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The long standing problem of the α-γ phase transition in cerium metal is approached by treating all electrons
at the same quantum mechanical level, using both hybrid functionals (PBE0 and HSE06) and exact exchange
plus correlation in the random-phase approximation (EX+cRPA). The exact-exchange contribution in PBE0 and
HSE06 is crucial to produce two distinct solutions that can be associated with the α and γ phases. An analysis of
the band structure and the electron density reveals a localization and delocalization behavior of the f electrons
in the γ and α phases, respectively. However, a quantitative agreement with the extrapolated phase diagram to
zero temperature is achieved only with EX+cRPA, based on the hybrid functional starting point. We predict that
a pressure induced phase transition should exist at or close to T = 0 K. By adding entropic contributions we
determine the pressure-temperature phase diagram, which is in reasonable agreement with experiment.
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I. INTRODUCTION

The first-principles description of f -electron systems, i.e.,
the rare-earth and actinide materials, is currently regarded
as one of the great challenges in condensed matter physics.
One prominent example is the description of the volume
collapse exhibited by some rare-earth metals [1], where density
functional theory (DFT) within its local/semilocal functionals
(LDA/GGA) only partially captures the associated phase
transitions [2–5].

The isostructural α-γ phase transition in cerium [6] is
the most studied case both experimentally and theoretically.
Calculations based on density functional theory have so far
been unable to produce a double minimum in the total energy
versus volume curve, which would be a direct indication of
the phase transition, within a single theoretical framework.
In recent work [7], we showed that hybrid density functionals
[8–10], which incorporate a fraction of exact exchange, yield a
double minimum within a single theoretical and computational
framework. Agreement with extrapolated experimental results
at zero temperature is reached by treating exchange exactly and
correlation at the level of the random-phase approximation (de-
noted as EX+cRPA in this work) [11–14]. Hybrid functionals
combined with quantum many-body perturbation techniques
appear to be a promising approach for the description of the
α-γ transition. In our previous work [7], we obtained two
distinctly different solutions, whose structural, electronic, and
magnetic properties are consistent with experimental results
for the α and γ phases, respectively. Our results not only
constituted an investigation of the phase change without
adjustable parameters but also provided insight into the nature
of the phase transition.

In this work we will further analyze the driving mechanism
behind the phase transition, which is to be understood in
terms of a localization/delocalization competition of the f

electrons. By including entropic effects, we will then report

a finite temperature phase diagram. The paper is organized
as follows: In Sec. II we briefly discuss the motivation
behind this work. In Sec. III we provide a detailed review
of previous experimental and theoretical work, highlighting
the open questions to be addressed in this work. In Sec. IV,
the computational approaches used in this work, as well as
the implementation details, will be discussed. The results at
T = 0 K are then presented in Sec. V, first for the bulk α and
γ phases and then for finite Ce clusters. Finally in Sec. VI, we
present the finite temperature phase diagram for the α-γ phase
transition.

II. THE MOTT VERSUS KONDO DEBATE

Cerium undergoes an isostructural (fcc) α-γ phase transi-
tion (see Fig. 1), which is accompanied by a volume collapse
of 15% at room temperature and ambient pressure [6,15]. In
addition to the volume collapse, the phase transition exhibits
a change in magnetic properties, from localized magnetic
moments, γ phase, to Pauli paramagnetism, α phase, as will
be discussed in Sec. III A. While there is no doubt that
the f electrons are pivotal for the peculiar behavior of Ce,
there is still no consensus on exactly how the f electrons
affect the phase transition, despite numerous theoretical and
experimental studies.

Initially, a simple localization-delocalization scenario was
frequently invoked to explain the α-γ phase transition. In
γ -cerium (smaller volume) the 4f electron resides close to
the nucleus. It is unpaired and therefore gives rise to localized
magnetic moments. Conversely, in the α phase (larger volume)
the f electrons are delocalized and more bandlike and
exhibit a typical Pauli paramagnetic behavior. This picture
has been supported over the years by many experimental
and theoretical studies that have addressed the origin of the
transition.
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FIG. 1. Experimental phase diagram [6,24] of cerium around the
α-γ phase transition. The crystal structure of the α and γ phases is
fcc, while the β phase has a double hexagonal closed packed (dhcp)
structure.

Nowadays, most studies are based on one of the two
prevalent pictures for the driving mechanism of the transition
(Sec. III B): the Mott transition [16,17] and the Kondo volume
collapse (KVC) [18,19]. The Mott picture involves only the f

electrons. It assumes that the competition between the intersite
f -f hybridization and the on-site f -f Coulomb interaction
is the driving force for the α-γ transition, with f electrons
localized in one phase (γ phase) and delocalized in the other
(α phase). The spd electrons are only spectators. In the KVC
picture, the f electrons are assumed to be localized in both
phases. In the KVC model, the f electrons hybridize with the
spd electrons, but hopping of f electrons between neighboring
sites is not permitted. The change in the screening of the
localized moments by the conduction spd electrons induced
by the change in volume then triggers the transition.

However, these two scenarios are not as different as people
originally thought. Advancement in dynamical mean-field
theory (DMFT) [20] revealed that the Hubbard model behind
the Mott picture, and the (periodic) Anderson impurity model
behind the KVC picture, produce rather similar spectral func-
tions, charge compressibilities, and local magnetic moments
across the phase transition [21,22]. This suggests that the
two pictures are not completely incompatible, but each model
might only capture part of the underlying physics. In fact,
Amadon et al. [23] recently pointed out that both the intersite
f -f hybridization and the f -spd hybridization are important
and have to be considered to understand the peculiar properties
of Ce.

Models are important in science, as they can aid the inter-
pretation of scientific results and suggest physical processes
to be included in our theories. However, they only include a
selected set of degrees of freedom, build in the desired physics
by hand, and need to be parametrized, which often makes
them not material specific. To have an unbiased description
of complex phenomena such as the α-γ phase transition, it is
desirable to start from first principles and treat all electronic

degrees of freedom on the same quantum mechanical level.
One would expect that the right physics emerges naturally from
such first-principles calculations, provided that the underlying
approximations for the treatment of exchange and correlation
are accurate enough.

In this work we perform density functional calculations
with advanced exchange-correlation functional approxima-
tions, and provide a density-based description of the transition.
We thus observe the localization/delocalization process as
an outcome of the calculations and do not require it as an
input. Our approach cannot capture dynamical processes such
as Kondo physics. Therefore it inherently suggests the Mott
scenario as the most plausible at zero temperature, but does
not rule out the contribution of Kondo physics at higher
temperatures. We also suggest that the phase transition is
linked to a symmetry breaking, which would manifest itself in
a change of the charge density distribution rather than the spin
alignment (see Sec. V A).

III. PREVIOUS STUDIES

A. Experimental findings

The α-γ phase transition is accompanied by a change in
the magnetic properties of the cerium metal. The magnetic
susceptibility of α-Ce as a function of temperature and pressure
has been measured by several groups [25–27]. All studies
agreed that the α phase is essentially a Pauli paramagnet
(i.e., the susceptibility of the material is weak and reflects
that of conduction band electrons). However, the value of
the susceptibility is 4.5 times higher than the expected Pauli
susceptibility. The γ phase of cerium is also a paramagnet. But
the magnetic susceptibility obeys the Curie-Weiss law [28–30],
indicating the presence of localized magnetic moments.

In 2005 a study from Murani et al. [31] argued that
the magnetic form factor measured in neutron scattering
would correspond to a Ce3+ electronic configuration in both
phases, suggesting no f -electron delocalization in α-Ce. In the
localization/delocalization picture the discrepancy from the
ideal Pauli paramagnetism in the α phase could be attributed
to a Stoner exchange enhancement [32] arising from an
incomplete delocalization of the 4f states and a persistence
of localized magnetic moments. While there is a reasonable
agreement on the observed magnetic properties of cerium,
the debate on the existence of an experimental proof for
the localization-delocalization process is still ongoing and a
consensus has not been reached.

