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Heisenberg antiferromagnet on the Husimi lattice
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We perform a systematic study of the antiferromagnetic Heisenberg model on the Husimi lattice using numerical
tensor-network methods based on projected entangled simplex states. The nature of the ground state varies strongly
with the spin quantum number S. For S = 1

2 , it is an algebraic (gapless) quantum spin liquid. For S = 1, it is a
gapped, nonmagnetic state with spontaneous breaking of triangle symmetry (a trimerized simplex-solid state).
For S = 2, it is a simplex-solid state with a spin gap and no symmetry breaking; both integer-spin simplex-solid
states are characterized by specific degeneracies in the entanglement spectrum. For S = 3

2 , and indeed for all
spin values S � 5

2 , the ground states have 120◦ antiferromagnetic order. In a finite magnetic field, we find that,
irrespective of the value of S, there is always a plateau in the magnetization at m = 1

3 .
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I. INTRODUCTION

The investigation of low-dimensional quantum antiferro-
magnets has long been one of the most active frontiers in con-
densed matter physics. One of the most remarkable advances in
the understanding of one-dimensional quantum spin systems
is Haldane’s conjecture [1,2] that quantum Berry-phase effects
cause the low-energy behavior of Heisenberg chains to depend
strongly on the parity of 2S. Half-odd-integer spin chains
have gapless excitations and power-law decay of their spin
correlation functions, whereas integer-spin chains have a finite
excitation gap (the “Haldane gap”) and exponentially decaying
spin correlations. In fact Lieb, Schultz, and Mattis were the
first to prove that the excitation gap for half-odd-integer spin
chains is bounded only by the system size (� ∝ 1/L) [3,4].

The Haldane conjecture has inspired extensive theoretical
studies, especially on integer-spin systems. Affleck, Kennedy,
Lieb, and Tasaki (AKLT) provided the first rigorous example of
a model with a unique ground state, a gap, and exponentially
decaying spin correlation functions [5,6]. It was later found
that AKLT states exhibit several exotic features, such as a
nonlocal “string order” and edge states, which are properties
of all states within the same Haldane phase [7]. A theoretical
framework for understanding these topological properties has
been developed recently [8,9] and used to classify all one-
dimensional gapped systems [10–13].

Extensions of the understanding brought by the Haldane
conjecture have long been sought for quantum spin systems in
all dimensions higher than 1. The Lieb-Schultz-Mattis theorem
was extended to higher dimensions by Hastings [14]. The
AKLT construction can be extended to all higher dimensions in
the form of simplex-solid states [15], where the two-site S = 1

2
bond singlet of the AKLT state is generalized to an N -site
simplex singlet. As for the AKLT states, the simplex-solid
state is an exact ground state of a many-body Hamiltonian,
usually with a gap to all low-energy excitations. The wave
function of a simplex-solid state can be represented by the
projected entangled simplex states (PESS) [16], providing
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the foundation for the numerical tensor-network technique we
employ here. However, while the integer-spin case appears to
have a number of higher-dimensional analogs, it has remained
unclear whether any quantum spin system in dimension d > 1
can be simultaneously gapless, nonmagnetic, and not break
any other symmetries (particularly translational).

In this context, innumerable studies have been performed
of highly frustrated models in two dimensions, including the
triangular, Shastry-Sutherland, J1-J2 square, checkerboard,
J1-J2-J3 honeycomb, and other geometries, as well as of
the pyrochlore lattice in three dimensions. However, the most
challenging and enigmatic frustrated system of all has turned
out to be the nearest-neighbor S = 1

2 Heisenberg model on the
(two-dimensional) kagome lattice, due to the strong intrinsic
frustration of this geometry. Despite extensive analytical and
numerical efforts for almost three decades, the nature of
the ground state and the existence of a spin gap remain as
open questions, with primary candidates including several
types of valence-bond crystal [17], different gapped Z2 spin
liquids [18], and a gapless, algebraic quantum spin liquid [19].
Recently, and in part with a view to solving this conundrum,
more attention has also been paid to kagome Heisenberg
antiferromagnets with higher spins [20,21]. Various proposals
have been put forward for the spin-1 case, including the
hexagonal singlet solid state [22], the resonating AKLT loop
state [23,24], and the trimerized simplex-solid state [25–27],
among which the last has the best variational energy [26,27].
For the S = 2 case, a coupled-cluster calculation suggested
that the ground state has

√
3×√

3 antiferromagnetic order [28],
whereas the infinite projected entangled pairs states (iPEPS)
algorithm indicates a (topologically trivial) spin liquid with a
spin gap and no symmetry breaking [21].

The Husimi lattice [29], shown in Fig. 1(a), is an infinitely
nested set of corner-sharing triangles. Although the local
geometry is identical to that of the kagome lattice [Fig. 1(b)],
the Husimi lattice has weaker geometrical frustration because
of its bisimplex nature [30] and because the triangles never
reconnect, giving it a tree structure. A major consequence
of these features is that the Heisenberg model defined on
the Husimi lattice is significantly easier to calculate than
the kagome case. To be specific, the PESS ansatz defined
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(a) (b)

FIG. 1. (a) Triangular Husimi lattice; (b) kagome lattice.

on the Husimi lattice is an infinite tree tensor-network state,
which, as we discuss in detail in Sec. II, can be computed
very efficiently by the simple-update approach [31,32]. This
allows us to perform systematic investigations within the PESS
framework of the physical properties of the ground state for
Heisenberg models of arbitrary spin quantum number S on the
Husimi lattice. Within the confines of the Husimi geometry,
we may thus characterize the unique quantum ground states at
small S and the quantum-to-classical crossover with increasing
S. Beyond the Husimi lattice, its geometrical similarity to the
kagome lattice (Fig. 1) suggests the possibility of many similar
physical properties [33,34], and thus such an investigation may
shed new light on the nature of the kagome system.

With this motivation, here we study the properties of the
antiferromagnetic Heisenberg model on the Husimi lattice for
spin quantum numbers up to S = 4, working directly in the
thermodynamic limit by the PESS technique [16]. We find a
wide variety of quantum ground states at zero field, ranging
from a gapless spin liquid for S = 1

2 through different types of
gapped, simplex-solid state for S = 1 and 2, to (120◦-)ordered
Néel-type antiferromagnets for S = 3

2 and S � 5
2 . Despite

these differences, every single model shows a 1
3 plateau in the

magnetization, suggesting a further rich variety of quantum
states at finite applied fields.

This paper is organized as follows. In Sec. II, we give a
brief introduction to the model and to the Husimi lattice, we
review the simplex-solid states and present their generalization
to situations with broken translational and spin symmetries,
and we discuss the simple-update method for computations
using the PESS wave function, including of the entanglement
spectrum. In Sec. III, we present our results for the zero-
field energies, spontaneous magnetizations, and entanglement
spectra of Heisenberg models on the Husimi lattice for spin
quantum numbers up to S = 4. In Sec. IV, we extend our
considerations to a finite magnetic field, compute the induced
magnetization curves for all S values, and comment in detail
on the state at 1

3 of the saturation magnetization. Section V
contains a discussion and a brief summary of our results.

II. MODEL AND METHOD

A. Model

We consider the nearest-neighbor antiferromagnetic
Heisenberg model in the presence of an external magnetic
field h, applied in the z direction of spin space, on the Husimi

lattice of Fig. 1(a). The Hamiltonian is given by

H = J
∑
〈i,j〉

Si · Sj − h
∑

i

Sz
i , (1)

where Si is the spin-S operator on site i, we investigate
spin quantum numbers up to S = 4, 〈i,j 〉 denotes the sum
over nearest-neighbor sites, and J is the nearest-neighbor
antiferromagnetic exchange coupling, which is set henceforth
as the energy scale (J = 1).

B. Properties of the Husimi lattice

The Husimi tree, first introduced in statistical mechanics
by Husimi [29,35,36], is a connected graph whose lobes are
all p-polygons (p � 2, where the 2-polygon is a bond, the
3-polygon a triangle, and so on) and whose bonds belong to
at most one simple cycle. If all lobes consist of only one type
of p-polygon, the system is known as a pure Husimi tree, of
which the simplest is the Cayley tree [37], whose lobes consist
only of bonds. The Husimi lattice is an infinite pure Husimi
tree. A Husimi lattice can be characterized by two numbers,
p and z, where p is the number of edges of the p-polygon
and z is the coordination number of each vertex. A Husimi
lattice with z = 4 and p > 2 can be derived from the Bethe
lattice [39] with coordination number p if each bond of the
Bethe lattice is replaced by a single vertex and each vertex by
a single p-polygon.

