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Deviations of the exciton level spectrum in Cu2O from the hydrogen series
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Recent high-resolution absorption spectroscopy on excited excitons in cuprous oxide [Nature (London) 514,
343 (2014)] has revealed significant deviations of their spectrum from that of the ideal hydrogen-like series.
Here we show that the complex band dispersion of the crystal, which determines the kinetic energy of electrons
and holes, strongly affects the exciton binding energy. Specifically, we show that the nonparabolicity of the
band dispersion is the main cause of the deviation from the hydrogen series. Experimental data collected
from high-resolution absorption spectroscopy in electric fields validate the assignment of the deviation to the
nonparabolicity of the band dispersion.
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I. INTRODUCTION

Fluorescence spectra of atomic systems are an extremely
rich source of information about the interactions of electrons
and nuclei, and their study laid the foundations of the develop-
ment of quantum mechanics. The basic hydrogen dependence
of the electron binding energies of 1/n2 already turns out
to be insufficient for alkali metals, i.e., hydrogen-like, atoms
where the polarizability of the ionic core modifies the Coulomb
potential felt by the valence electron. In semiconductor
physics, the exciton concept translates the bound states of
an electron-hole pair onto a hydrogen-like series, where the
crystal environment is included in the effective masses and
the dielectric function of the material [1–3]. However, the
periodic arrangement of the crystal constituents breaks the
rotational symmetry of atoms and leads to semiconductor-
specific effects such as detailed level splittings [4]. These
splittings demonstrate deviations from the Rydberg formula.

Here we calculate the correct binding energies of Cu2O
from the band structure and cast them into the form of
single-parameter corrections to the Rydberg series. In contrast
to atoms, the origin of the excitonic correction is not a mod-
ification of the Coulomb potential, but the deviation from the
parabolic band dispersion and hence the kinetic energy of elec-
trons and holes. Based on the group-theoretical band Hamilto-
nian of Suzuki and Hensel (SH) [5] adapted to the exact band
structure of cuprous oxides derived by using density functional
theory (DFT) [6], we compute the exciton binding energies
and extract from them the relevant corrections to the Rydberg
series. Our theoretical results are compared with experimental
data collected by high-resolution absorption spectroscopy. In
combination with electric fields, we are able to extract the
binding energies of excitons of S, P , D, and F type, extending
previous studies to far higher principal quantum numbers.
The excellent agreement between theory and experiment
corroborates our assignment of the deviations of the exciton
level spectrum to the nonparabolicity of the band dispersion.

II. VALENCE BAND DISPERSIONS IN CUPROUS OXIDE

Cuprous oxide (Cu2O) was historically the first material
in which excitons were observed [7–9]. Their discovery,

combined with the availability of exceptionally pure natural
crystals [10], sparked considerable interest in light-matter
interactions in condensed-matter systems. Cuprous oxide is
endowed with a relatively large Rydberg energy of around
86 meV. The crystal environment is taken into account
by the permittivity ε that, for crystals with cubic (Oh)
symmetry such as Cu2O, is typically isotropic. This means
that the exciton spectrum should simply be a scaled hydrogen
spectrum. However, recent high-precision measurements of
the P -exciton energies of the yellow series of Cu2O showed
a systematic deviation of the observed spectrum from the
hydrogen analogy expectation [11], in addition to the splitting
of the excitons with different angular momenta for low n

[4]. Several effects such as the influence of a frequency- and
wave-vector-dependent permittivity ε(k,ω), the coupling to
LO-phonons as well as exchange interactions have all been
proposed as causes for that deviation [12]. In two-dimensional
materials such as transition-metal dichalcogenides (TMDCs),
the nonlocal nature of the Coulomb screening causes similar
effects [13–15]. However, as we will show here, the deviation
of the exciton binding energies of the yellow series in bulk
cuprous oxide from the hydrogenic Rydberg series is a result
of the nonparabolic dispersion of the highest valence band
(with symmetry �+

7 at the Brillouin zone center).
The description of excitons in a semiconductor requires

detailed knowledge of the electronic band structure. The
common approach in solid-state physics is to approximate the
extrema of valence and conduction bands via parabolic shapes.
In the effective-mass approximation these parabolas are then
interpreted as the kinetic-energy terms of electron and hole,
respectively. A simple two-band model yields the Wannier
equation, which is analogous to the Schrödinger equation for
hydrogen, and whose bound-state solutions are the excitons
[16] following the simple Rydberg formula.

