imωc, ωc = eBz/(mcc) is the
cyclotron frequency, mc = p/v is the cyclotron mass, o± =
ox ± ioy , ox and oy are the unit vectors along the x and y axes,
respectively, and K̂m

± = d/dp ± (m ± 1)/p.
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In thermal equilibrium, when the ac electric field is absent,
the distribution function contains only the harmonic f (0,0),
which is given by the Fermi-Dirac distribution f0(εp). To first
order in the electric field amplitude, solution of the equation
set (11) has the form

f 1,1 = − eτ1 E‖ · o−
2[1 − i(ω + ωc)τ1]

df0(εp)

dp
,

(12)

f 1,−1 = − eτ1 E‖ · o+
2[1 − i(ω − ωc)τ1]

df0(εp)

dp
,

f −1,1 = (f 1,−1)∗, and f −1,−1 = (f 1,1)∗. The dc electric cur-
rent is determined by the time-independent asymmetric part
of the distribution function described by the harmonics f 0,±1

for which one obtains

f 0,1 = − eτ1ζ1

1 − iωcτ1
(Ezf

−1,1 + E∗
z f

1,1) (13)

and f 0,−1 = (f 0,1)∗.
The direct current density j can be then readily found from

the general expression

jR = 2e
∑

p

v[f 0,1 exp(iϕ p) + f 0,−1 exp(−iϕ p)], (14)

where the factor 2 takes into account the spin degeneracy.
Straightforward calculations show that the ratchet current

density is proportional to both the in-plane and out-of-plane
components of the ac electric field and has the form

jR = L1(E‖E∗
z + E∗

‖Ez) + L2 oz × (E‖E∗
z + E‖E∗

z )

+C1i(E‖E∗
z − E∗

‖Ez) + C2 oz × i(E‖E∗
z + E∗

‖Ez),

(15)

where L1, L2, C1, and C2 are coefficients dependent on the
field frequency and oz is the unit vector along the z axis. For a
degenerate electron gas, the coefficients are given by

L1 = −e3Ne

2mc

ζ1τ
2
1

1 + ω2
cτ

2
1

∑
s=±1

1 − sωc(ω + sωc)τ 2
1

1 + (ω + sωc)2τ 2
1

,

L2 = −e3Ne

2mc

ζ1τ
2
1

1 + ω2
cτ

2
1

∑
s=±1

(sω − 2ωc)τ1

1 + (ω − sωc)2τ 2
1

,

(16)

C1 = −e3Ne

2mc

ζ1τ
2
1

1 + ω2
cτ

2
1

∑
s=±1

(ω + 2sωc)τ1

1 + (ω + sωc)2τ 2
1

,

C2 = −e3Ne

2mc

ζ1τ
2
1

1 + ω2
cτ

2
1

∑
s=±1

s − ωc(ω + sωc)τ 2
1

1 + (ω + sωc)2τ 2
1

,

where Ne = p2
F /(2π�

2) is the electron density, pF is the Fermi
momentum, and ωc, τ1, and ζ1 are taken at the Fermi level.
Equations (15) and (16) for zero magnetic field coincide with
the results of Ref. [16].

The coefficients L1 and L2 describe the electric current
excited by a linearly polarized ac electric field (linear ratchet
current), whereas C1 and C2 characterize the current contribu-
tion which is induced by an elliptically or circularly polarized
field and has opposite directions for the right-handed and
left-handed polarized radiation (circular ratchet current). In
accordance with general symmetry arguments, C1 and L1
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FIG. 2. Dependencies of the projections of the linear ratchet
current (a) and projections of the circular ratchet current (b) on
the electric field frequency ω. Curves are calculated after Eqs. (15)
and (16) for ωcτ1 = 20.

describing the current component along E‖ are even functions
of the static magnetic field Bz, while C2 and L2 describing the
perpendicular component of the current are odd functions of
Bz.