The general quasiregular tiling {p

q
} is composed of two

types of regular polygon with edge numbers p and q, which
are arranged alternately around each vertex. The coordination
number of all structures {p

q
} is equal to four. The Husimi

lattice with z = 4 and p > 2 can be also regarded as a limiting
case of the quasiregular tiling {p

q
} in the hyperbolic plane, with

q = ∞ [38]. The { 3
∞} and { 4

∞} Husimi lattices are also known,
respectively, as the triangular and square Husimi lattices, and
in this sense the system on which we focus here is more
accurately specified as the triangular Husimi lattice [Fig. 1(a)].
The kagome lattice [Fig. 1(b)] is the quasiregular structure
{ 3

6 } and we stress again that the two share the same local
geometry (Fig. 1).

There is, however, an essential difference between the
Husimi tree and the Husimi lattice. In the same way that the
Cayley tree differs from the Bethe lattice [39], the Husimi
lattice has no center and no boundary, and all of its vertices
(or polygons) are equivalent, thereby preserving translational
invariance. By contrast, the Husimi tree does have a central
vertex (or polygon) and a boundary; further, the number of
vertices (polygons) grows exponentially with distance from
the center, and thus the ratio between the number of vertices
(polygons) on the boundary and that in the bulk does not
approach zero in the thermodynamic limit. The Husimi tree
therefore has very strong finite-size effects and the physical
properties of any model defined on the finite tree may be very
different from those of a model on the infinite lattice. Normally,
a model defined on the Husimi lattice is much more suitable to
represent a real physical system than a model on the Husimi
tree [39].
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FIG. 2. PESS representation of a simplex-solid state on the
infinite Husimi lattice. Solid circles represent virtual spins S = n,
open circles virtual spins S = n − 1 (n) for a S = 2n − 1 (S = 2n)
simplex-solid state. Red ellipses represent the projection tensors A

mi

si s
′
i
,

which project the two virtual spins into the physical spin subspace.
Ssi sj sk denotes the simplex tensor, defined on every triangular unit.

C. Simplex-solid states

Here, we review simplex-solid states and PESS. The
simplex-solid state of an SU(N) quantum antiferromagnet
was first introduced by Arovas [15] and can be regarded
as a generalization of the AKLT construction [5]. In any
simplex-solid state, the bond singlets of the AKLT state
are extended to N -site simplex singlets. As with the AKLT
state, one may construct the parent Hamiltonian, for which
the simplex solid is the exact ground state, as a sum of
particular local projection operators. Simplex solids typically
have a gap to all excitations and short-ranged correlation
functions.

PESS were introduced by Xie et al. [16], by generalizing
the concept of simplex-solid states to a numerical ansatz
designed to solve the S = 1

2 kagome Heisenberg antiferro-
magnet. PESS are also an extension of PEPS [40], sharing a
number of the advantages of the PEPS formulation, including
the ability to satisfy the boundary area law of entanglement
entropy and to represent any state if the bond dimension
is sufficiently large. Beyond the PEPS framework, PESS
introduce a new type of entangled simplex tensor, which
captures the N -body entanglement of the N virtual particles
within an N -site simplex (beyond the two-body entanglement
contained in PEPS), and it is believed that this feature has
an essential role in reproducing the properties of frustrated
systems [16].

PESS are precisely the tensor-network representation of the
simplex-solid states [16]. Taking the example of the spin-2
simplex-solid state on the (triangular) Husimi lattice, the
physical S = 2 spin at each site can be treated as a symmetric
superposition of two virtual S = 1 spins (see Fig. 2). Because
of the bisimplex property, meaning that two neighboring
simplices share a single site symmetrically, each of the S = 1
spins can be assigned to one of the simplices. Thus, each
simplex contains three virtual S = 1 spins. From the properties
of the SU(2) group, decomposition of the product of three

integer spins yields

n⊗n⊗n = [a0×0] ⊕ · · · ⊕ [ak×k] ⊕ · · · ⊕ [a3n×3n],

ak =
{

2k + 1, k � n

3n + 1 − k, k > n
, k = 0,1, . . . ,3n (2)

where ak represents the number of times that the kth irreducible
representation occurs. a0 is always equal to 1, i.e., the three-site
simplex contains a unique spin singlet state. One may thus
define a virtual singlet on each simplex,

|ψα〉 = 1√
6

∑
{s∈α}

Sα
si sj sk

|si,sj ,sk〉, (3)

where si is a S = 1 virtual spin located at site i belonging
to the simplex α, and Sα

sisj sk
is an antisymmetric Levi-Civita

tensor εsi sj sk
. Recovery of the physical spin-2 state requires the

application of a mapping Pi at each site i, which projects the
two virtual S = 1 spins into the spin-2 subspace,

Pi =
∑
si ,s

′
i

∑
mi

A
mi

si ,s
′
i
|mi〉〈si,s

′
i |, (4)

where |mi〉, with mi = 0,±1,±2, is a basis state of the
physical S = 2 spin at site i. A

mi

si ,s
′
i

is the Clebsch-Gordan
coefficient symmetrizing two virtual S = 1 spins and has non-
vanishing components A2

11 = A−2
33 = 1, A1

12 = A1
21 = A−1

23 =
A−1

32 = 1/
√

2, A0
13 = A0

31 = 1/
√

6, and A0
22 = 2/

√
6 [16].

Finally, the tensor-network representation of this simplex-solid
state is the PESS

|�〉 =
⊕

i

Pi

∏
α

|ψα〉

= Tr
(
. . . Sα

si sj sk
A

mi

si ,s
′
i
A

mj

sj ,s
′
j
A

mk

sk,s
′
k
. . .

)| . . . mimjmk . . .〉.
(5)

This description can be extended to any higher even-integer
spin. A physical S = 2n spin is regarded as a symmetric
superposition of two virtual S = n spins and the three spins in
each simplex are combined to form an SU(2) simplex singlet
(see Fig. 2). By covering the lattice with equivalent simplex
singlets, one obtains a class of simplex-solid states breaking
no lattice symmetries. Their parent Hamiltonians are readily
constructed in terms of local projection operators. Because half
of the virtual spins at the three vertices of any given simplex are
combined into a singlet (S = 0), the total spin on each simplex
cannot exceed S = 3n. The uniform simplex-solid states are
therefore the exact ground state of the Hamiltonian

H =
6n∑

m=3n+1

Jm

∑
〈ijk〉∈�,∇

Pm(ijk), (6)

where the second sum 〈ijk〉 is over all simplices (� and ∇),
Jm represents a set of non-negative coupling constants, and
2n (=S) is the physical spin quantum number at each site.
Pm(ijk) is the operator projecting a state at each simplex onto
a state with total spin m, which can be expressed as

Pm(ijk) =
3S∏

l �=m

(Si + Sj + Sk)2 − l(l + 1)

m(m + 1) − l(l + 1)
, (7)
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where Si , Sj , and Sk are the vector spin operators on the three
sites of every simplex.

D. PESS states with broken symmetry

1. Broken translational symmetry

To extend the discussion of the previous subsection to
systems with arbitrary odd-integer spin, a physical S = 2n − 1
spin must be regarded as a symmetric superposition of a virtual
S = n spin and a virtual S = n − 1 spin (see Fig. 2). One
possible distribution of these unequal spins is to assign the
S = n spins to one type of simplex, for example, the upward-
oriented triangles (�, referred to henceforth as “up triangle”),
and the S = n − 1 spins to the other (∇, henceforth “down
triangle”). Following Eq. (2), the three S = n spins on the up
triangles combine to form an SU(2) spin singlet, and so do the
three S = n − 1 spins on the down triangles. A nonuniform
simplex-solid state can be obtained by arranging the two
inequivalent types of simplex singlet in an alternating pattern
on the Husimi lattice, with the inequivalence causing a twofold
ground-state degeneracy. This class of simplex-solid states
breaks lattice inversion symmetry and favors trimerization
[25]. The total spin of the three sites on each bond pair spanning
every pair of inequivalent simplices, which we denote by 〈,
cannot exceed 2S. As a result, these simplex-solid states are
exact zero-energy eigenstates of the parent Hamiltonian [15]

H =
3S∑

m=2S+1

Jm

∑
〈ijk〉∈〈

Pm(ijk), (8)

where the second sum 〈ijk〉 is over all three-site units (ijk)
defining a bond pair with one bond on each type of simplex, Jm

is a set of non-negative coupling constants, S is the physical
(site) spin quantum number, and Pm(ijk) is the spin projection
operator defined by Eq. (7), but with the three sites specified
to be on the same unit 〈.