Additional interactions such as spin-orbit and interband
interactions lead to further splitting and deformation of the
relevant bands under consideration. In Cu2O, the highest
valence band with symmetry �+

5 splits under the spin-orbit
interaction Hso = 1

3�(I · σ ), where I denotes the angular-
momentum matrices for I = 1 and σ denotes the Pauli spin
matrices, into one (doubly degenerate) �+

7 and two (doubly
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degenerate) �+
8 bands, associated with total angular momenta

J = 1/2 and J = 3/2, respectively [5]. The value of the
spin-orbit splitting in Cu2O is � = 131 meV. From symmetry
arguments [17] it follows that band interactions can be taken
into account in a 6 × 6-matrix Hamiltonian that includes
powers of the momentum k up to second order [5]:

Hk = �
2

2me

{
[A1 + B1(I · σ )]k2 +

[
A2

(
I 2
x − 1

3
I 2

)

+B2

(
Ixσx − 1

3
I · σ

)]
k2
x + c.p. + [A3(IxIy + IyIx)

+B3(Ixσy + Iyσx)]{kxky} + c.p.

}
, (1)

where c.p. stands for cycling permutations and {kxky} =
(kxky + kykx)/2. The band-interaction Hamiltonian Hk con-
tains a total of six dimensionless parameters {A1,2,3,B1,2,3},
which can be obtained by matching the resulting energy
dispersions to the exact band structure derived from spin-DFT
calculations [6]. Note that DFT does not give the correct gap
energy, which can be obtained experimentally.

The fit was performed for the highest valence band
(�+

5 ) which splits due to the spin-orbit interaction into
an energetically higher �+

7 and the two lower-energy �+
8

bands. This yields three individual energy dispersions E
(i)
SH(k)

(i = 7,8hh,8lh) for each direction in the Brillouin zone. A
least-squares fit to the �+

7 band that is of interest to us yields
the parameters A1 = −1.76, A2 = 4.519, A3 = −2.201, B1 =
0.02, B2 = −0.022, and B3 = −0.202. The lowest conduction
band (�+

6 ) can easily be approximated by a parabola in the
vicinity of the � point and it has an isotropic curvature in
all directions. The bound states formed between the �+

6 and
the �+

7 , �+
8 bands are the excitons of the yellow and green

series, respectively. Figure 1 shows the relevant bands and the
fits to the Hamiltonian HSH = Hso + Hk . In the following,
we neglect the anisotropy of the band dispersions and use a

weighted average E
(i)
SH for simplicity, with the weights being

the respective geometric multiplicities. After this procedure,
there is no free parameter left. Furthermore, in doing so, the
exciton angular momentum l = 0,1,2, . . . becomes a good
quantum number for labeling the states. Tiny fine structure
splittings as reported recently are neglected [18].

III. EXCITON BINDING ENERGIES

In the following we restrict our analysis to the excitons
of the yellow series (�+

6 ⊗ �+
7 ) while an investigation of

the excitons of the green series (�+
6 ⊗ �+

8 ) would follow
a similar path. We first split the valence band dispersion

E
(7)
SH into a parabolic part Th near k = 0 and a nonparabolic

contribution �Th(kh). Adding the kinetic energy Te of the
conduction band as well as the Coulomb interaction Ve-h to
the valence band dispersion results in a Wannier equation
that, due to the nonparabolic valence band dispersion, no
longer resembles a simple Schrödinger-type equation. After
transformation to the single-particle (exciton) picture and
neglecting the center-of-mass momentum (i.e., setting K = 0),

FIG. 1. Relevant band dispersions along two particular directions
in the Brillouin zone. Black lines show band dispersions from spin-
DFT [6]. Blue dashed line shows parabolic model for the lowest
conduction (�+

6 ) band with an effective electron mass m∗
e = 0.98me.

Red dashed lines show best fits of the dimensionless parameters
{A1,2,3,B1,2,3} in Hk [Eq. (1)] to the band structure. The inset shows
the uppermost valence bands and the corresponding fits in the vicinity
of the � point.

the Hamiltonian takes the general form

H = �
2k2

2μ
+ �Th + Ve-h(k) � , (2)

with the reduced exciton mass μ defined as usual. Here, the
symbol � denotes the convolution operator.

The exciton binding energies En,l are then obtained from the
eigenvalue equation H�(k) = En,l�(k) in momentum space
which, due to the convolution with the Coulomb potential,
is in fact an integral equation. Without the nonparabolic
contribution �Th, the solution for the momentum-space wave
function �(k) is that for hydrogenic systems [19], and the
energy eigenvalues En,l follow a hydrogen-like Rydberg series.
Inclusion of the term �Th prevents one from obtaining an
analytic solution.

In this case, we make use of the method proposed in
Ref. [20] by which the original eigenvalue problem H�(k) =
En,l�(k) is converted into an auxiliary Sturmian eigenvalue
problem

(
�

2k2

2μ
+ �Th − En,l

)
�(k) = −λ(En,l)Ve−h(k) � �(k),

(3)
with Sturmian eigenvalue λ(En,l) that itself depends para-
metrically on the sought energy eigenvalue En,l . The energy
eigenvalues of the system now emerge from the λ spectrum if
the condition λ(En,l) = 1 is met. The advantage of this method
is that Eq. (3) can be transformed, after separation of radial
and angular variables, into a Fredholm integral equation of the
second kind, whose real and symmetric integral kernel can be
spectrally decomposed into eigenfunctions gn,l(k).