The dependencies of the linear ratchet current and the
circular ratchet current on the field frequency ω are shown
in Figs. 2(a) and 2(b), respectively. At zero frequency, only
the linear ratchet current is generated. Its direction in the
QW plane with respect to E‖ is determined by the ratio
(L2/L1)ω=0 = −2ωcτ1/[1 − (ωcτ1)2]. The deflection of the
current direction from E‖ is caused by the Lorentz force
acting upon the electrons. The circular ratchet effect emerges
at finite frequencies of the ac electric field. The magnitude
of the circular ratchet current is proportional to ω at small
ω, the current direction is determined by the ratio C2/C1 =
−ωcτ1[3 − (ωcτ1)2]/[1 − 3(ωcτ1)2]. At the cyclotron reso-
nance conditions, both the linear and the circular ratchet
currents drastically increase. Their directions in the QW plane
are very sensitive to the frequency detuning ω − ωc; see
Figs. 2(a) and 2(b). Finally, far from the cyclotron resonance,
the high-frequency asymptotic behavior of the ratchet currents
is described by L1 ∝ 1/ω2, L2 ∝ 1/ω4, and C1,C2 ∝ 1/ω.

The magnitude of the ratchet current can be estimated
from Eqs. (15) and (16). For the electric field ampli-
tude E = 10 kV/cm, the static magnetic field B = 4 T,
the momentum relaxation time τ1 = 10−12 s, the effective
mass mc = 0.07m0 (corresponding to GaAs-based QWs),
the carrier density Ne = 2 × 1011 cm−2, the QW width d =
10 nm, and the degree of QW structure inversion asymmetry
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〈Re V ∗
11( p, p′)V12( p, p′)〉/〈|V11( p, p′)|2〉 = 0.1, an estimation

gives jR ∼ 2 μA/cm for the ratchet current at the cyclotron
resonance.

III. TILTED MAGNETIC FIELD

Now we consider the geometry of a tilted static magnetic
field B and ac electric field E(t) polarized in the QW plane.
In this case, an asymmetry of the electron distribution in the
momentum space and, hence, a dc electric current may emerge
due to the asymmetry of electron scattering induced by the
in-plane component B‖ of the magnetic field. Such a magnetic
quantum ratchet effect in a purely in-plane magnetic field was
theoretically studied in Refs. [15,16] and has been recently
observed in graphene [18]. Here we develop a microscopic
theory of the effect for a tilted magnetic field where the in-plane
component B‖ induces the scattering asymmetry while the
out-of-plane component Bz causes the cyclotron motion of the
electrons and leads to a resonant enhancement of the ratchet
current.

To first order in B‖, the rate of elastic electron scattering
can be generally presented in the form

W p p′ = W
(0)
p p′ + eB‖ W

(1)
p p′ , (17)

where W
(0)
p p′ is the scattering rate at zero field and W

(1)
p p′ is

the field-induced correction; W
(0)
p, p′ = W

(0)
− p′,− p and W

(1)
p, p′ =

−W
(1)
− p′,− p due to time reversal symmetry. Microscopically,

the scattering asymmetry stems from the quantum analog of
the Lorentz force which pushes moving electrons to the top
or bottom interfaces of the QW. For a QW structure with
the simple parabolic energy spectrum, the term W

(1)
p p′ is given

by [26]

W
(1)
p p′ = − 4π

�mec

[
Bx

B‖
(py + p′

y) − By

B‖
(px + p′

x)

]

×
∑
ν �=1

zν1

εν1
〈Re V ∗

11( p, p′)V1ν( p, p′)〉 δ(εp − εp′ ), (18)

where me is the effective mass. We note that the in-plane
magnetic field may also modify the electron dispersion. To
first order in B‖, the field induces diamagnetic shifts of the
electron subbands in k space [27]. The shift of each electron
subband depends on the vector potential gauge used, can be
excluded by a proper choice of the gauge, and does not disturb
the symmetric distribution of carriers within the subband.