The simplest example of a nonuniform simplex-solid
state is obtained for S = 1. This is readily expressed
as a PESS wave function with bond dimension D = 4,
where the two virtual spins at every lattice site each
have four basis states |1〉 ≡ |↑〉, |2〉 ≡ |0〉, |3〉 ≡ |↓〉, and
|4〉 ≡ |∅〉, representing, respectively, the components of a
spin-1 triplet and a spin-0 net singlet. The nonvanish-
ing components of the two simplex tensors are S

�
ijk =

1√
6
εijk(i,j,k = 1,2,3) and S∇

444 = 1, and of the projection ten-

sor are A+1
14 = A0

24 = A−1
34 = A+1

41 = A0
42 = A−1

43 = 1, A+1
12 =

A0
13 = A−1

23 = 1/
√

2, and A+1
21 = A0

31 = A−1
32 = −1/

√
2; the

parent Hamiltonian is given simply by

H =
∑

〈ijk〉∈〈
P3(ijk). (9)

We comment that there is no corresponding simplex-solid
state on the triangular Husimi or kagome lattice for the case
when the spin quantum number is half-odd-integer. In this
situation, and indeed for any other with an odd-site simplex,
decomposing the product of an odd number of half-odd-integer
spins cannot yield a total spin singlet.

(a) (b)

λ λ

λ λA

A

Sμ‹Sμ›

FIG. 3. (a) Schematic representation of the antiferromagnetic
state with 120◦ Néel order on the Husimi lattice, where the arrows
denote the orientations of the spins. (b) Graphical representation of
the expectation value of the local spin operator Sμ(μ = x,y,z) for
a PESS wave function, where λ and A are, respectively, the bond
vector and the projection tensor in the canonical PESS wave function.
Connecting lines denote the contraction of two neighboring tensors.

2. Spontaneously broken spin symmetry

In two and higher dimensions, and in particular as the
spin quantum number increases, the ground state of any
magnetic system usually favors some type of ordered state. For
strongly frustrated antiferromagnets, where collinear order is
precluded, this order tends to be coplanar in the absence of
an external field, and in triangle-based geometries its most
common form is the 120◦ Néel order shown in Fig. 3(a). To
detect this type of magnetic order in our PESS calculations,
one could in principle calculate the expectation values of the
spin operators at every site and then consider their mutual
orientations. For the 3-PESS wave function used in this work
[16], we assume complete translational invariance and thus
we need only calculate the expectation values of the spin
operators 〈Sx

i 〉, 〈Sy

i 〉, and 〈Sz
i 〉 at the three sites within each

of the two types of triangle (up and down). Because the PESS
wave function defined on the Husimi lattice can be expressed
in canonical form, as shown in the next subsection, the
expectation value of the local spin operator is easy to calculate,
as represented graphically in Fig. 3(b). If the ground state has
antiferromagnetic order, the (“transverse”) magnetization

M = 1

N

∑
i

√〈
Sx

i

〉2 + 〈
S

y

i

〉2 + 〈
Sz

i

〉2
(10)

will have a finite value. The spontaneous magnetization M

serves as the order parameter for the detection of antiferro-
magnetically ordered states.

3. Applied magnetic field

In the presence of a finite field h in Eq. (1), spin rotation
symmetry is broken explicitly. In this case, it is the longitudinal
magnetization, defined as

Mz = 1

N

∑
i

〈
Sz

i

〉
, (11)

which takes on a finite value. In contrast to numerical
approaches implemented on systems of finite size, where
it is necessary to target sectors of specific total-spin quan-
tum number to reproduce the effects of an external field,
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FIG. 4. Graphical representation of a PESS on the infinite Husimi
lattice (dashed lines). Open black circles represent the three-index
simplex tensor Sα

abc (α = �,∇), solid red circles the three-index
projection tensors A

mj

bb′ at each physical lattice site. Blue lines
represent the virtual indices of all tensors, vertical red lines the
physical degrees of freedom {mj } of each site.

tensor-network techniques are already in the thermodynamic
limit and will return a wave function appropriate for the
field applied. We calculate the longitudinal magnetization
associated with this wave function for all values of h and
S in Sec. IV, and interpret the physical content of the resulting
states.

We comment here that the PESS code we use in this paper is
real. Thus, it is possible to represent all magnetic states where
the spins are coplanar, which naturally includes all collinear
spin states. In the event that the combination of frustration
and applied magnetic field were to produce noncoplanar
spin states, or in field-free systems with extended frustration
showing, for example, the double-spiral ground state, it would
be necessary to use complex code to obtain an accurate
representation. In the present case, with nearest-neighbor
coupling only and triangular geometries, it is expected [41] that
the moments will lie in the same plane for all applied fields.

E. Simple-update method and canonical form

We now employ the PESS wave function not as an exact
description of simplex-solid states but as a variational ansatz
to capture the ground-state properties of an arbitrary spin
system [16]. The PESS wave function on the triangular Husimi
lattice is represented graphically in Fig. 4. Known as a 3-PESS
because its simplex contains three lattice sites, it is composed
of simplex entanglement tensors and projection tensors. The
former S

�
abc and S∇

abc each have three virtual indices and form
a Bethe lattice of simplex triangles, while the latter, Am

aa′ , Am
bb′ ,

and Am
cc′ , each have one physical and two virtual indices and

are located at the decorating sites of this Bethe lattice (the
original sites of the Husimi lattice). In contrast to Sec. II C,
where the tensor indices for the simplex solid were virtual
spin indices, now a, a′, b, . . . , are general virtual indices of
the tensor network and their dimension is the bond dimension
D. Each physical index mi runs over the d = 2S + 1 physical
basis states defined on each lattice site i.

The ground-state wave function is obtained by repeated
application of imaginary-time evolution operators U (τ ) =
exp(−τH ) on an initial PESS wave function |�0〉, where τ

is taken to be small. The Hamiltonian is split into

H = H� + H∇, (12)

where H� and H∇ contain, respectively, the Hamiltonian
terms on all up and down triangles. Because H� and H∇
do not commute, the evolution operator is decomposed

approximately into a product of two near-unitary operators
using the Trotter-Suzuki formula

e−τH = e−τH�e−τH∇ + O(τ 2). (13)

Each iteration of the projection is then performed in two steps
by successive application of e−τH� and e−τH∇ to the wave
function.

Each projection step, or application of e−τHα to the wave
function (α = �,∇), increases the dimensions of the evolved
bonds and thus requires a truncation of the bond dimensions
of the new tensors. During this truncation, it is necessary to
consider the renormalization effect of all the other bonds of
the system, which can be encoded as environment tensors, and
in general there are two types of scheme to simulate their
contributions. In the full-update approach, a complete and
accurate environment tensor is calculated at each projection
step, but the rather high computational cost of this process
limits the bond dimension to very small values (approximately
D � 6). A more efficient approach, the simple-update method
[16,31,42,43], approximates the effect of the environment
tensor using specific positive bond vectors. This method turns
out to be almost exact for one-dimensional systems [44] and,
of key importance for this study, for systems defined on the
Bethe lattice [32], as long as the imaginary time step τ is taken
to be sufficiently small.

The reason for this result lies in the bipartite nature of
tensor-network states defined on open chains and on the
Bethe lattice. This allows them to be written in canonical
form (below) and divided into two subsystems under Schmidt
decomposition [45], such that the square of the bond vector
defined on each bond is precisely the eigenvalue of the
reduced density matrix if the tensor-network state is kept in
its canonical form [32,44]. The bond vector then contains all
entanglement information between the system and environ-
ment subblocks, making the simple-update method equivalent
to the full-update approach for bipartite tensor-network states.
Because PESS defined on the Husimi lattice are also bipartite
tree tensor-network states, one expects that the simple-update
approach will provide an efficient determination of the wave
function in this case.

The simple-update procedure for the PESS wave function
is specified by the following steps, represented graphically
in Fig. 5.