Initially, the question was raised whether the delocalization
of the f electrons across the transition would be linked to a
promotion of the electrons to the conduction band. However, a
first estimation of the number of 4f electrons in the α and
γ phases, provided by Gustafson et al. [33] by means of
positron annihilation, showed no change in the number of f

electrons going from one phase to the other. The results were
then partially confirmed by Compton scattering and neutron
scattering measurements [34,35], which estimated 〈nf 〉 � 1
for γ -Ce and 〈nf 〉 � 0.8 for α-Ce.

Subsequently, in 2001, Van der Eb et al. [36] provided
evidence that the conducting properties of the material would
change across the transition even if the number of f electrons
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remains constant. The authors studied the optical properties
of cerium using ellipsometry and grazing incidence reflec-
tometry. They observed significant changes in the optical
conductivity, the dynamical scattering rate, and the carrier
effective mass between α- and γ -cerium. In γ -Ce the charge
carriers showed a large scattering rate in the far infrared
and a carrier mass characteristic of 5d band electrons. In
α-Ce, a Fermi-liquid frequency-dependent scattering rate was
obtained, with an effective mass of the carriers about twenty
times that of an electron: three times larger than that in
the γ phase. This suggested that the f electrons would
remain localized in the α phase, but contribute to the electron
conduction via hybridization with the 6s and 5d electrons.

Numerous other experimental studies have been carried
out including photoelectron spectroscopy [37–43], x-ray
absorption [44], x-ray photoemission spectroscopy [45–47],
and inverse photoelectron spectroscopy [41,47,48]. Electron
spectroscopies are highly surface sensitive and this further
complicates the understanding of the bulk properties of cerium,
where the surface is believed to be of γ nature even in the
α phase [42]. Nowadays the results obtained in 1991 by
Weschke et al. [39] are generally taken as the photoemission
spectroscopy reference for cerium. Two main peaks for the f

states are found, one around 2 eV below the Fermi level, which
is associated with localized electrons, and one at the Fermi
level, which is considered originating from delocalized states.

Only a few inverse photoemission spectroscopy (IPES)
studies are available for cerium. Results were acquired by
Wuilloud et al. [47] from a sample of polycrystalline cerium
undergoing a temperature driven α-γ phase transition, and
by Grioni et al. [48], who performed resonant inverse pho-
toemission spectroscopy (RIPES) on thin films. These results
revealed a significant difference between the spectra of the
α and γ phases near the Fermi level. There are two peaks
in the spectra; one is located at the Fermi level, the other
one at 4 eV above the Fermi level. These are present in both
phases, but the peak at the Fermi level is more pronounced than
observed in standard photoemission spectroscopy. Combining
the PES and IPES, one obtains the entire energy spectrum of Ce
that exhibits the renowned three-peak structure (with peaks at
−2 eV, 0 eV, and 4 eV with respect to the Fermi level).

In 2004 Dallera et al. [49] and Rueff et al. [50] performed
bulk-sensitive x-ray absorption (XAS), resonant x-ray
emission (RXES), and resonant inelastic x-ray scattering
(RIXS) measurements, confirming the presence of the
three-peak structure in the spectra. As already observed in
IPES, the ratio between the intensity of the peak at 4 eV and
the one at the Fermi level exhibit a pronounced drop across
the α-γ transition.

Summarizing, there is no conclusive experimental answer
regarding the driving mechanism of the volume collapse. Also
for the widely discussed localization/delocalization process
a true proof has not yet emerged. Even the importance
of the f electrons in the α-γ phase transition has been
questioned [42].

The role of entropy in the transition was pointed out by
some authors [18,51]. Based on experimental data, Amadon
et al. gave an estimation of the change in Gibbs free energy
considering the internal energy (�E), as well as entropic
(T �S) and volume (p�V ) contributions.

The authors concluded that entropic effects dominate at
room temperature, and a study of only the internal energy
of the system would not be sufficient for understanding the
driving mechanism of the transition. Similar conclusions were
reached later by Decremps et al. [52].

The entropic change across the transition includes two
different contributions, which arise from both lattice vibration
and electronic degrees of freedom. The phonon contribution in
the α and γ phases was estimated in several studies. In 2004,
high-pressure x-ray and neutron diffraction measurements
on polycrystalline cerium by Jeong et al. [53] suggested
a vibrational entropy contribution �S

γ -α
vib ≈ 0.75kB at room

temperature, which would account for half of the total entropy
change across the transition. The value agreed with earlier
estimations of �S

γ -α
vib [6] but was in contradiction with the

inelastic neutron scattering results of Manley et al. on a
Ce0.9Th0.1 alloy [54], where the change in vibrational entropy
was concluded to be negligible. Further analysis was provided
by ultrasonic investigations [55,56], where the vibrational con-
tribution to the total entropy change was estimated to be on the
order of 15%. A combined high-pressure and high-temperature
x-ray diffraction study [15] suggested �S

γ -α
vib /�S

γ -α
tot ≈ 50%.

Both values refer to room temperature. In 2011, Krisch et al.
[57] provided results based on inelastic x-ray scattering.
The lattice contribution to the phase transition entropy was
found to be around 0.33kB. Using the Clausius-Clapeyron
relation dP/dT = �S

γ -α
tot /�V γ -α , this translates into ≈50%

of entropic contribution as in previous works. Despite this
uncertainty, one thing is clear: Phononic degrees of freedom
account for only half of the entropy change at most; the other
half has to be of electronic nature.

Also other aspects of the phase transition have been raised.
For example, in 2008 and 2011 two studies from Lipp et al.
[15] and Decremps et al. [52] tested the isomorphism of the
α and γ phases with respect to the fcc crystal structure. The
authors analyzed the volume collapse using high precision
x-ray diffraction techniques and excluded a change from the
fcc to distorted-fcc structure, which is observed in other lan-
thanides [58,59]. They performed measurements from room
temperature up to 600–800 K, and confirmed the presence of
a solid-solid critical point at Tc � 460 K and pc � 1.5 GPa.

Motivated by previous theoretical works [60–62] that pro-
pose a change in symmetry between the α and γ phases due to
an alignment of the charge density along preferred directions,
in 2010 Tsvyashchenko et al. [63] measured the electric
field gradient (EFG) of 111Cd probe nuclei in solid Ce using
time-differential perturbed angular correlation spectroscopy.
The authors found that the value of the EFG in the α phase
is four times larger than in the γ phase. Therefore, the
results were interpreted as evidence for quadrupolar electronic
charge-density ordering in the α phase and symmetry lowering
in the γ -α transition. In this case the nuclei would remain in a
face-centered cubic structure in both phases, but the symmetry
of the electron density in the α phase would be lower than the
symmetry of the fcc crystal.

B. Theoretical models

Two models have been supported as the driving mechanism
for the α-γ phase transition (see Sec. II): a Mott transition
for the f electrons [16,17] and the Kondo volume collapse

075153-3



CASADEI, REN, RINKE, RUBIO, AND SCHEFFLER PHYSICAL REVIEW B 93, 075153 (2016)

model [18,19]. Johansson [17] has criticized the Kondo volume
collapse model based on the slope of the transition line in the
P -T phase diagram, which bends upward in contrast to the
linearity that has been observed experimentally [6]. A linear
behavior is obtained in the framework of the Mott transition.
The Mott picture, on the other hand, suffers from inconsistent
energy scales [16].

The Kondo scenario is supported by several spectroscopic
experimental results [41,47,64,65], but it is challenged by
some other photoemission studies [40,66,67]. Probing heavy-
fermion compounds containing cerium, which are believed
to approximate cerium metal reasonably well and for which
the different phases can be explored in wider temperature
ranges, Joyce et al. [40] in 1992 performed measurements
on the localized phase at lower temperatures than the ones
available for γ -Ce and observed that the spectral weight of
the feature near EF, the Kondo resonance, does not scale with
TK as expected. However, the conclusions from the authors
were criticized by Patthey et al. [68] in 1993, who suggested
agreement of the same data with the Kondo volume collapse.
In 1998 a study by Wesche et al. [42] further complicated the
situation, showing that, at low temperatures, the photoemission
spectra of Ce, characterized by the peak at the Fermi energy,
is very similar to that of lanthanum, that has no 4f electrons.