To calculate the dc current due to the magneto-induced
ratchet effect, we solve the Boltzmann equation (2) with
the scattering rate (17). In the harmonics representation, the
Boltzmann equation assumes the form of the linear equation
set

�n,mf n,m + eB‖
∑

l

(u0,lf
n,m−l − um,lf

n,−l)

+ eE‖
2

· (o−K̂m
−f n−1,m−1 + o+K̂m

+f n−1,m+1)

+ eE∗
‖

2
· (o−K̂m

−f n+1,m−1 + o+K̂m
+f n+1,m+1) = 0, (19)

where un,m are defined by

un,m =
∫

dϕp

2π

∑
p′

W
(1)
p p′e

−inϕ p−imϕ p′ . (20)

The harmonics un,m satisfy the conditions un,m = u∗
−n,−m and

un,m = (−1)n+m+1um,n due to the reality of the scattering rate
and time reversal symmetry, respectively. It also follows from
Eq. (18) that, for central scattering, the only nonzero harmonics
are un,n±1.

We seek a solution of the equation set (19) in the form of
a perturbation series in E and B‖. To first order in the electric
field amplitude, one obtains the harmonics f ±1,±1 which are
given by Eqs. (12). The second iteration in E‖ and B‖ yields

f 1,2 = τ2eB‖(u2,−1 − u0,1)f 1,1

1 − i(ω + 2ωc)τ2
,

f 1,−2 = τ2eB‖(u−2,1 − u0,−1)f 1,−1

1 − i(ω − 2ωc)τ2
, (21)

f 0,2 = −eτ2[(E‖ · o−)K̂2
−f −1,1 + (E∗

‖ · o−)K̂2
−f 1,1]

2(1 − 2iωcτ2)
,

and f −n,−m = (f n,m)∗. The dc electric current is determined
by the harmonics f 0,±1 ∝ E2B‖; they have the form

f 0,1 = −eτ1[(E‖o+)K̂1
+f −1,2 + (E∗

‖o+)K̂1
+f 1,2]

2(1 − iωcτ1)

+ τ1eB‖(u1,−2 − u0,−1)f 0,2

1 − iωcτ1
(22)

and f 0,−1 = (f 0,1)∗.
Finally, calculating the dc electric current jR following the

general expression (14), we obtain

jR
x = (Re M0 + ξ1 Re ML + ξ2 Im ML + ξ3 Re MC)E2B‖,

jR
y = −(Im M0 + ξ1 Im ML − ξ2 Re ML + ξ3 Im MC)E2B‖,

(23)

where ξ1=(|Ex |2−|Ey |2)/|E|2, ξ2=(ExE
∗
y + E∗

xEy)/|E|2,
and ξ3 = i(ExE

∗
y − E∗

xEy)/|E|2 are the Stokes parameters
determining the polarization state of the ac electric field.
Accordingly, the parameters M0, ML, and MC describe the
magnitudes of the magneto-induced ratchet effect independent
of the ac field polarization, the linear magneto-induced
ratchet (LMR) effect, and the circular magneto-induced ratchet
(CMR) effect, respectively. For a degenerate electron gas, the
parameters are given by

M0 = e4Neγ
∗pF

4m2
e

(
1

�0,1

)′

εp

(
1

�1,2�1,1
+ 1

�−1,2�−1,1

)
,

ML = − e4Ne

4m2
e p2

F

(
γ p3

�0,1�0,2

)′

εp

(
1

�1,1
+ 1

�−1,1

)
, (24)

MC = e4Neγ
∗pF

4m2
e

(
1

�0,1

)′

εp

(
1

�1,2�1,1
− 1

�−1,2�−1,1

)
,

where γ = u−2,1 − u0,−1 is the coefficient describing the elec-
tron scattering anisotropy induced by the in-plane component
of the magnetic field. All the values in Eq. (24) are taken at
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FIG. 3. Dependencies of the projections of the LMR current (a)
and projections of the CMR current (b) on the electric field frequency
ω. Curves are calculated after Eqs. (23) and (24) for ωcτ1(EF ) = 20,
τ1(εp) = 2τ2(εp) ∝ εp , and real and energy-independent γ .

the Fermi level. We note that an additional contribution to the
current may arise due to asymmetry of the energy relaxation of
hot carriers in the magnetic field [26,28]. This current depends
on the details of election-phonon interaction and is out of the
scope of the present paper.