(i) Absorb the environment bond vectors λβ,v into the
projection tensors Am

vv′ and then contract the three projection
tensors with the simplex tensor Sα to obtain a cluster tensor
T α , where v = a,b,c represents the virtual bond index, m is
the physical index of the projection tensor, and α and β denote
two neighboring simplices (up or down triangles).

(ii) Apply the near-unitary evolution operator e−τHα to the
cluster tensor T α to obtain a new cluster tensor T̄ α .

(iii) Decompose the new cluster tensor T̄ α into the product
of a renormalized simplex tensor and three renormalized
projection tensors by using higher-order singular value decom-
position (HOSVD) [16,46,47]. At the same time, one obtains
the new bond vectors λ̃α,v .

(iv) Truncate the renormalized simplex tensor and the three
renormalized projection tensors to obtain the updated simplex
tensor S̃α and projection tensors.
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(i) (ii)

(iii)

(iv)(v)

HOSVD

e−τHα

truncation

λβ,c
λβ,b

λβ,a

Sα

λβ,c
λβ,b

λβ,a

−1
−1

−1

T α

_
T α

mj
mk

a

bc

a′
b′c′

mi

c

a

b

mjmk
mi

c

a

b

mjmkmi

c

a

b
mj

mk

mi
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FIG. 5. Graphical representation of the simple-update procedure
for PESS using HOSVD. Details are provided in the text.

(v) Absorb the inverse bond vectors λ−1
β,v into the truncated

projection tensors to obtain the updated projection tensors Ãm
vv′ .

One evolution cycle is completed, i.e., the full tensor
network is updated, by repeating this procedure for each
simplex (α = �,∇). Repeated update cycles cause the PESS
wave function to converge to the ground state.

The canonical PESS wave function on the Husimi lattice
can be obtained by the simple-update method if the evolution
operator is replaced by the identity operator in step (ii). In the
canonical form, all tensors of the PESS should simultaneously
satisfy the canonical conditions∑

a,b

Sα
abc

(
Sα

abc′
)∗ = δc,c′λ2

α,c,

∑
v,m

λ2
α,vA

m
vv′

(
Am

vv′′
)∗ = δv′,v′′ , (14)

∑
v,m

λ2
α,vA

m
v′v

(
Am

v′′v
)∗ = δv′,v′′ ,

where λα,v denotes the bond vector for the bond linking the Sα

and Am
vv′ tensors; the “left” and “right” conditions specified

in the lower two lines must both be satisfied separately.
Maintaining this canonical form is the key to the success of
the simple-update scheme and is possible due to the bipartite
nature of the system.

F. Entanglement spectrum

The entanglement spectrum (ES) of a quantum system is
defined as the logarithmic eigenvalue of the reduced density
matrix of a many-body state [48], and provides additional use-
ful information beyond the entanglement entropy [24,48,49].
As noted above, for a canonical tensor-network state, the
square of the bond vector is precisely the eigenvalue of the
reduced density matrix, and thus it is easy to calculate the ES
using the bond vectors

ζα(i) = −log2 λ2
α,v(i), i = 1,2,3, . . . ,D (15)

where λα,v satisfies the normalization condition∑
i λ

2
α,v(i) = 1.

Taking the S = 2 simplex-solid state on the Husimi
lattice as an example, its tensor-network representation is
a PESS wave function with bond dimension D = 3, as

(a) (b)

Edge state Free edge spin

FIG. 6. Schematic representation of (a) a simplex-solid state and
(b) the corresponding edge state. Solid red circles denote virtual
spins S = n and open black circles virtual spins S = n − 1 (S = n)
for odd-integer-spin simplex-solid states (even-integer-spin simplex-
solid states). The edge state can be obtained by cutting a single bond
of the PESS and has a free edge spin on its boundary.

shown in Sec. II C. All the bond vectors obtained from the
canonical form [Eq. (15)] are λα,v = (1,1,1)/

√
3, which is

the square root of the reduced density matrix associated with
a simplex-singlet state [Eq. (3)]. Specifically, ρ̂s = trE(ρ̂) =∑

si ,s
′
i
( 1

6

∑
sj ,sk

εsi sj sk
εs ′

i sj sk
) |s ′

i〉〈si | = ∑
si ,s

′
i
( 1

3δsi ,s
′
i
) |s ′

i〉〈si |.
This result states that, if there exists a total singlet on the
triangular simplex, then the ES on the corresponding bond
will be threefold degenerate. For the S = 2 simplex-solid
state, because there is a total singlet on every simplex, the ES
is threefold degenerate on every bond of the system. Further,
the energy of this simplex-solid state for the Heisenberg
model on the Husimi lattice is given exactly as E0 = − 9

2 , and
there is no magnetic order.

It is similarly straightforward to obtain the ES of the
S = 1 simplex-solid state on the Husimi lattice, whose tensor-
network representation is a PESS wave function with bond
dimension D = 4, as shown in Sec. II C. For convenience
of discussion, henceforth we use the terminology “A bond”
(“B bond”) to denote the bond linking the S

�
abc (S∇

abc) and
Am

vv′ tensors. After this wave function is put in canonical form,
the bond vectors on the A and B bonds are (1,1,1,0)/

√
3

and (1,0,0,0), indicating that their entanglement spectra are,
respectively, threefold and onefold degenerate (i.e., nondegen-
erate), as could be expected from the preceding analysis. If the
energy of this state is computed, one indeed finds strong trimer-
ization “order” characterized by �E = 2|E� − E∇|/3 = 2,
where E� (E∇) is the average energy of an up triangle (down
triangle), but no magnetic order.

As for the AKLT states, the degeneracy of the ES for
simplex-solid states may be understood from the viewpoint
of edge states [45]. We first consider the edge states of the
odd-integer-spin simplex-solid state, with S = 2n − 1, defined
on the Husimi lattice. As shown in Fig. 6(a), cutting an A bond
of the PESS creates a free virtual spin S = n at the boundary,
represented in Fig. 6(b). Thus, the edge state has a (2n + 1)fold
degeneracy, which is related directly to the (2n + 1)fold
degeneracy of the lowest level of the corresponding ES (three-
fold degeneracy for the S = 1 simplex-solid state). Similarly,
cutting a B bond creates a free virtual spin S = n − 1 at the
boundary, which is related to the (2n − 1)fold degeneracy

075154-6



HEISENBERG ANTIFERROMAGNET ON THE HUSIMI LATTICE PHYSICAL REVIEW B 93, 075154 (2016)

FIG. 7. Energy per site E0 of the S = 1
2 Heisenberg model as

a function of bond dimension D. The inset shows the energy as a
function of 1/D, with a polynomial fit shown in blue. The extrapolated
energy is E∞

0 = −0.434 38(1).

of the lowest level of its corresponding ES (nondegenerate
for S = 1).

By contrast, for a S = 2n simplex-solid state, the free
virtual spin obtained at the boundary by cutting any bond is
S = n, giving a (2n + 1)fold degenerate edge state in every
case and corresponding to the (2n + 1)fold degeneracy of
the lowest levels of the ES on both A and B bonds. This
analysis is fully consistent with the above results for S = 2
simplex-solid state. We have also verified numerically that the
ES of the exact S = 3 and 4 simplex-solid states confirm this
reasoning; in the S = 3 case we find that the lowest levels
of the ES for the A and B bonds are, respectively, fivefold
and threefold degenerate, while for S = 4 both are fivefold
degenerate.

III. GROUND STATES AT ZERO FIELD

A. S = 1
2

We begin our presentation of PESS results for the Heisen-
berg model on the Husimi lattice by considering spin quantum
number S = 1

2 . This model was studied recently by Liu et al.

[50], who concluded that its ground state was a featureless
quantum spin liquid, with no local magnetization [Eq. (10)]
and no gap, but with exponentially decaying spin-spin and
dimer-dimer correlation functions (these results are mutually
consistent due to the special properties of infinite Bethe-type
lattices, of which the Husimi lattice is an example [32]).
However, we note that the correlation functions and magneti-
zation were calculated by these authors at finite temperature
(T/J = 0.01), and thus their results could be understood
simply from the Mermin-Wagner theorem [51], which states
that there can be no spontaneously broken continuous spin
symmetry at finite temperatures in one and two dimensions.