Despite the numerous studies that seem to support one
or the other model, it appears that a consensus on the
nature of the phase transition has not yet been reached. Lipp
et al. [15] and subsequently Johansson et al. [69] were able
to reproduce the same P -T phase diagram and the same
temperature dependence of the bulk modulus as derived from
x-ray diffraction for both the Kondo volume collapse and the
Mott transition model.

The Mott transition and Kondo volume collapse have
always been considered mutually exclusive, but over the last
ten years the view seems to change. For instance, numerical
results from dynamical mean-field theory (DMFT) revealed
strong analogies between the Hubbard and the periodic
Anderson model [21], which are the bases of the two theories,
respectively. In 2010, Streltsov et al. [70] remarked on the
importance of the inclusion of intersite f -f Hubbard-like hy-
bridization in the Anderson impurity calculations for cerium.
They argued that for cerium metal the f -f hybridization is
comparable to the hybridization between 4f and conduction
band electrons. They therefore remarked that the best way
of approaching cerium would be through the more general
Hamiltonian combining both the Hubbard and the periodic
Anderson models.

Based on the observation that electron interactions of
quadrupolar origin drive symmetry lowering phase transitions
in many lanthanide and actinide compounds [71], and fol-
lowing an idea of Eliasbergh and Capellmann [72], Nikolaev
and Michel proposed a new driving mechanism for the α-γ
phase transition [60–62]. Eliasbergh and Capellmann initially
pointed out that a first order phase transition implies a
symmetry change according to Landau’s theory. This would be
related to a not yet observed change in lattice structure from fcc
to distorted fcc between the two phases of cerium. However,
x-ray diffraction measurements did not provide evidence for
such a symmetry breaking, and, in 2008, this hypothesis
was excluded by Lipp et al. [15]. Nikolaev and Michel then

suggested that the phase transition could be accompanied
by a special symmetry change from the Fm3m to the Pa3
space group. Usually, a change in the crystal symmetry is
due to lattice distortions. According to the authors, however,
in the α-γ transition the atomic centers of mass remain in
the fcc structure sites for both phases, but the symmetry of
the electron density changes across the transition. This means
that in one phase the electron density corresponding to the
valence orbitals aligns along preferred directions. γ -Ce is the
disordered phase, while α-Ce represents the ordered phase.
Here, the orientational order is of a quadrupolar nature.

This mechanism would predict a linear increase of the tran-
sition temperature with pressure, fixing for instance one of the
failures of the Kondo volume collapse model. However, while
presenting an attractive alternative to the Mott and Kondo
models, Nikolaev and Michel estimated that the symmetry
change alone corresponds to a transition energy about two
orders of magnitude smaller than the observed one [61]. They
therefore refined the theory, adding an on-site Hubbard-like
repulsion term for the f electrons and hybridization between
f and conduction states in the spirit of the Anderson impurity
Hamiltonian [62]. They suggested that the change in symmetry
could be the driving force of a further energetic stabilization
coming from Mott-Kondo volume collapse contributions.
The model found partial support in the experiments of
Tsvyashchenko et al. in 2010 [63], who measured the value
of the electron field gradient in the α phase to be four times
larger than the one in the γ phase.

Still there is no consensus about which is the best micro-
scopic scenario that accounts for all available experimental
observations regarding the α-γ phase transition. It could be
that the complete explanation of the volume collapse would
require ingredients from all of the approaches. To achieve a
better understanding about the right mechanism behind the
phase transition we clearly need to perform first-principles
calculations using the most sophisticated and accurate methods
at our disposal.

C. Previous ab initio studies

Within density functional theory, calculations of Ce in
the local density approximation (LDA) and the semilocal
generalized gradient approximation (GGA) were reported by
various authors [2–5]. The observed experimental change in
magnetic properties was reproduced in all calculations at the
experimental lattice constants of the two phases. However,
no signature of the volume collapse was found in the total
energy versus volume curve. Based on the localization versus
delocalization scenario of the phase transition, the failure of
LDA and GGA was mainly attributed to the well known
self-interaction problem intrinsic in these theories [73,74]. The
self-interaction error has a tendency to delocalize electrons
[75]. Local and semilocal approaches found a minimum
in the cerium cohesive energy versus volume curve only
corresponding to the α phase, whereas no stable solution was
found for the γ phase (see Fig. 2 for results from this work;
details of the calculations are given in Sec. IV). A recent
study by Sakuma et al. [76] showed that even with the GW

approach, experimental spectra for the γ phase could not be
reproduced.
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FIG. 2. Cohesive energy of cerium bulk within PBE spin unre-
stricted and restricted calculations. Experimental lattice parameters
for the two phases at finite temperature [6] are marked by black
arrows. The brown line represents the magnetic moment of the cerium
atom of the unrestricted solution and refers to the scale on the right.

Following the failure of LDA and GGAs, a number of
authors employed other methods. Usually it is assumed that
the 4f electrons are localized in γ -Ce, and delocalized in α-Ce
[3,17,24,77–83]. In particular, in 1995, Johansson et al. [17]
obtained two cohesive energy versus volume curves in GGA
calculations representing respectively the α and γ phases. In
one case (α-Ce) 4f electrons were retained in the valence
shell, while in the other case (γ -Ce) 4f electrons were frozen
in the core.

The self-interaction-corrected local-spin-density approxi-
mation (SIC-LSD), was applied in the same spirit, and results
consistent with the γ phase were obtained by Szotek et al. [77]
and Svane [78]. The downside of the approach is that SIC-LSD
can only capture the localized phase. So the authors relied on
LSD (the spin polarized variant of LDA) to describe α-Ce.
Combining total energy curves from the two theories produced
a satisfactory estimation of the transition pressure. The
difference between the two phases amounts to a few meV, as
also observed in experiment. Lüders et al. [81] further extended
the SIC-LSD study of cerium by incorporating temperature
effects through entropic contributions, and obtained a slope of
the phase transition line in the P-T phase diagram in agreement
with the experimental one.

LDA+U calculations by Shick et al. [82] and Amadon et al.
[24] also reproduced the physical properties of the γ phase, by
accounting for the localization of the f electrons. They also
predicted a magnetically polarized configuration of the system,
in agreement with experimental results, and a lattice constant
close to the one of γ -Ce. Interestingly, during the search of the
ground state, the authors found multiple metastable energy
minima in the total energy versus volume curve. We also
found multiple stable solutions in our work, which will be
discussed extensively in the remainder of the article. Wang
et al. [83] extended the previous LDA+U studies. Following
the SIC-LSD approach of Lüders et al., they associated LDA
and LDA+U results with the α and γ phases, respectively, and

added an estimation of the entropic contributions to reproduce
the cerium phase diagram.

LDA+DMFT approaches the problem from a different
perspective. Also adding a localizing contribution for the f

electrons to LDA, LDA+DMFT studies [51,84–90] aim to
describe both phases within a single theory. The main result
of LDA+DMFT is the prediction of an increased spectral
weight at the Fermi level going from the γ to the α phase. As
previously mentioned, the photoemission spectrum of cerium
shows, in the low-volume phase, a typical three-peak structure,
which several authors considered as the proof for the presence
of Kondo physics [18,19,91] in the α-γ transition. SIC-LSD
and LDA+U cannot reproduce this three-peak structure. The
nature of the three peaks and its link to the Kondo physics
has been, however, a matter of everlasting controversy. The
three-peak structure appears both in the Hubbard model and
in the Anderson impurity (or Kondo) model [40,42,66,67].

The solvers that usually enter the DMFT scheme introduce
an electronic temperature. For the case of cerium, the tem-
peratures usually reported were on the order of the critical
temperature of the α-γ transition, or slightly lower. Low
temperature calculations were hindered by the large computa-
tional requirements of low temperature quantum Monte Carlo
calculations. As a consequence of this limitation, different
authors reported different LDA+DMFT results. Held et al.
[85] in 2001 reported a free energy curve with slightly negative
curvature. This would be a signature of the phase transition, but
in 2006 Amadon et al. [51], with a different implementation
of the DMFT method, suggested that no negative curvature
would emerge, even reaching temperatures below the ones
reported in the previous study. Amadon et al. subsequently
emphasized the role of entropy in the transition. Recently,
Bieder et al. [92] performed calculations on fcc cerium with a
more efficient implementation of DFT+DMFT. They were
able to reach lower temperatures and to rule out the long
lasting diatribe on the presence of the negative curvature. The
latter appeared on the internal energy curve at temperatures
compatible with the α-γ phase transition. However, the authors
reported no evidence of the transition in the free energy curve
at low temperature.