Figure 3 shows the frequency dependence of the LMR
and CMR currents which are determined by ML(ω) and
MR(ω), respectively. The curves are calculated for the case
when the electron mobility is limited by Coulomb impurities,
τ1(εp) = 2τ2(εp) ∝ εp, and the intersubband scattering is
determined by short-range defects; i.e., γ is independent of the
electron energy. The coefficient γ is assumed to be real, which
corresponds to the geometry B‖ ‖ y. One can see that both the
LMR and the CMR currents drastically increase at cyclotron
resonance. However, the resonant contribution to the LMR
current exceeds the resonant contribution to CMR current by
the factor of ωcτ1. Moreover, the CMR effect emerges due to
the energy dependence of the momentum relaxation time. The
CMR current has an additional resonance at ω = 2ωc, which
occurs in the spectral range where the Drude absorbance has no
peculiarity. In the quantum-mechanical picture, this additional
resonance corresponds to the transitions between the Landau
levels n and n + 2, which become possible in the presence of
scattering.

Equations (23) and (24) are obtained to first order in B‖
and second order in E‖. However, our analysis of the general
kinetic Eq. (2) shows that, to second order in E‖, the harmonics
f 0,±1 and hence the ratchet current may contain resonant
contributions only at ω = ±ωc and ω = ±2ωc provided the

scattering asymmetry is weak enough (but no matter how
strong B‖ is). Higher subharmonics of the cyclotron resonance
may arise in the current response in higher powers in E‖. Such
a consideration is beyond the scope of the current paper.

IV. CURRENT DISTRIBUTION IN THE
QUANTUM WELL PLANE

In experiments, ratchet currents are often excited by the ac
electric field of terahertz or microwave radiation focused on
the sample [18–21]. The dc electric signal is measured via the
voltage drop across contacts in the open-circuit configuration
where the net electric current in the circuit is vanishingly
small. The voltage drop is defined by the distribution of
the electrostatic potential �(x,y) in the QW plane. Thus,
the calculation of the electrostatic potential distribution is an
important task for linking the experimental data and theoretical
results. In this section, we calculate the spatial distribution of
the electrostatic potential induced by the ratchet current in
infinite and finite-size samples. We provide a recipe for the
optimal contact geometry enabling the detection of the highest
voltage drop.

The electrostatic potential �(x,y) is determined by the
spatial distribution of the radiation-induced ratchet current
jR(x,y), the drift current jDR(x,y), which tends to compensate
the ratchet current, and the boundary conditions at the sample
edges. The continuity equation requires

∇ · ( jR + jDR) = 0. (25)

The components of the drift current are given by

jDR
α = −

∑
β

σαβ∇β�, (26)

where σαβ is the conductivity tensor in the magnetic field,

σxx = σyy = σ0

1 + (ωcτ1)2
,

(27)
σxy = −σyx = ωcτ1 σ0

1 + (ωcτ1)2
,

and σ0 = Nee
2τ1/me is the conductivity at zero magnetic field.

From Eqs. (25)–(27) we obtain the Poisson equation

�� = (∇ · jR)/σ, (28)

where σ = σ0/(1 + ω2
cτ

2). Equation (28) should be solved
with the boundary conditions. For finite-size samples, we
consider the boundary condition of zero total electric current
flowing across the sample edges, jR

n + jDR
n = 0.

The solution of the Eq. (28) can be generally presented in
the form

�(r) =
∫

jR(r ′) · ρ(r,r ′)d r ′, (29)

where ρ(r,r ′) can be interpreted as the function of nonlocal
resistance. The explicit form of the function ρ(r,r ′) depends
on the sample shape and, in the general case, can be
calculated numerically. Below we discuss the spatial distri-
bution of the electrostatic potential in infinite, semi-infinite,
and rectangular-shape structures and present some analytical
results.
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For an infinite two-dimensional system, the solution of the
two-dimensional Poisson equation can be readily found by a
Green’s function method, which yields

ρ(r,r ′) = − 1

2πσ

r − r ′

(r − r ′)2
. (30)

The magnetic field Bz only scales the function ρ(r,r ′).
However, the field also affects the magnitude and direction of
jR(r ′) and, hence, the spatial distribution of the electrostatic
potential.