Here, we investigate the properties of the model at zero
temperature and perform careful extrapolations to the limit
of infinite bond dimension D. The ground-state energy per
site E0(D) is shown in Fig. 7 for values up to D = 260;

FIG. 8. Local magnetization M of the S = 1
2 Heisenberg model

as a function of bond dimension D. The inset shows M as a function
of D−α , with α = 0.588(2). The intercept of the linear fit (solid blue
line) is M(∞) = 0.00000(4).

its extrapolation to infinite D (inset, Fig. 7), obtained by a
quadratic fit, is E∞

0 = −0.434 38(1), and thus agrees within
the error bars with the result of Ref. [50]. If we consider the
magnetization order parameter, M (10), shown in Fig. 8, we
find that this is finite at every value of D, but decreases as D

increases. We also confirm that the spin orientations conform
to the expected 120◦ Néel order (Fig. 3) and that the spin
magnitudes

√
〈Sx

i 〉2 + 〈Sy

i 〉2 + 〈Sz
i 〉2 are identical at every site

within numerical error.
The key question is how this magnetization behaves in

the limit of infinite D. On logarithmic axes, our M(D) data
from D = 90 to 260 fall on a perfectly straight line, whose
gradient we obtain as α = −0.588(2). The inset of Fig. 8
shows this purely algebraic functional form M ∝ D−α . We
do not show data for spin-spin or dimer-dimer correlation
functions because, as noted above, they contain no new
information about the gapped or gapless nature of the system.
The key issue is instead the question of whether the gapless,
algebraic system may in fact have long-range magnetic order.
Extrapolation of our results to the limit D → ∞ yields the
result M(∞) = 0.00000(4). To summarize, we have taken
extreme care to obtain the most precise, high-D data at
zero temperature and to extrapolate it following the most
accurate possible protocols, which leads us to conclude that the
ordered moment vanishes, and does so algebraically. Taking
this result in combination with the polynomial convergence of
the ground-state energy (Fig. 7), we therefore draw one of the
most important conclusions of this study, that the true ground
state of the S = 1

2 Heisenberg model on the triangular Husimi
lattice is a gapless, nonmagnetic state, i.e., an algebraic spin
liquid.

For completeness we show in Fig. 9 the ES of the S = 1
2

Heisenberg model on the Husimi lattice. Clearly, all levels of
the ES are nondegenerate, with the lowest three well separated
from the others. We return below to an interpretation of these
results in the light of our further findings.
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FIG. 9. Entanglement spectra of the S = 1
2 Heisenberg model

with D = 40, 60, and 80. The number of dots on each level denotes its
degeneracy; every low-lying level in the spectrum is nondegenerate.

B. S = 1

Turning to the S = 1 Heisenberg model on the Husimi
lattice, in Fig. 10 we present our results for the ground-state
energy per site E0 up to D = 100. Once again, E0 decreases
monotonically with D, converging rapidly (inset, Fig. 10)
to E0 = −1.405 861(1) in the infinite-D limit. However,
significantly more insight into the nature of the ground state
may be obtained from the energy difference between up and
down triangles �E = 2|E� − E∇|/3, which we show as a
function of D in Fig. 11. �E may be considered as a type of
trimerization “order parameter,” and undergoes a rapid onset
at D = 8. The magnetic order parameter M , also shown in
Fig. 11, undergoes an equally rapid fall to zero at the same
value, while the correlation length (inset, Fig. 11) also drops
abruptly. These features all demonstrate that a phase transition

FIG. 10. Energy per site E0 of the S = 1 Heisenberg model
as a function of bond dimension D. The inset shows the energy
as a function of 1/D, with an exponential fit shown in blue. The
extrapolated energy is E∞

0 = −1.405 86(1).

FIG. 11. Trimerization parameter �E = 2|E� − E∇|/3 (open
red triangles), where E�(∇) is the average energy of an up triangle
(down triangle), and local magnetization M (open blue circles), both
shown as a function of bond dimension D. Finite trimerization and
vanishing magnetization occur simultaneously when D � 8. The
correlation length ξ (solid black squares) also drops abruptly at
D = 8, as shown in the inset, further confirming the occurrence of
a phase transition at the bond dimension Dc = 8. The trimerization
converges to a constant value �E = 0.290 21(1) at large D.

from a magnetically ordered state to a nonmagnetic, trimerized
state occurs at the bond dimension Dc = 8, which we note
corresponds to the minimum D required to describe a state of
finite trimerization.

The energy difference �E converges to a constant value
[0.290 21(1)] as D becomes large, indicating that the trimer-
ized state persists as the true ground state. To confirm this
result, we calculated the ES of the S = 1 model, which
is shown in Fig. 12. Clearly the lowest-lying level on the
A bond is threefold degenerate, while that on the B bond
is nondegenerate. These are exactly the properties of the
nonuniform simplex solid state of the S = 1 model discussed

FIG. 12. Entanglement spectra of the S = 1 Heisenberg model
with D = 40, 60, and 80 on A bonds (left) and B bonds (right).
The number of dots on each level denotes its degeneracy. Threefold
degeneracy of the lowest A-bond levels indicates simplex singlet
entanglement within the up triangles, whereas the nondegenerate B-
bond levels indicate its absence within the down triangles.
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FIG. 13. Energy per site E0 of the S = 3
2 Heisenberg model as

a function of bond dimension D. The inset shows the energy as a
function of 1/D, with a polynomial fit shown in blue. The extrapolated
energy is E∞

0 = −2.834 71(1).

in Sec. II F. Thus, the ES verifies that the ground state
of the S = 1 Heisenberg model on the Husimi lattice is a
trimerized simplex-solid state with a spontaneous breaking of
lattice inversion symmetry. The most direct demonstration that
this state has a finite gap is obtained from the longitudinal
magnetization (Sec. II D 3), which we discuss in detail in
Sec. IV.

As noted in Sec. I, the S = 1 Heisenberg model on the
kagome lattice has recently attracted strong attention. Older
proposals for the ground state, including the hexagonal singlet
solid [22] and the resonating AKLT loop state [23,24],
appear to have been supplanted by a trimerized simplex-
solid state [25–27], which has the best variational energy
Ek

0 = −1.4116(4) [26]. This is a symmetry-broken state
with trimerization order, which as above can be defined
by the difference of the average energies between up- and
down-triangle simplices, quoted in Ref. [26] as 0.261, or
approximately 19% of Ek

0 . Here, we have shown that the same
model on the Husimi lattice has exactly the same type of
ground state, a trimerized simplex solid, with a remarkably
similar energy E0 = −1.40586, and a trimerization parameter
of approximately 20.6%. Thus, one may conclude that the vast
majority of energetic effects on the two lattices are dominated
by extremely local processes.

C. S = 3
2

For the S = 3
2 case, we find as for S = 1

2 that the
ground-state energy per site converges algebraically [to
E∞

0 = −2.834 71(1)] with increasing bond dimension, as
shown in Fig. 13; such convergence behavior indicates that
the system is gapless. However, the magnetic order parameter,
shown in Fig. 14, converges not to zero at large D but to
a finite value M(∞) = 0.856(3). This robust magnetization is
approximately 57% of the classical value for an S = 3

2 system.
Néel order is of course consistent with gapless excitations
and algebraic convergence of E(D), but demonstrates clearly

FIG. 14. Local magnetization M of the S = 3
2 Heisenberg model

as a function of bond dimension D. The inset shows M as a function
of 1/D, with a polynomial fit shown in blue. The extrapolated M has
a finite value at infinite D, M(∞) = 0.856(3).

that the physics of the S = 3
2 Husimi lattice has more in

common with high-dimensional antiferromagnets than with
the physics of spin chains and the Haldane conjecture. We
defer a discussion of the ES for this case to Sec. III E.

D. S = 2

Turning to the Heisenberg model with S = 2, the ground-
state energy per site (Fig. 15) again converges monotonically
and rapidly to E∞

0 = −4.8185(4); as for S = 1, we fit only
the higher-D values of this somewhat stepwise convergence
to an exponential form. Also as for S = 1, we find again
that the magnetization M vanishes suddenly for D � 8, as
shown in Fig. 16, proving that the ground state in this case

FIG. 15. Energy per site E0 of the S = 2 Heisenberg model
as a function of bond dimension D. The inset shows the energy
as a function of 1/D, with an exponential fit shown in blue. The
extrapolated energy is E∞

0 = −4.8185(4).
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FIG. 16. Local magnetization M of the S = 2 Heisenberg model
as a function of bond dimension D. Sudden vanishing of M for bond
dimension D � 8 indicates a transition to a nonmagnetic state.

is nonmagnetic. For a direct calculation of the spin gap, the
longitudinal magnetization (Sec. II D 3) is shown in Sec. IV.