Lanatà et al. [93] approached the problem with a combina-
tion of DFT and the Gutzwiller approximation (LDA+GA),
which can be viewed as a simplification of the LDA+DMFT
approach with the possibility of exploring the zero temperature
limit. The authors suggested a persistence of the phase
transition at low temperature when spin-orbit coupling is
included. The study was later extended to finite temperature
by Tian et al. [94].

The persistence of the phase transition to zero temperature
has been questioned [93,95]. Whether a double minimum
exists or would only emerge in the free energy curve at finite
temperature, due to entropic effects as suggested by Amadon
et al. [51], is still a matter of debate. We showed previously
[7] that at T = 0 K both phases are captured by employing
hybrid functionals and exact exchange plus correlation in
the random-phase approximation [8–10]. Similar results were
obtained by Devaux et al. [96] with a different methodology.
In our approach all electrons are considered, and, in contrast
to LDA/GGA+U or LDA+DMFT studies, they are treated on
the same quantum mechanical level.
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IV. COMPUTATIONAL SCHEME: HYBRIDS AND THE
RANDOM-PHASE APPROXIMATION

As the name suggests hybrid functionals combine the
local/semilocal density functional approximation (DFA) for
exchange and correlation (XC) with a fraction of exact
exchange. In the simplest formulation, hybrid functionals are
expressed as

Ehyb
xc = EDFA

c + aEEX
x + (1 − a)EDFA

x , (1)

where correlation is retained at the level of semilocal DFA
(EDFA

c ) and exchange is balanced between Hartree-Fock (EEX
x )

and standard XC functionals (EDFA
x ) through the parameter

a. The latter depends on the employed Kohn-Sham (KS)
functional and can be determined either by fitting to exper-
imental data [97] and/or high-level quantum-chemistry results
for molecules, or from considerations linked to the adiabatic
connection (AC) formulation of the exact XC functional
[9,98,99]. In 1996, Perdew, Ernzerhof, and Burke proposed
to choose a = 0.25, considering atomization energies in
fourth-order Møller-Plesset perturbation theory [100]. The
performance of this formulation is, of course, related to the
GGA functional in use, but it turned out that for the PBE
functional a = 0.25 is actually a very good estimation. The
functional, now termed PBE0 [101], became very popular and
largely contributed to improved results for a wide range of
systems [102]. Additional flexibility was introduced in hybrid
functionals by partitioning the exchange term into short-range
and long-range contributions. This led to screened hybrid
functionals, of which one of the most prominent examples
is HSE06 [10,103,104]. Hybrid functionals, containing a
fraction of exact exchange, often handle localized states well,
despite the fact that they are not rigorously self-interaction-free
[105–107]. For this reason we decided to test them for the
difficult case of the α-γ phase transition in cerium [108].

In Kohn-Sham calculations with (nearly) degenerate
ground states, a finite electronic temperature is usually
introduced to accelerate the convergence of the electronic
minimizer [109–111]. In cerium, the remarkably large number
of almost degenerate states near the Fermi energy requires
a very high temperature, which introduces a large electronic
entropy contribution. The ground state energy of the system
is obtained from the free energy making use of a Taylor
expansion [112,113]. Occupying all the almost-degenerate
levels would require a very high broadening of the electronic
level occupation, which would question the reliability of the
extrapolation to the ground state. Another possible approach
would be to manually set the occupation of the levels.
However, this would bias the self-consistent field (SCF) cycle.
Therefore, the calculations were started at a given bond
distance with a high electronic temperature (T el ≈ 10 000 K,
kBT el ≈ 0.86 eV), which was subsequently reduced. The
initial broadening of the one-electron energy levels allows
the valence electrons to populate all the low lying excited
electronic states. In subsequent calculations for the same bond
distance, the temperature is gradually reduced until the ground
state is stabilized at T el ≈ 0 K. This procedure facilitates an
initial sampling of all almost degenerate configurations, and a
final choice of only the most stable ones.

More than one stable solution is found in hybrid functional
PBE0 and HSE06 calculations for cerium systems. The mul-
tisolution behavior is a known phenomenon when electronic
configurations are close in energy [114]. This is often the
case for open shell systems. Approaches that are based on the
density matrix rather than the density are more susceptible to
local minima in the potential-energy landscape of the electrons.
If the orbital symmetry is broken the initialization of the
system has a direct influence on the outcome of the SCF cycle:
filled orbitals are energetically favored over empty ones, they
are pushed down in energy, and it is energetically beneficial
for the system to keep the initial orbital occupations. This
is a known phenomenon in Hartree-Fock calculations [114]
and is generally found in all approaches that create orbital
polarization, such as DFT+U [82,115] and SIC-LSD [81]. It
was reported [116] that also hybrid functionals exhibit this
behavior. We will show in the remainder of this work that the
presence of multisolutions in hybrid functionals turned out to
be decisive for the study of the α-γ phase transition.

In our analysis the multisolution behavior arises as follows.
Changing the distance between the atoms initializes the system
in a different configuration at each bond length. As men-
tioned before, the Hartree-Fock exchange potential tends to
preserve the given configuration. The sampling of the possible
electronic states during the SCF cycle happens therefore not
on all available states, but only on those configurations that
are similar to the initial one. As a consequence, the system
falls into several different solutions when scanning a range
of distances. The different solutions are energetically stable,
so we can restart calculations at neighboring distances with
the previously computed electronic structures and generate
full curves. This approach provides an assessment of multiple
solutions but it does not guarantee, in general, that the real
ground state of the system is reached.

To improve the accuracy of the calculations by in-
corporating correlation effects at a higher level of the-
ory, we applied a postprocessing correction for exact ex-
change plus correlation in the random-phase approximation,
(EX+cRPA)@(PBE/hybrids). The random-phase approxima-
tion was introduced already in the 1950s, in the context of
the homogeneous electron gas. In a series of papers published
by Bohm and Pines [117–120] it was suggested that a good
estimation of correlation in the homogeneous electron gas
could be obtained by separating the collective degrees of
freedom from the single-particle degrees of freedom. This
leads to an inclusion of the long-range Coulomb interaction in
the collective behavior of the system, while the single-particle
interaction is reduced to a short-range screened interaction.
The RPA neglects the coupling between the collective and the
single-particle degrees of freedom. In modern applications of
RPA, a sum of all Feynman ring diagrams in the perturbative
expansion of the correlation energy removes some divergence
problems intrinsic to order-by-order expansions for homoge-
neous electron gas [121].

It can be shown [122] that the correlation energy within RPA
can be computed from the charge susceptibility according to
the expression

ERPA
c = 1

2π

∫ ∞

0
dωTr{ln[1 − χ0(iω)v] + χ0(iω)v}, (2)
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with v being the bare Coulomb interaction, Tr = ∫
drdr′, and

χ0(r,r′,iω) the independent-particle response function of the
KS reference system:

χ0(r,r′,iω) =
∑
ij

(fi − fj )ψ∗
i (r)ψj (r)ψ∗

j (r′)ψi(r′)

εi − εj − iω
. (3)

Here χ0(r,r′,iω) is formulated in terms of the KS orbitals,
with occupation numbers fi . When applying EX+cRPA, the
exact-exchange energy cancels the spurious self-interaction
error present in the Hartree energy and the RPA correlation is
fully nonlocal.

The success of the random-phase approximation in DFT
has been demonstrated in a series of works on, e.g., molec-
ular properties [123–126], periodic systems [127–129], and
adsorption problems [130–133]. A major drawback of the
RPA approach remains the high computational cost, which
still hinders a widespread use. In this work, for example,
RPA could be employed only for cluster systems. Moreover,
RPA is generally implemented as a postprocessing correction,
which makes the final result dependent on the starting point,
i.e., on the functional that is employed. For instance, we
will show in Sec. V B that (EX+cRPA)@PBE provides an
outcome strongly influenced by the PBE input wave functions
for the case of cerium. On the other hand several improvements
beyond the RPA have been proposed recently, which make
RPA-based methods an active field of research.