Using the method of mirror images and the function ρ(r,r ′)
for the infinite system, one can derive an analytical equation
for ρ(r,r ′) in a semi-infinite system. For the system x � 0
with a single boundary at x = 0, we obtain

ρx(r,r ′) = − 1

2πσ

{
x − x ′

(x − x ′)2 + (y − y ′)2

−
(
1 − ω2

cτ
2
1

)
(x + x ′) − 2ωcτ1(y − y ′)(

1 + ω2
cτ

2
1

)
[(x + x ′)2 + (y − y ′)2]

}
,

(31)

ρy(r,r ′) = − 1

2πσ

{
y − y ′

(x − x ′)2 + (y − y ′)2

+
(
1 − ω2

cτ
2
1

)
(y − y ′) − 2ωcτ1(x + x ′)(

1 + ω2
cτ

2
1

)
[(x + x ′)2 + (y − y ′)2]

}
.

By adding three additional boundaries and considering a net
consisting of rectangular cells, one can also obtain the function
of nonlocal resistance for a finite-size rectangular structure
with the edges at x = 0, a and y = 0, b. The function is given
by

ρx = 1

4σ

∞∑
n=−∞

[
(1/b) sinh(πr ′

−/b)

cosh(2πna/b − πr−/b) − cosh(πr ′−/b)

+ 1 − ω2
cτ

2
1

1 + ω2
cτ

2
1

(1/b) sinh(πr ′
+/b)

cosh(2πna/b − πr−/b) − cosh(πr ′+/b)

+ 2ωcτ1

1 + ω2
cτ

2
1

(1/a) sinh(iπr ′
−/a)

cosh(2πnb/a + iπr+/a) − cosh(iπr ′−/a)

]

+ c.c., (32)

where r± = x ± iy, r ′
± = x ′ ± iy ′; the function ρy is obtained

from ρx by replacing x, y, x ′, y ′, a, and b with y, −x, y ′, −x ′,
b, and a, respectively.

Figure 4 demonstrates the spatial distribution of the elec-
trostatic potential �(x,y) in a square-shape structure when the
ratchet current is generated in the central area of the structure.
The spatial distribution of the ratchet current density is taken
in the form of the Gaussian function

jR = jR
0 exp

[
− (x − a/2)2 + (y − a/2)2

D2

]
, (33)

where jR
0 ‖ x and a is the structure size. The potential �

reaches extremal values at the positions close to the border
of the current generation spot while at the sample edges it
decreases. The magnetic field changes the potential amplitude
and also twists the potential spatial distribution that can be seen
from equipotential lines. The calculation shows that the voltage

FIG. 4. Spatial distributions of the electrostatic potential induced
by a ratchet current generated in the center area of a square-shape
structure in a magnetic field. Distributions are calculated for ωcτ1 = 2
and the Gaussian distribution of the ratchet current density given by
Eq. (33) for D/a = 0.1 (a) and D/a = 0.2 (b). Dashed circles sketch
the areas of the ratchet current generation.

drop between the points of the highest and lowest potential
is about 10 mV for the spot radius D = 1 mm, the ratchet
current magnitude jR

0 = 2 μA/cm, and the parameters of the
structure presented in Sec. II. The calculations also reveal that
experimentally measured voltage drops across contacts may
drastically depend on the contact positions in the structure and
the structure geometry.

V. SUMMARY

We have developed a microscopic theory of the ratchet
transport of electrons confined in a QW. It has been shown
that the magnitude of the direct electric current induced by
an alternating electric field is increased in an external static
magnetic field at the cyclotron resonance when the electric
field frequency matches the cyclotron frequency. The magnetic
field gives rise also to an additional mechanism of the ratchet
current generation which stems from an asymmetry of electron
scattering in the magnetic field. The magneto-induced ratchet
effect has a resonant behavior both at the cyclotron resonance
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and its first subharmonic, with the current being sensitive to
the electric field polarization and the mechanism of electron
scattering. We have also analyzed the spatial distribution
of the electrostatic potential induced by the ratchet current
and shown that the voltage drop between contacts is highly
sensitive to the sample geometry and the contact positions.
The resonant behavior of the ratchet current can be used
for the study of electron scattering mechanisms and the

development of tunable fast detectors of microwave and
terahertz radiation.
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