Further insight into the nature of this spin liquid is obtained
from the ES, shown in Fig. 17. Unlike the S = 1 case, here the
lowest levels on both A and B bonds are threefold degenerate,
demonstrating the presence of a simplex singlet on every
simplex in the system. These results are fully consistent
with those obtained for the exact S = 2 simplex-solid state
discussed in Sec. II F, and thus the ES indicates that the ground
state for S = 2 is a uniform simplex-solid state.

For further confirmation of the properties of this simplex
solid, we calculate the expectation value of the spin projection
operator P α

J [Eq. (7)], which projects the state at each simplex
α onto a state of total spin J . From the values given in Table I,
it is clear that the quantity 〈�|P α

0 + P α
1 + P α

2 + P α
3 |�〉 =

0.9947(1) is very close to unity, i.e., it is very improbable that
the total spin at each simplex could exceed 3. Following the
analysis of Sec. II C, there is therefore a simplex singlet [which
belongs to the S = 0 subspace of (1⊗1⊗1)] on every simplex
with near-unit probability. Thus, the ground state of the S = 2
Heisenberg model on the Husimi lattice lies very close to the
exact simplex-solid state.

FIG. 17. Entanglement spectra of the S = 2 Heisenberg model
with D = 30, 40, and 50 on A bonds (left) and B bonds (right).
The number of dots on each level denotes its degeneracy. Threefold
degeneracy of the lowest-lying levels for every bond in the system
indicates singlet entanglement within every simplex (triangle).

TABLE I. Expected values of spin projection operators at each
simplex for the S = 2 Heisenberg model on the Husimi lattice,
calculated with bond dimension D = 40.

〈�|P �
J |�〉 〈�|P ∇

J |�〉
J = 0 0.1189(1) 0.1189(1)
J = 1 0.5391(1) 0.5391(1)
J = 2 0.2803(1) 0.2803(1)
J = 3 0.0564(1) 0.0564(1)
J = 4 0.00518(2) 0.00518(2)
J = 5 0.000216(2) 0.000216(2)
J = 6 0.000004(1) 0.000004(1)

E. Higher spin: S = 5
2 , 3, 7

2 , and 4

From the results of the previous four subsections, the spin-S
Heisenberg model on the Husimi lattice provides one example
of a gapless spin liquid, one uniform simplex-solid state, one
nonuniform simplex solid, and one ordered antiferromagnet.
These results imply very strong variability and an equally
strong “odd-even” effect between integer and half-odd-integer
spins. The complete lack of systematics to date mandates
continuing the study to higher-S values.

However, by considering the next four S values up to S = 4,
we find that the ground states are all antiferromagnetically
ordered with the classical 120◦ Néel configuration. The
spontaneous magnetization values M are shown as a function
of S in Fig. 18. Beyond S = 2, M clearly tends monotonically
towards its classical value S, with no evidence even for
alternation effects related to the integer or half-odd-integer
nature of the quantum spin. Thus, “quantum effects,” meaning
the relevance of quantum mechanical fluctuations, really are

FIG. 18. (a) Extrapolated magnetization M(∞) as a function
of spin quantum number S for S � 4. (b) Ratio of extrapolated
magnetization M to classical spin magnitude S. Red lines are guides
to the eye.
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FIG. 19. Entanglement spectra of the Heisenberg model on the
Husimi lattice for S = 3

2 , 5
2 , 3, 7

2 , and 4, calculated with bond
dimension D = 90. All bonds are equivalent and all low-lying levels
in the spectra are nondegenerate.

limited to small-S values (S = 1
2 , 1, and 2), before classical

physics becomes dominant. This is equally true for the half-
odd-integer series, where only S = 1

2 is “quantum enough” to
remain disordered while S = 3

2 is well antiferromagnetically
ordered, as it is for the integer series, where only S = 1
and 2 have simplex-solid states more favorable than classical
order.

Information about the concomitant entanglement can be
obtained from the ES, which is shown in Fig. 19 for all spins
3
2 � S � 4. In contrast to the simplex-solid states found for
S = 1 and 2 (Figs. 12 and 17), the structure of the ES is
very simple, with all low-lying levels being nondegenerate.
This indicates that the antiferromagnetically ordered state has
no many-body entanglement and is effectively just a product
state with short-range entanglement only. This property is a
common characteristic for all magnetically ordered phases and
allows us also to interpret the results for the S = 1

2 case (Fig. 9),
when we recall that this state has finite Néel order for all finite
values of D.

IV. GROUND STATES WITH APPLIED MAGNETIC FIELD

A. Longitudinal magnetization

For a deeper understanding of the nature of the Heisenberg
antiferromagnet on the Husimi lattice, we have also performed
a systematic investigation of the longitudinal magnetization
[Eq. (11)] induced by the application of a finite magnetic field
in Eq. (1), as outlined in Sec. II D 3. Complete results for S = 1

2 ,
3
2 , 5

2 , 3, 7
2 , and 4 are shown in Fig. 20 and for S = 1 and 2 in

Fig. 21. All of these calculations were performed with D = 20
and 30, and we find negligible changes in the results for all
cases other than S = 1

2 and S = 1 and 2 at small fields. The
situation for S = 1

2 is already understood from the results of
Fig. 8; for S = 1 and 2, some details differ at the percent level

FIG. 20. Longitudinal magnetization Mz normalized by its sat-
uration value S as a function of external magnetic field h for (a)
S = 1

2 , (b) 3
2 , (c) 5

2 , (d) 3, (e) 7
2 , and (f) 4; calculations performed

with bond dimension D = 30. In every case, Mz rises linearly from
zero with applied field, and a magnetization plateau is present at 1

3 of
the saturation value.

at finite magnetizations outside the simplex-solid state (i.e., in
and just beyond the insets in Fig. 21). From these observations
we conclude that all of our finite-field calculations are fully
representative of the high-D limit.

At low fields, the induced magnetization Mz reflects directly
the presence or absence of a spin gap. In its presence, no
magnetization can be induced until the applied field exceeds
a particular value, breaking the SU(2) symmetry. For the
gapless spin-liquid state at S = 1

2 , and for all the Néel-ordered
ground states shown in Fig. 20, Mz rises linearly with h as
expected. By contrast, for the simplex-solid ground states at
S = 1 and 2 (Fig. 21), zero magnetization is found to persist
until the external field exceeds a critical value hc, which
corresponds to the spin gap [52]. For the S = 1 trimerized
simplex solid we obtain �s = hc � 0.300(5) and for the S = 2
uniform simplex solid �s = hc � 0.510(5). We find that the
transitions out of the simplex-solid states are continuous
(insets, Fig. 21).

At finite values of the applied field, the most striking feature
is the presence of a plateau at 1

3 of the saturation magnetizaton.
This plateau is not only present for all values of the spin
quantum number S, both integer and half-odd-integer, but is
broad, indicating a robust, gapped state of the magnetic system
around this external field. Before investigating the nature of
the 1

3 -plateau state, we comment on the recovery of classical
behavior with increasing S. The strongest manifestation of
quantum effects appears to be the curvature in the longitudinal
response above the 1

3 plateau for S = 1
2 ; for all other S values,

the response is significantly more linear, as shown in Fig. 22(a).
However, to recover the completely linear magnetization of
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FIG. 21. Longitudinal magnetization Mz, normalized by its sat-
uration value S, as a function of external magnetic field h for (a)
S = 1 and (b) S = 2; calculations performed with bond dimension
D = 30. In both cases, zero-induced magnetization persists up to
a finite value of the applied field, indicating the presence of a
spin gap �s = hc � 0.300(5) for the S = 1 trimerized simplex solid
and �s = hc � 0.510(5) [shown as hc/S = 0.255(3)] for the S = 2
uniform simplex solid. Both cases also show a strong plateau at 1

3 of
the saturation magnetization.

the classical limit, it would be necessary for the width of the 1
3

plateau, shown in Fig. 22(b), to vanish. Clearly this situation
is not imminent even at S = 7

2 or 4, which reflects again the
robust nature of the 1

3 feature.
We comment here that that magnetization curves we

have obtained for the Husimi lattice are quite similar to
those obtained for the kagome lattice in a number of recent
studies by exact diagonalization [20,53], by density matrix
renormalization group [54], and by tensor-network methods
based on infinite PEPS [21]. These similarities cover all the
primary features of the curves, including spin gap, 1

3 plateau,
and linearity, demonstrating again the extremely close parallels
between the two geometries.