In the absence of any nonparabolicity (�Th = 0), the eigen-
functions gn,l(k) are orthonormal, and the condition λ(En,l) =
1 yields the standard hydrogenic Rydberg formula [20]. The
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inclusion of �Th results in a mixing of eigenfunctions gn,l(k)
with different principal quantum numbers n. Therefore, an
additional diagonalization step has to be added. The numerical
procedure thus involves

(1) solving the integral equation (3) for all principal
quantum numbers n with n � nmax for a given angular
quantum number l, with En,l as parameters,

(2) diagonalizing the matrix of (nonorthogonal) eigenfunc-
tions gn,l(k), and

(3) extracting the energy eigenvalues that fulfill the condi-
tion λ(En,l) = 1.

Typically, principal quantum numbers up to nmax = 60
provided good convergence of the numerical procedure to
obtain the exciton spectrum up to n = 25.

IV. DEVIATION FROM THE RYDBERG SERIES

The energy eigenvalues En,l that are obtained from such
a diagonalization no longer follow the Rydberg series of a
hydrogen atom. In semiconductor physics, the common ap-
proach at this point is to employ k · p theory to account for the
nonspherical symmetry [21–23]. Incorporating the Luttinger
parameters of Cu2O, it allows one to determine the binding
energies as demonstrated in Ref. [18]. However, a few remarks
are in order in comparison with our approach. Besides the band
gap and the Rydberg energy, applying k · p theory to cuprous
oxide requires the Luttinger parameters and in some cases
the dielectric function, which are both determined by fitting
the model Hamiltonian to the experimental band structure. In
contrast, our approach fits the most general Hamiltonian for
the cubic crystal symmetry to an ab initio calculation of the
band structure, thus avoiding any experimental fit parameters at
this point. Furthermore, the solution of the coupled differential
equations in the k · p approach requires a set of basis functions
that are arbitrary at this point. On the other hand, the structure
of the Fredholm integral equation yields a natural basis set
gn,l . Another advantage of our method is that we describe one
source of deviations at one time. Combined with our purely
theoretical data we are thus able to gauge the influence of the
nonparabolicity on the deviation of exciton binding energies
from the Rydberg series.

Phenomenologically, the energy shift of the excitonic
Rydberg series can also be traced back to deviations of the
interaction potential between electron and hole from the strict
Coulomb potential at short distances (central-cell corrections).
For excitons in Cu2O this was done for the first time in
Ref. [24]. There, the atomic concepts of quantum defects was
applied, but only to match experimental data of the yellow S

excitons, with the assumption that the quantum defect for the
P excitons is negligibly small. Besides the nonparabolicity of
the bands, the binding energy of the excitons can be affected by
other central-cell corrections such as the coupling of electrons
and holes to LO phonons, the frequency-dependent dielectric
function ε(k,ω) and exchange interactions [12]. However, as
we are interested in excitons with large principal quantum
number n, their low binding energy prevents the coupling to
LO phonons. Possible coupling to phonons above the band
gap is suppressed due the limitation of phonons by the low
temperature. In addition, a large exciton Bohr radius allows
one to assume that the dielectric function can be treated as a
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FIG. 2. Deviations αn,l from the Rydberg series of the yellow
excitons in Cu2O as function of principal quantum number n for
angular momenta l = 0, . . . ,3. Solid lines show energy eigenvalues
from Eq. (3). Markers are experimental values (S: black dots, P : red
crosses, D: blue dots, F : green crosses) from absorption spectroscopy.

constant ε = 7.5 [25], hence we expect the contribution of the
other central-cell corrections to be negligibly small. Overall,
one may expect the nonparabolicity of the valence to be the
major source of corrections to the ideal Rydberg series.

As the deviations from the ideal Rydberg series are small
compared to the binding energies and tend to zero for large
n, it is convenient to display these corrections relative to ideal
variations of binding energies as

αn,l = En − E∗
n

E∗
n+1 − E∗

n

, (4)

where En is the actually measured binding energy (difference
to band gap), while the E∗

ν represent ideal Rydberg energies
Ry/ν2. The results are shown in Fig. 2 (solid lines) as
function of principal quantum number n for the lowest angular-
momentum states with l = 0, . . . ,3. As expected from the
modified Hamiltonian (2), the theoretical corrections saturate
for large n and decrease with increasing l.