All calculations in this work were performed with the
all-electron Fritz-Haber-Institut ab initio molecular simula-
tions code (FHI-aims) [14,134] that is based on numeric
atom-centered orbitals (NAO). Relativistic effects are treated
at the level of the scaled zero-order regular approximation
(ZORA) [135]. Here we present results obtained using the
PBE0 hybrid functional [9] for both cluster and periodic
systems [136] and show that the HSE06 hybrid functional
[10] yields a similar description. For comparison we also
applied the local density approximation in the parametrization
of Perdew and Zunger [73] and the Perdew-Burke-Ernzerhof
generalized gradient approximation (PBE) [101]. Periodic
calculations were performed with one atom in the unit cell
and a 6 × 6 × 6 k mesh. The hybrid functional calculations
were carried out with a tier 1 NAO basis [134,137] whereas
for (EX+cRPA)@PBE/PBE0 it proved necessary to go up to
tier 3. The sampling of the BZ and basis set that is used give
us accurate total energies within 5 meV, which is sufficient
for the energy scale of interest here. In general, ferromagnetic
ordering is assumed in our spin-polarized calculations; see
Ref. [138] for a discussion on the inclusion of disordered
magnetic moments in the calculations.

V. RESULTS

A. Cerium bulk

The cohesive energy (Ecoh) of cerium bulk obtained using
different exchange correlation functionals (LDA, PBE, PBE0,
and HSE06) is presented as a function of the lattice constant
in Fig. 3. The experimental lattice constants of the α and
γ phases of cerium, at 77 and 273 K, are also reported.
The LDA and PBE results are in agreement with previous
calculations [17,24,79,81,83] and exhibit only one minimum.

3.5 4 4.5 5 5.5 6 6.5
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FIG. 3. Cohesive energy [Ecoh = −(E − ∑
Eatom)] of cerium for

spin unrestricted calculations as a function of the lattice constant (a0).
Dashed lines show HSE06 results. The spin moment increases with
volume for the LDA and PBE solutions, while in PBE0 and HSE06
it remains approximately constant at zero and one-half for the α- and
γ -like solutions, respectively. Experimental lattice parameters for the
two phases at finite temperature [6] are marked by black arrows.

The associated volume is consistent with the α phase, although
the actual value is underestimated. In contrast, in PBE0 and
HSE06 two stable solutions are found. One solution has a
minimum approximately coinciding with the LDA or PBE
minimum, while the second reaches its equilibrium position at
a much larger lattice constant, consistent with the one of the
γ phase. The magnitude of the cohesive energy systematically
reduces from LDA to PBE, and from PBE to PBE0. PBE0 and
HSE06 results are almost identical, and will be considered
as equivalent for the remainder of the article. In Table I the
values for the equilibrium lattice constant, cohesive energy,
bulk modulus, and magnetic moment are reported for bulk PBE
and PBE0 calculations together with experimental reference
values and previous calculations.

In LDA and PBE the system does not show a magnetic
moment at the equilibrium lattice constant. A finite value for
the spin only develops when the lattice constant is increased,
see PBE results in Fig. 2, and eventually approaches the
experimental value for the γ phase at the γ equilibrium lattice
constant. A similar behavior is obtained with LDA. One should
remember that the γ phase of cerium metal displays localized
magnetic moments but does not assume ferromagnetic order.
In this sense the spin component present in our calculations
only approximates the real behavior of the system.

As shown in previous studies (see, e.g., Sec. III C), it is
possible to produce two distinct PBE solutions by restricting
the magnetic moment to the experimental values of the α and
γ phases. The results of spin constrained PBE calculations
are reported in Fig. 2. The spin unrestricted curve is the
same as in Fig. 3. The brown curve represents the change
of magnetic moment of the spin unrestricted solution with
respect to the lattice constant. The abrupt emergence of a
magnetic moment around the experimental lattice constant
of the γ phase is representative of the observed change in
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TABLE I. Comparison of the computed equilibrium lattice constants, bulk moduli, and cohesive energies for the α and γ phases with those
of other calculations and experiments. In Ref. [17] LDA and GGA (Becke-Perdew gradient correction) calculations for the α and γ phases
were modeled by retaining the f electrons in the valence shell (α phase) and the inert core (γ phase). In the SIC-LSD and LDA+U the α-phase
results refer to LDA and LSD calculations.

α-Ce γ -Ce

Method a0 (Å) Ecoh (eV) B (GPa) a0 (Å) Ecoh (eV) B (GPa)

LDA (this work) 4.50 5.84 64.1
PBE (this work) 4.68 4.93 36.6
PBE0 (this work) 4.63 3.76 50.5 5.22 4.35 28.3
LDAa (f in core for γ ) 4.61 47.7 5.12 31.2
GGAb (f in core for γ ) 4.80 39.1 5.30 28.8
SIC-LSDb 4.69 44.3 5.14 34
LDA+U c 4.52 59 5.04 34
Expt.d 4.83 4.3 27 5.16 19

aReference [17].
bReference [79].
cReference [24].
dReferences [53,139,140].

magnetic properties along the α-γ phase transition and was
already observed in earlier DFT studies [2]. A different curve
can be generated by constraining the spin of the system. We
took the extreme case in which both the magnetic moments
of the 4f and the 5d electrons are aligned, m = 2 μ0. In this
configuration the system has an equilibrium lattice constant
close to the experimental value for the γ phase. The two PBE
solutions now have lattice constants and magnetic properties
that are compatible with the experimental values for the α

and γ phases, respectively. Eriksson et al., however, already
pointed out that this approach to describe both phases and
the phase transition within LDA/GGA fails for the energy of
the system [3]. Johansson et al. [17] managed to produce two
different solutions in LDA or GGA calculations by freezing
or unfreezing the f electrons in the core. Restricting the f

electrons to the core is, in practice, similar to imposing a
finite value of the spin to the system, because when spins are
aligned the f -f intersite hybridization is negligible. However
the authors had to apply an arbitrary shift to the curves
in order to obtain a reasonable transition pressure. Also in
the present calculations the energy of the solutions is an
issue. With 0.5 eV, the energy difference is more than an
order of magnitude larger than what has been measured in
experiment.

The band structure of the PBE spin unrestricted and
restricted solutions is presented in Fig. 4 along the main
directions through the Brillouin zone of the fcc structure.
The bands are plotted for the equilibrium lattice constants
of 4.6 and 5.2 Å, respectively. Only the spin up component of
the bands is reported. In PBE spin unrestricted calculations
the magnetic moment at the equilibrium position is zero,
so the spin up and down bands are equivalent. For spin
restricted calculations the spin down bands correspond to a
rigid upward shift of the spin up bands and are therefore
omitted from the discussion.

The comparison between the two sets of bands shows the
similarities between the two types of calculations. In both
cases the two bands below the Fermi level, of mixed d and f
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FIG. 4. PBE band structure for spin unrestricted (a) and re-
stricted (b) calculations. The band structure refers to the spin up
component and it is taken at 4.6 Å in (a) and 5.2 Å in (b).
For spin unrestricted calculations the spin up and down bands are
equivalent. For spin restricted calculations the spin down bands
correspond to a rigid upward shift of the spin up bands. The
energy zero is the Fermi energy. The DOS is reported in the right
panel.
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FIG. 5. Density of Kohn-Sham states of the α- and γ -like
solutions of Fig. 3. Zero is the Fermi energy. Direct (*) and
inverse (**) photoemission experiments are taken from Refs. [37,47],
respectively.

character, show a large dispersion, and they strongly hybridize
around the X point and along the � and Z directions. At and
above the Fermi level lie a number of dispersionless f bands.
Their bandwidth is smaller in restricted calculations, but this
is also observed for unrestricted calculations by increasing
the lattice constant. The overall agreement with previously
computed band structures [81,141,142] is good.