The primary difference between our results and those of
Refs. [20,21,53,54] concerns the presence on the kagome
lattice of additional plateaus in multiples of 1

9 of the saturation
magnetization. On the Husimi lattice, we find no l/9 plateaus
(where l represents an integer). Magnetization plateaus gener-
ally satisfy the Oshikawa-Yamanaka-Affleck “commensurate

FIG. 22. (a) Comparison of normalized longitudinal magneti-
zation curves Mz(h) for all values of the spin quantum number
S, computed with bond dimension D = 30. (b) Width of the 1

3 -
magnetization plateau as a function of S.

filling” condition [55]

n(S − m) is an integer, (16)

where n denotes the number of sites in the unit cell and m

the longitudinal magnetization. Although we do not observe
the plateaus at Mz/S = m = (1 − 2

9S
) and (1 − 1

9S
) found in

Refs. [21,53,54], a simple explanation would be that there are
only three sites (n = 3) in the unit cell of the 3-PESS wave
function used in our study. Finding these and higher plateaus
would require that the tensor-network states are based at least
on PESS with a 9-site unit cell, as employed in Ref. [21]
within a 3-PESS formulation and in Ref. [16] using a 9-PESS.
However, the fact that our current calculations should be able
to find a 1

9 plateau for the S = 3
2 system [Eq. (16)] indicates that

this is not the only factor involved. In Refs. [53,54], the authors
explain the presence of l/9 plateaus on the basis of stable
localized eigenstates centered on the hexagons of the kagome
lattice. Thus, their absence in the magnetization response of
the Husimi lattice should be understood as a consequence of
the absence of closed loops of triangles.

B. 1
3 -plateau state

We close our analysis of the longitudinal magnetization
by investigating the nature of the 1

3 -plateau state for different
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values of S. Our PESS results contain complete information
about the quantum wave function. Many possible spin con-
figurations could give rise to a net longitudinal magnetization
m = 1

3 , of which six are represented in Fig. 23. Some are
effectively magnetically ordered [Figs. 23(a) and 23(b)], some
are motivated by considerations of valence-bond formation
[Figs. 23(c) and 23(d)], and some by simplex solids where
the singlets may be replaced by higher-spin states [Figs. 23(e)
and 23(f)]. These states are not necessarily orthogonal and
each is only a paradigm for the dominant physics of a
complex quantum superposition. The “type-I quantum” spin
configuration [Fig. 23(c)], which contains a singlet pair within
a single simplex (triangle), has been proposed for the S = 1
Heisenberg model on the kagome lattice by Cai et al. [25].
Both “type-I” and “type-II quantum” configurations may also
be relevant to integer-spin simplex-solid states because their
ground states at zero field contain simplex singlets.

However, analyzing the PESS wave function by calculating
the extent of magnetic order for various S values leads to
two possibly unexpected conclusions. First, it is not necessary
to consider the more exotic singlet- or simplex-based states
[Figs. 23(c)–23(f)] as candidates for the 1

3 plateau. As shown
in Figs. 24(a), 24(c), 24(e), and 24(g), the dominant physics
of the 1

3 -plateau state is a tendency to magnetic order. This
tendency does not occur in the same way in every case and
it is remarkably pronounced for low spins, particularly S = 1

2
[Fig. 24(a)], where the approach to 1

3 magnetization is marked
by a very strong and rapid rise in the ordered component; in
fact, the loss of the plateau state at higher fields is accompanied
by a decrease in the overall degree of local spin order before
a recovery with some complex behavior on the very steep
approach to full saturation [Fig. 20(a)].

For S = 1 [Fig. 24(c)], the transition from the gapped,
trimerized simplex-solid state at low fields to a field-ordered
state is abrupt but continuous, although the ordered moment
again shows nonmonotonic behavior as the 1

3 and fully

(a)

(d)(c)

(b)

(e) (f)

FIG. 23. Six spin states with m = 1
3 . (a) “Classical up-up-down”

spin configuration; (b) “classical ferromagnetic” spin configuration
with site moments S/3; (c) “type-I quantum” configuration with
singlet pairs (red bonds) formed by two physical spins; (d) “type-II
quantum” configuration with singlet pairs (red bonds) formed by
two fractionalized virtual spins; (e) nonuniform simplex-solid state
with a triplet on every up triangle, relevant for S = 1; (f) uniform
simplex-solid state with a triplet on every simplex, relevant for S = 2.

aligned states are approached. For S = 3
2 [Fig. 24(e)], the

zero-field order of all three spins actually drops with a small
applied field, even as the relative spin angles change, before

FIG. 24. Magnetic ordering on the Husimi lattice in an applied field. Shown are the induced ordered moments Mi along the field (z)
axis for each of the three spins on a triangle [(a), (c), (e), (g)] and the relative angles θij between the three pairs of spins on a triangle [(b),
(d), (f), (h)]. The spin quantum numbers are S = 1

2 [(a), (b)], S = 1 [(c), (d)], S = 3
2 [(e), (f)], and S = 2 [(g), (h)]. Calculations performed

with D = 20.

075154-13



LIAO, XIE, CHEN, HAN, XIE, NORMAND, AND XIANG PHYSICAL REVIEW B 93, 075154 (2016)

h=0 hc1 hc2 hS
FIG. 25. Schematic representation of the ordered spin moments

and alignments on each triangle across the field-induced phase
diagram for the finite-D S = 1

2 Heisenberg model on the Husimi
lattice. The fields hc1 and hc2 mark the lower and upper boundaries
of the 1

3 plateau.

increasing again towards the 1
3 plateau. Beyond this, the system

tends to full alignment with only small deviations around
h/S ≈ 5 (possibly marking an incipient plateau instability,
which we cannot trace in the current 3-PESS formalism).
For S = 2 [Fig. 24(g)], the ordered moments are almost
homogeneous beyond the continuous transition out of the
simplex-solid phase, and the degree of inhomogeneity and
nonmonotonic behavior is quite limited. We comment that for
all spins S � 5

2 (not shown), the evolution is an increasingly
homogeneous and monotonic version of our results for the
Néel-ordered S = 3

2 state, shown in [Fig. 24(e)], as the system
approaches the classical limit. Less surprising than all of this
complex behavior in the inequivalent ordered moments is
that the ordering configuration on the 1

3 plateau in all cases
is, qualitatively, the up-up-down alignment of Fig. 23(a), as
shown in Figs. 24(b), 24(d), 24(f), and 24(h) by the evolution
of the angles between each of the spin pairs on each bond.
These tend to begin near 120◦ angles for all three bonds but
evolve towards a situation with one parallel spin pair before
the 1

3 plateau, which then remains exactly parallel all the way
to saturation (Fig. 24).

Second, the up-up-down state departs quite significantly
from the classical, rigid-spin form shown in Ref. [41]. There
is an immediate and spontaneous breaking of symmetry at any
finite field, or directly beyond the ordering transition for S = 1
and 2, where one of the three spins on each triangle becomes
antialigned [Figs. 24(b), 24(d), 24(f), and 24(h)] and its ordered
moment differs from the other pair. For S = 1

2 , the average
moment of this third spin actually decreases in size, while
the other two grow symmetrically [Fig. 24(a)], as represented
schematically in Fig. 25. The 1

3 -plateau state realized for every
value of S is an asymmetric one, in which the two spins aligned
parallel with the field have a strong ordered component while
the antiparallel spin is weakly ordered; the ordered components
have no universal value, but their sum is 1

3 of the saturation
value corresponding to S. On leaving the plateau state, as noted
above the ordered component of the asymmetric spin shrinks
in value again for S = 1 [Fig. 24(c)], and very dramatically
for S = 1

2 [Fig. 24(a)], where a reduction is also visible in the
symmetric spin moments, indicating that the magnetic state
at higher fields becomes “more quantum” again (i.e., contains
more fluctuations). This behavior does not occur for any of the
higher spins [S � 3

2 , Figs. 24(e) and 24(g)], but the asymmetry
in ordered moment between the lone spin and the pair persists
in all cases and for all fields. The bond angles formed by each

of the spin pairs [Figs. 24(b), 24(d), 24(f), and 24(h)] show a
departure again from full up-up-down field alignment in the
regime beyond the 1

3 plateau, but always with one spin pair
completely parallel, as represented in Fig. 25. The process of
regaining full spin alignment on the approach to saturation is
not a smooth one for any value of S, with rather abrupt changes
occurring at high fields, although in contrast to the ordered
moments [Figs. 24(c), 24(e), and 24(g)], it is monotonic in the
bond angles [Figs. 24(d), 24(f), and 24(h)].