V. TRANSMISSION SPECTROSCOPY

To experimentally determine the energies of exciton states
in Cu2O, we performed high-resolution absorption spec-
troscopy on a high-quality crystal. The energies of the P

excitons can be accessed directly by one-photon absorption
in the electric-dipole approximation, as demonstrated in
Ref. [11]. In a strict sense, angular momentum is not a good
quantum number in crystals but can be used approximately in
high-symmetry cubic crystals with Oh or Td symmetry. The
symmetry reduction leads to an admixture of P excitons to
the F excitons so that they become observable in absorption
[4]. As a consequence, the energies of these states can be
determined with high accuracy [18]. In case they show a
fine structure splitting, we have taken the center of gravity
energy of the corresponding multiplet, which is in line with
the theoretical model that averages over different k-space
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FIG. 3. Absorption spectra of the n = 4 and n = 5 excitons in
external electric fields. The curve on top shows a cut through the
contour plot at U = 8 V.

directions. While the energies of excitons with odd-parity
envelopes can be determined accurately in that way, this is
not possible for states with even parity.

Therefore, we additionally applied an electric field along
the optical axis, which leads to a mixing of the S exciton with
the P exciton with zero magnetic quantum number. Similarly,
D excitons become mixed with P and F excitons of the same
magnetic quantum number. As a consequence, the related
features appear in the absorption spectra (see Fig. 3), which
shows the absolute absorption of the n = 4 and n = 5 excitons
as function of electric field. With increasing field strength new
features emerge and intensify, as expected from the increased
state mixing with the P excitons. Also, line splittings are
observed, which ultimately lead to the Stark ladder. From
extrapolation towards U = 0, the energies of these excitons
at zero field can be accurately assessed. From their order in
energy we can attribute them to S and P excitons, as labeled.

To enhance the accuracy of the energy evaluation, we
have also taken the second derivatives of the absorption
spectra, shown in Fig. 4. By doing so, the enormous intensity
differences in absolute transmission are leveled out, and the
different absorption lines become much more resolvable, so
that high-accuracy determination of the S- and D-exciton
energies becomes possible: For the D excitons, again, the
center-of-gravity is determined for each principal quantum
number. In doing so, we are able to extend the reported energies
to significantly higher principal quantum numbers, for the S

excitons up to n = 12 compared to 7 in previous reports, and
up to n = 8 for the D excitons compared with 5 previously. The
assignment of the states via the second derivative is depicted
in the transmission spectrum in Fig. 3 by the dotted lines.
Note that, for higher n, these excitons become also optically
activated in electric fields. However, it is no longer possible to
assign them in the multiplicity of emerging lines, so that also
their energies can no longer be determined with the required
accuracy for assessing the deviation αn,l .
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FIG. 4. Contour plot of the second derivative of an absorption
spectrum extended over a larger energy range covering the excitons
from n = 5 towards the band gap. The multiple splitting of the states
while transforming into the Stark ladder becomes obvious.

VI. RESULTS AND DISCUSSION

The experimentally extracted values for the deviations αn,l

of the exciton binding energies from the ideal Rydberg series
are shown in Fig. 2, together with the theoretical results for the
energy eigenvalues that are obtained from solving Eq. (3). In
addition, the S excitons are affected by electron-hole exchange
interaction with a common scaling of n−3. The experimental
binding energies of the S excitons, whose deviation αn,S is
depicted in Fig. 2, have thus been shifted downwards by an
amount of 8.04 meV/n3 (following previous measurements of
the exchange [4]) with respect to the values extracted from the
absorption spectra.

The agreement, in particular of the P -exciton resonances
for large n, is astonishingly good. This implies that non-
parabolicity of the bands (in case of Cu2O only the valence
bands) due to interband coupling is the dominant contribution
to the deviation of the exciton resonances from the hydrogenic
Rydberg series. Nonetheless, one still observes a systematic
deviation of the S-exciton energies from their predicted values,
in particular for low n. This can be attributed to the fact that,
in this energy range, the background permittivity ε(k,ω) is far
from constant [26], and that the binding energy, especially for
n = 2, is close to a phonon resonance. Taking this into account
will shift the data point closer to the theoretically expected
value. This points to a possible extension of our theory in which
a frequency-dependent permittivity could be incorporated in
a self-consistent manner by including it both in the Coulomb
interaction potential and the Rydberg energy. The observed
high-n shift on the other hand may be due to the fact that the
measurement setup had to be altered for the resonances beyond
n = 10. Thus, a small systematic shift might have occurred,
which features prominently in the deviation parameter αn,S .

Although we have focused solely on the yellow exciton
series of Cu2O, it is clear that our procedure is valid for all
semiconductors that possess both spin-orbit interactions as
well as cubic symmetry within their band structure. In partic-
ular, we expect the green exciton series of Cu2O to provide
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purely negative values for αn,l because the interband coupling
results in an increased curvature of the �+

8 valence band.
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