Now we discuss the results from hybrid functional cal-
culations. The two PBE0 solutions differ in their electronic
structure as reflected in the density of states, shown in Fig. 5,
and the magnetic moment of the cerium atom (m); see
Sec. VI A. The magnetic moment of the low volume phase lies
around 0.2 μ0, while in the high volume phase m is close to one.
Also the number of f electrons is approximately one in both
phases, in agreement with positron annihilation experiments;
see Sec. III A.

The density of states (DOS) is plotted in Fig. 5 at the
equilibrium distances of the two phases. The DOS for negative
energies corresponds to occupied levels, zero corresponds to
the Fermi energy (EF), and the empty states are found at
positive energies. The reported DOS is the sum of the spin up
and spin down DOS. The PBE DOS, together with direct and
inverse photoemission data, are also shown for comparison.
To simplify the notation, the two hybrid functional solutions
will be labeled with the letters “α” and “γ ” in the remainder
of this article. This is related to the similarity of the two PBE0
solutions with the two experimental phases of cerium, reflected
in, e.g., the equilibrium lattice constant, magnetic moment,
and KS DOS. The PBE0 γ phase displays some peaks below
the Fermi energy, of which the peak around −3 eV arises
mainly from an f contribution and the others accommodate d

electrons. The region of the empty states is instead dominated
by a major peak between 3 and 4 eV. The α-like phase is
characterized by a strong peak between 1 and 2 eV. PBE
reproduces the experimental central peak. Going from PBE to
the PBE0 α-phase solution, the spectral weight is shifted away
from EF: the occupied orbitals are moved to lower energy, the
empty ones to higher energy.
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FIG. 6. PBE0 band structure for the α and γ solutions. The band
structure refers to the spin up component and it is taken at 4.6 in α and
5.3 Å in γ . The spin down bands of the α phase are like the spin up
bands, but shifted up by a small amount. The spin down bands for the
γ phase are similar to the spin up ones, but the flat f band is shifted
to around 4 eV above EF. The energy zero is the Fermi energy. Red
arrows indicate the band that becomes dispersionless and occupied
in γ . The DOS is also reported on the right panel.

As already pointed out, the experimental spectrum of
the α phase has been a matter of controversy for a long
time. In particular, the characteristic three-peak structure has
been observed in all measurements, but the nature of the
peaks, if they are of an f nature or not, remains uncertain
[42]. Moreover, in cerium the surface contributions play an
important role and the surface is believed to preserve γ -like
features also in the α phase. Consequently, the peak at around
4 eV could belong to the γ -like surface. It is therefore not
certain whether the PBE and PBE0 α-like densities of states are
missing some features, as suggested by LDA+DMFT studies
[51,84–86,90], or whether they describe the cerium spectra as
they would be if measured at 0 K without surface effects.

In this regard, we note that DFT calculations can properly
address the ground state of the system even if the Kohn-Sham
spectrum does not agree with the photoemission spectrum
either in peak intensities or in peak positions.

The band structure of the PBE0 solutions is reported in
Fig. 6. Only the spin up component is shown. The spin down
bands of the α-phase solution are like the spin up bands, but
shifted up by a small amount. In the α phase the two occupied
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bands hybridize strongly around the X point and along the
� and Z directions, similar to what was observed in PBE,
while the unoccupied f bands are moved to higher energies
by around 1 eV with respect to PBE. In the PBE0 γ phase the
nearly dispersionless empty f bands are shifted up by around
3 eV with respect to PBE. Furthermore, major differences are
observed for the occupied states. A flat band of f character
is occupied at around 3 eV below EF. The spin down bands
for the γ phase are similar to the spin up ones, but the flat f

band is shifted to around 4 eV above EF. The band indicated
by the red arrows in Fig. 6 becomes nearly dispersionless and
fully populated going from the α to the γ phase. A 4f peak
in the DOS appears for the occupied states in correspondence
with the flat band. This feature is also observed in the SIC-LSD
calculations of Lüders et al. [81]. It emerges in correspondence
with the appearance of a magnetic moment close to one in
the γ phase, and can be associated with the localization of
one 4f electron when going from the α to the γ PBE0
solution.

The f electron localization process in hybrid functionals
can be visualized in a more pictorial way by plotting the
difference between the electron density of the PBE0 α- and
the γ -like solutions, nα(r) − nγ (r), shown in Fig. 7. A slice of
the density difference is shown in Fig. 7(a), corresponding
to the [100] plane, or equivalently to the [010] and [001]
planes, at the lattice constant of 4.6 Å, where the two solutions
have almost equal cohesive energy. The green sphere marks
the Ce atom in the unit cell. Blue and red colors indicate a
surplus of electron density in the α and γ phases, respectively.
The plot shows that the interstitial region between the cerium
atoms in the periodic environment is colored blue, while the
red color resides mainly on lobes around the atomic sites.
This reveals that the α-like phase has a higher density in
the interstitial region with respect to the γ -phase solution.
Thus, the degree of electron localization/delocalization in
the two phases is significantly different. A comparable
effect, but much weaker, arises if the analysis is performed
between the spin unrestricted and restricted PBE calculations
(not shown).

By plotting a three-dimensional isosurface with a cutoff
at negative values of the density difference (i.e., where the
γ -like phase has a larger number of electrons with respect
to the α-like phase) one obtains a surface with the shape of
an f orbital of xyz or z(x2 − y2) symmetry, Fig. 7(a). This
provides a strong indication that the delocalized electrons in
the interstitial region are actually 4f in nature, and that it is
the balance between localization and delocalization of the f

electrons that plays a key role in the emergence of the double
minimum in the cohesive energy curve. We will show in the
next section that the different magnetic moment of the two
phases stabilizes an underlying difference in the electron wave
functions. This observation supports the picture that the driving
mechanism of the α-γ phase transition is linked to a change in
the behavior of the 4f electrons. The f states would participate
in the bonding in α-Ce, and they would not in γ -Ce. This is
also what was assumed in previous calculations on cerium by
means of SIC-LSD and LDA+U . In our study, however, it
appears not as an a priori constraint of the system, but it arises
naturally from calculations in which all electrons have been
treated on the same quantum mechanical level.

FIG. 7. Difference between the PBE0 bulk electron densities of
the α and γ phases at the same lattice constant of 4.6 Å, at which both
phases have the same energy. The green sphere marks the position of a
Ce atom. (a) The density difference is projected onto the [100] plane;
the [010] and [001] planes are equivalent. The α phase has a larger
contribution in the interstitial region, whereas the γ phase density is
more localized around the nuclei. (b) Isosurface with negative cutoff
on the density difference. The isosurface resembles an f orbital of
xyz, z(x2 − y2) symmetry. The projection onto the [100] plane is also
reported.

It proved useful to perform PBE0 spin unpolarized calcula-
tions to further analyze the hybrid functional results. In Fig. 8
the curves of Fig. 3 are reported along with spin unpolarized
PBE0 calculations.

At 5.4 Å the electronic structure between the direct and the
restarted calculations differs. The direct solution, which has
been approached from the left (i.e., smaller lattice constants),
resembles that of the equilibrium lattice constant. The restarted
calculation, on the other hand, has been approached from the
right and carries the signatures of the electronic structure at
larger lattice constants. The behavior of the system changes
with the smooth rearrangements of the f states. The electronic
structure of the underlying s, p, and d states is very similar
in both situations, but the f states can be accommodated in
different ways. This is seen in the band structure of the two
PBE0 unpolarized solutions; see Fig. 9. The two sets of bands
are similar, but some differences are present in the f bands
above the Fermi energy. The empty f states are shifted to
higher energy by around 1 eV in the restarted solution. The
band that is flat and fully occupied in the PBE0 γ phase does
not show the same properties for unpolarized calculations.
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FIG. 8. PBE0 cohesive energy curves for the spin polarized (red)
and unpolarized (back) solutions.

However, we will show next that trademarks of the γ phase
are present in the unpolarized restarted calculations.