We observe that the field-induced magnetization curves
show a complex interplay of a number of quantum fluctuation
phenomena. Clearly, the spin configurations in the 1

3 -plateau
state have significant components of the “up-up-down” struc-
ture for every value of S, even in the most quantum cases and
those most susceptible to simplex-solid formation. However,
this is not precisely the classical configuration of Ref. [41]
but an asymmetric version of it, with one suppressed spin
and two extended ones (Fig. 25). The degree of up-up-down
order is therefore not a perfectly defined quantity, although a
relative degree could certainly be obtained by comparing only
the order of the strong components, or of the weak ones. We
comment that the unequal ordered moments in the graphic of
Fig. 25 are strongly exaggerated for S = 3

2 and S � 5
2 , and

would be modified by the simplex-solid (zero-magnetization)
states appearing at low fields for S = 1 and 2. For S = 1

2 , this
picture is strictly valid only for our results at finite values of
D because the ordered moment at h = 0 vanishes in the limit
D → ∞, but is representative at all finite fields. We expect this
schematic to be accurate in all its details for the phase diagram
of the S = 1

2 Heisenberg model on the triangular lattice, which
does possess 120◦ Néel order at h = 0.

We conclude that the application of a magnetic field
is particularly effective in quenching quantum fluctuation
phenomena, driving the system rapidly to states dominated
by magnetic order. However, quantum fluctuation effects
remain very apparent in the clear preference for collinear
spin alignment, manifested in the existence of a robust and
well-ordered 1

3 plateau for all S values. This effect, which
is remarkably strong for S = 1

2 , is presumably due to the
fully antiferromagnetic quantum fluctuations allowed between
collinear spins. Below collinear configurations in priority,
coplanar ordered spin states remain preferred over noncoplanar
ones.

V. SUMMARY

We have investigated the antiferromagnetic Heisenberg
model on the triangular Husimi lattice for values of the
quantum spin S up to S = 4. We made use of tensor-network
techniques based on projected entangled simplex states (PESS)
to work directly in the thermodynamic limit for highly
frustrated systems. The bisimplex Husimi geometry makes
a simple-update approach to evaluating the quantum wave
function almost exact, enabling us to obtain systematic and
highly accurate results to very large values (D = 260) of the
bond dimension, and thus to be certain of the trends contained
in our data.

We have demonstrated that the ground state of the model
varies widely with S, presenting for S = 1

2 , 1, 3
2 , and 2 excellent

075154-14



HEISENBERG ANTIFERROMAGNET ON THE HUSIMI LATTICE PHYSICAL REVIEW B 93, 075154 (2016)

examples of four quite different quantum states. For S = 1
2 the

ground state is a gapless (algebraic) spin liquid; for S = 1,
it is a trimerized (nonuniform) simplex-solid state with a
spin gap; for S = 3

2 it is an antiferromagnet with classical
(120◦) triangular Néel order; for S = 2, it is a (uniform)
simplex-solid state and therefore is again gapped. However,
these dramatic quantum effects are quenched very rapidly by
increasing S, and all higher-spin cases are ordered antifer-
romagnets, whose ordered moments increase monotonically
with S.

One property of a system readily calculated from its tensor-
network wave function is the entanglement spectrum. For the
ground states with Néel order, the entanglement spectrum is
simple, with all low-lying levels being nondegenerate, and this
result applies also to the gapless spin-liquid state obtained for
S = 1

2 , which has finite order at all finite values of D. By
contrast, the entanglement spectra of the simplex-solid states
found for S = 1 and 2 are clearly different, being characterized
by specific degeneracies in their low-energy levels. Our results
suggest that the entanglement spectrum offers a valuable
means of distinguishing between different types of complex
quantum state.

A further quantity readily computed in the PESS framework
is the magnetization response to an external field. We find
predictable results at low fields, with a linear response for the
ordered phases and the gapless spin liquid but a clear spin
gap for the simplex-solid states. Surprisingly, however, no
matter how different the low-field quantum states, we find a
magnetization plateau at 1

3 of the saturation value for all values
of S. This ubiquitous feature even has the same origin in every
case, namely, a significant component of the semiclassical, but
asymmetric, “up-up-down” configuration on every triangle.
We suggest that the universality of this phenomenon can be
traced to the strong tendency of antiferromagnetic fluctuations
to favor collinear spin alignments.

When considering our results for S = 1
2 , 1, and 2, it is

tempting to seek a parallel with the Haldane conjecture, that
perhaps half-odd-integer-spin Husimi lattices may be gapless
spin liquids whereas integer-spin ones are simplex solids.
However, the rapid emergence of antiferromagnetically or-
dered states at (all) higher-S values in both series demonstrates
that the predominant physics of the Husimi lattice is two
dimensional. That this result applies even for a geometry
as “quasi-one-dimensional” as the Bethe lattice of triangles
allows us to conclude that the dominant effects on the Husimi
lattice are intrinsic to the triangle, and to its local coordination
by only three other triangles, rather than to any features of the
open, treelike structure.

Persisting with the view of the Husimi lattice as a Bethe
lattice of triangles offers a possible interpretation of our
result that the S = 1

2 system is a gapless spin liquid. The
S = 1

2 triangle has two degenerate doublets and therefore the
model may be analogous to a two-color S = 1

2 Bethe lattice.
The conventional S = 1

2 Bethe lattice has been considered in
Ref. [56], where it was found that both the Ising and XY

versions of the model have long-ranged magnetic order, but
with orthogonal alignments. The Heisenberg point therefore
appears as the transition between different magnetic states,
which is definitely consistent with our finding of a gapless

spin liquid. This very delicate balance is not reproduced for
any other values of S.

Returning to the issue of how weak quantum mechanical
fluctuation effects appear to be on the Husimi lattice, as noted
in Secs. III E and IV we have found that they are restricted
to three very small values of S and to low applied fields. On
one hand, it is perhaps dispiriting in the search for exotic
quantum states that their phase space is so small even for
the Husimi lattice, which due to its very low coordination
and low intertriangle connectivity should be a very “quantum”
geometry. On the other hand, however, the low connectivity
in this case results in relatively low frustration, restricting
it to intratriangle effects, and this observation reinforces
the fact that the recipe for nontrivial quantum phenomena
requires as essential ingredients both low spin and high
frustration.

Finally, we revisit the question of whether our results for
the Husimi lattice shed any important new light on the vexed
question of the quantum ground states of the kagome lattice.
All of the properties we have found for the spin-S Husimi
antiferromagnets, including energies, order parameters, and
induced magnetizations, are remarkably similar (both qualita-
tively and quantitatively) to those of the kagome lattice where
these are known. Clearly, the local structure of corner-sharing
triangles determines the vast majority of the physics, and
this is sufficient to cement the parallel in all but the most
delicate cases. Setting aside the higher-spin examples, where
the systems are almost identical [21], in this discussion we
focus only on S = 1 and 1

2 .
For the S = 1 Husimi lattice, our result that the ground

state is a trimerized simplex solid follows mere months after
the demonstration, by two different techniques [26,27], that
the same type of state has the lowest energy yet obtained for
the S = 1 kagome lattice. We suggest that the entanglement
spectrum could be used for a definitive identification of
this state. Our results add important new evidence that
such spontaneous breaking of translational symmetry, in the
formation of alternating simplex types, may indeed be the
generic physics of the S = 1 system.

For the S = 1
2 case, our result that the ground state of the

Husimi lattice is a gapless spin liquid requires a more careful
interpretation. The existence of closed loops of triangles in the
kagome geometry, which are absent in the Husimi case, means
that geometrical frustration on the kagome lattice is stronger.
Quantum fluctuation effects should therefore suppress more
strongly the magnetic order we find at finite values of the
bond dimension. However, whether this suppression retains a
stronger algebraic form, characteristic of a gapless spin liquid,
or turns over to the exponential form characteristic of a gapped
spin liquid, remains the crucial open question unanswered by
this study.
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