Figure 10 exemplifies the differences between the two
PBE0 spin unpolarized solutions. In the first row of Fig. 10
the density difference between unpolarized calculations is
displayed for a volume slice, parallel to the [100] plane, that
is approaching the cerium atom, green sphere, from behind.
The volume slice is moved, going from left to right, from the
center of the f -shaped lobes to a position closer to the atom.
Similarly, in the second row the difference is taken, at the
same lattice constant and steps for the volume slice, between
the direct unpolarized solution and the ferromagnetic γ -like
PBE0 solution of Fig. 8. In the top right figure the density
difference between the two unpolarized solutions displays
similar features to the bottom right figure and to the spin
polarized density difference of Fig. 7. It also shares with
the spin polarized PBE0 results the same three-dimensional

W L Λ Γ Δ X Z W K-4

-2

0

2

4

6

B
an

d 
En

er
gy

 (e
V

)

DOS

Direct
Restart

PBE0 spin unpolarized (m=0)

FIG. 9. PBE0 band structure for spin unpolarized (red) and spin
unpolarized restart (blue) calculations. The band structure is taken at
5.4 Å. Zero is the Fermi energy. The DOS is also reported in the right
panel.

f -shaped isosurface for negative values of the cutoff (not
shown here). This reflects a wave function change when going
from one spin unpolarized solution to the other, and proves
that there is no need for a magnetic moment change to obtain
two PBE0 solutions with distinct electronic structures, as also
evidenced by Devaux et al. [96].

In Fig. 10, going from left to right the volume slice
approaches the atomic centers from behind. On can note that
the red lobes have reduced spatial extension in the second
row. The magnetic moment greatly favors localization of the
f states in the γ phase, and the red regions collapse towards
the atomic centers. The magnetic degrees of freedom help
to stabilize the solutions that are already inherent in spin
unpolarized calculations. This is a significant difference from
PBE calculations for Ce, where it is not possible to obtain two
different solutions with the same magnetic moment.

The top left panel provides additional insight into the
results. It makes clear that the spatial arrangement of the
electrons in the two PBE0 spin unpolarized configurations,
f electrons according to the isosurfece plots, follows a
different symmetry. A discrimination between localization and
delocalization becomes more difficult and it is instead more
interesting to focus on the change in the preferred directions
along which the f electrons are arranged. Unfortunately, it is
not possible to address the symmetry lowering, going from the
γ to the α phase, suggested by Nikolaev and Michel [61] due
to the too small dimension of the unit cell. Nevertheless, we
acknowledge a symmetry breaking going from one phase to
the other.

B. Cerium clusters

We considered cerium clusters to perform higher level
calculations. We computed cerium clusters of increasing
size with the PBE and PBE0 functionals, and EX+cRPA
corrections. The clusters were cut from the face-centered cubic
crystal structure, which characterizes both α and γ phases, in
order to mimic the periodic environment. They were built with
one atom in the center surrounded by shells of first, second, and
third nearest neighbors. This procedure leads to configurations
of thirteen, nineteen, and forty-three atom clusters as illustrated
in Fig. 11. The fcc structure and the configuration with one
atom in the central position were preferred over other possible
ones, for instance the one cut from the fcc structure with a
first tetrahedral shell and a total of fourteen atoms, in order to
recreate the best bulk environment for the central atom.

In order to reduce edge effects the following expression
for the effective cohesive energy of the clusters was used
[143,144]:

Ecoh = −
[
E −

12∑
c=1

(
NcE

atom
c

)](
12∑

c=1

Nc

√
c

12

)−1

, (4)

where E is the total energy, Nc the number of atoms in
the cluster with c nearest neighbors, and Eatom

c the atomic
total energy for a c-fold-coordinated atom [145]. The formula
assigns a weight, the second term in Eq. (4), to each atom
depending on the number of nearest neighbors [146]. Atoms
that are in the inner region of the cluster are more important.
The central atom for instance, for which the shell of first nearest
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FIG. 10. Volume slices, parallel to the [100] plane, at a lattice constant of 5.3 Å of the density difference between direct (ud) and restarted
(ur) spin unpolarized solutions (upper panels), and direct spin unpolarized (ud) and γ -like spin polarized (fg) solutions (lower panels). Going
from left to right the volume slice is approaching the cerium atom from behind: in the first column the slice is placed at 0.6 Å behind the atom
position, in the second column 0.5 Å, and in the third column 0.4 Å.

neighbors is complete, has weight one. All other atoms have a
weight smaller than one.

We decided to perform unrestricted spin polarized calcu-
lations, which means that the system has no constraint on
the total spin value. This approach guarantees that the system
relaxes into one of the lowest, if not the lowest, states, with the
corresponding optimal spin configuration. The outcome for the
cohesive energy is reported in Fig. 12. The energy is plotted
with respect to the lattice constant (a0) in an fcc environment
that would correspond to the distance between the atoms in
the cluster.

All three clusters show similar features. The PBE functional
gives a smooth curve for the cohesive energy. The magnetic
moment of the central atom is zero around the equilibrium
position and increases with increasing lattice constant [147].
PBE0 results instead give two stable configurations. They both
lie at higher energies compared to the PBE curve and they
are separated by approximately 1 eV. Curve (a) is stable at a
lattice constant that is close to the PBE one and has the same
magnetic properties. At the equilibrium position the spin value
of solution (a) is almost zero. The minimum of solution (b)

FIG. 11. Cerium clusters cut from the fcc crystal structure with a
total number of 13, 19, and 43 atoms, going from left to right.

is found at a larger distance, and the spin of the central atom
approaches one half [148].

An analysis of the PBE and PBE0 solutions reveals that the
different functionals preserve specific characteristics of the
electronic structure in all clusters. The density of Kohn-Sham
states projected onto the central atom is plotted in Fig. 13 for
all clusters. The DOS in the plots is the sum of the spin up and
spin down DOS. A Gaussian smearing of 0.2 eV is applied
to the KS-DOS to facilitate readability. For PBE0, all states
below −4 eV are identical in both solutions.

A characteristic that emerges from Fig. 13 is the presence
of a prominent peak in the unoccupied states. A comparison
with photoemission experiments for bulk cerium was reported
in Sec. V A. For all cluster sizes, the peak of PBE and the
PBE0 (a) solution lies between 1 and 2 eV whereas in solution
(b) it is moved to around 4 eV. In both cases it arises from the
4f states.

In both PBE and PBE0 the similarities between Ce19 and
Ce43 are remarkable. The spectra are dominated by the d and
f states. In PBE and the PBE0 (a) solution the 5d levels
have peaks mainly around −2 and −3 eV and just above the
Fermi energy. In the PBE0 (b) solution the 5d states, occupied
and empty, are close to EF. The position of the occupied and
empty 4f states is similar between the PBE and PBE0 (a)
solutions, where the empty 4f states are close to EF. In PBE0
(b) instead, the empty states lie at higher energies around 4 eV.
A closer look around the Fermi energy reveals that there is
a removal of f spectral weight from EF going from PBE,
PBE0 (a) to PBE0 (b). The f levels are pushed away from
the Fermi level, while the occupied and empty d states come
closer. The change in electronic structure arises therefore from
the interplay (hybridization) between the 5d and 4f states.

Now, we address the impact of including correlation effects
at the RPA level, as introduced in Sec. IV. We first discuss
(EX+cRPA)@PBE results. The (EX+cRPA)@PBE cohesive
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FIG. 12. PBE and PBE0 cohesive energy for the cerium clusters.
a0 is the lattice constant in an fcc environment that would correspond
to the distance between the atoms in the cluster. (a) and (b) label the
two configurations found within PBE0. Arrows on the energy axes:
experimental cohesive energy from Ref. [140].

energy of Ce19 is reported in Fig. 14. Due to the computational
cost of RPA the nineteen-atom cluster is the largest that could
be studied with high level quantum many body techniques.

For both spin unpolarized and spin unrestricted PBE
calculations the EX+cRPA correction causes a shift by around
2.5 eV to lower energies. On the other hand the equilibrium
lattice constants are close to the PBE values: 4.35 and 4.30 Å
for the PBE and (EX+cRPA)@PBE spin unpolarized results,
respectively, and 4.40 and 4.26 Å for spin unrestricted results.
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FIG. 13. PBE and PBE0 density of Kohn-Sham states (sum of
spin up and down DOS). (a) and (b) label the two PBE0 solutions.
The DOS is calculated at the equilibrium distances. The different
colors label total (black), s (red), p (green), d (blue), and f (orange)
DOS.

In the same figure the magnetic moment of spin unrestricted
calculation is also plotted along with its 4f component. The
spin component of the system is mainly dictated by the f
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FIG. 14. PBE (black) and (EX+cRPA)@PBE (green) cohesive
energy for the 19-atom fcc-cerium cluster as a function of the
lattice constant. Both the spin unrestricted and the spin unpolarized
configurations are reported. The total magnetic moment on the central
atom (brown curve, open circles) and the 4f contribution to the
magnetic moment (brown curve, filled diamonds) is shown for the
spin unrestricted data and refers to the axes on the right.
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−0.8 GPa [52]. Arrows on the energy axes: experimental cohesive
energy from Ref. [140].

electrons. For spin unpolarized calculations the EX+cRPA
cohesive energy displays a smooth behavior with distance.
Instead, (EX+cRPA)@PBE for the spin unrestricted results
displays a region of negative curvature in correspondence with
a change in the magnetic properties.

Ce19 is representative of the other clusters; see, e.g., the
density of KS states in Fig. 13. However, the magnetic moment
obtained with PBE for Ce19 is not representative of the PBE
bulk results reported in Sec. V A. One could associate the
two minima in the spin unrestricted results with the α and
γ phases of cerium; however caution should be used. The
absence of a double minimum or kink in the spin unpolarized
(EX+cRPA)@PBE indicates that a wave function change is
not captured either by PBE or by the EX+cRPA correction.
The structure in the spin polarized (EX+cRPA)@PBE curve
therefore arises from the magnetic moment of PBE, which
assumes values far from the experimental ones. Combined
with the largely overestimated binding energy, these features
suggest that PBE is not a good starting point for higher level
correlated methods for cerium even if it is able to capture some
aspects of the phase transition. In the next paragraphs we will
show that PBE0 is in effect better suited.

The (EX+cRPA)@PBE0 cohesive energy for Ce19 is
reported in Fig. 15. The γ -like (EX+cRPA)@PBE0 solution
is moved down in energy with respect to PBE0 by 0.8 eV,
while the α-like solution lowers by as much as 1.8 eV. The
energy shifts are linked to the KS density of states reported
in Fig. 13. The low volume phase is shifted more in energy
because the number of states near the Fermi level is higher in
the α phase with respect to the γ phase. The higher density
of states near EF gives rise to a higher polarizability, with a
subsequent increase in the RPA energy. More generally, the
energy shift is related to the improved description of screening
effects in RPA. The α phase is more affected by the cRPA
correction as the screening is higher for delocalized electrons
[149].

It will be explained in Sec. VI A that Ce19 is representative
of the PBE0 bulk result. It is therefore one of the main
achievements of this work that EX+cRPA reverts the energetic
ordering of the two PBE0 solutions, and brings the difference
in energy between the PBE0 α and γ phases in agreement with
experiment. According to the extrapolation of the experimental
data to zero temperature [51,52], the difference in internal
energy (�U ) between the two phases should lie between 20
and 30 meV, while the difference in cohesive energy for Ce19

amounts to �U � 45 meV within (EX+cRPA)@PBE0. The
cohesive energy is a good estimate of the internal energy of a
system at zero temperature if we neglect the zero-point motion
of the atoms (which in fact should be negligible for heavy
elements). The difference in cohesive energy is comparable
to the experimental findings, even if it is larger than the
experimental estimation of the maximum energy difference
between the two phases. This leaves room for the estimated
entropy contribution [51,52], T �S, to play a role in the phase
transition. The calculated lattice constants for the α- and γ -like
phases are 4.45 and 5.03 Å, respectively. In other words, the
lattice constant of the α phase is underestimated (4.83 Å at
77 K), but the agreement with the experimental value for the
γ phase is good (5.16 Å at room temperature). Consequently,
the estimated volume collapse is �30% at zero temperature,
instead of the 15% observed experimentally at ambient con-
ditions [6]. The common tangent to the (EX+cRPA)@PBE0
cohesive energy curves leads, through the Gibbs construction,
to a transition pressure of Pt � −0.74 GPa at zero temperature.
This is in good agreement with the extrapolated experimental
Pt � −0.8 GPa.

VI. PHASE DIAGRAM FOR THE α-γ TRANSITION

Hybrid functional calculations for cerium provide a new
perspective for DFT methods in the description of the α-γ
phase transition. In both PBE0 and HSE06 two solutions are
found for clusters and the bulk. The double well observed in the
cohesive energy versus volume curve shows the occurrence of
a T = 0 K phase transition accompanied by a volume collapse
that has not been obtained before in ab initio calculations.
The two solutions display specific characteristics of the α

and γ phases, including a good description of the change in
magnetic and structural properties associated with the volume
collapse. They also support the already suggested localization-
delocalization process as a mechanism for the phase transition.
However, the relative energetic order differs from what is
expected according to the extrapolated experimental phase
diagram at zero temperature.

Exemplified by the case of the nineteen-atom cluster, we
showed that the EX+cRPA correction to hybrid functionals
brings the two solutions close in energy and recovers the
right energetic order of the two solutions. This provides
agreement between the calculated transition pressure and the
experimental data extrapolated to zero temperature. A similar
result could be achieved by varying the amount of exact
exchange included in the hybrid functional [150]. However,
no adjustable parameters are involved in our calculations, and
we rely only on a higher level description of exchange and
correlation. In this section we will show that by adding entropic
contributions to the cluster results (at the time of this study,
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a periodic implementation of RPA was not available in the
FHI-aims code) the temperature-pressure phase diagram of
cerium can be reproduced qualitatively.

A. Towards the bulk

Looking at the electronic properties of the clusters, as
reflected in the density of states of the central atom, we
noted in Sec. V B that cerium clusters cut from the fcc crystal
structure capture the essential physics of bulk cerium. The
PBE DOS of the central atom converges to the PBE bulk
DOS with increasing cluster size (from the comparison of
Figs. 5 and 13). The same happens in PBE0, where the two
phases maintain their distinctive features for all clusters, and
the cluster DOS projected on the central atom is representative
of the bulk DOS (from the comparison of Figs. 5 and 13).
From Fig. 16 it becomes clear that there is indeed a trend in
the physical observables of the two solutions when increasing
the dimension of the system.

Figure 16 reports the values of the cohesive energy, the
equilibrium lattice constant, and the magnetic moment (on the
central atom) for all clusters and the bulk. Experimental data
are also included for comparison. All properties approach the
bulk limit with increasing cluster size. The two solutions for
the bulk are in agreement with the experimental lattice constant

and magnetic moments of the α and γ phases. It is also evident,
from Fig. 16(c), that the spin component of the system mainly
arises from the f electrons. It can be stated that PBE0 captures
the essential physics of the two bulk phases for Ce19, and
that, as a consequence, (EX+cRPA)@PBE0 results for Ce19

would be representative of the periodic system. Therefore, it is
reasonable to base our finite temperature analysis of the phase
transition on the (EX+cRPA)@PBE0 calculations for Ce19.
The result is presented in the next section.

B. Finite temperature

In Sec. V B a pressure induced phase transition at zero tem-
perature was related to the (EX+cRPA)@PBE0 calculations
for the nineteen-atom cluster. Here we extend the results to
finite temperatures by adding entropic effects to the ground
state energy [5,17,79,81,83]. The first entropic contribution is
configurational entropy. This is based on the assumption that
the phase that is metastable at a given volume and pressure
may become thermally populated as temperature is increased.
We therefore adopt a “pseudoalloy” model for the transition
[17], where the α and γ phases coexist with concentrations xα

and xγ but do not interact [151].
In order to obtain a description of the system at finite

temperature the Helmholtz free energy

F (V,T ) = U (V ) − T S (5)

is required, where U is the internal energy, T the temperature,
V the volume of the unit cell, and S the entropy. The free
energy can be obtained from the partition function [83], which
is an additive quantity for all the noninteracting components
of the system, for which the following relation holds:

Z = e−βF (V,T ) =
∑

σ

Zσ =
∑

σ

e−βFσ (V,T ), (6)

where β = 1/(kBT ), kB is the Boltzmann constant, σ = {α,γ },
and Fσ is the free energy of the α or γ phase. One can now
define two quantities

xσ = Zσ

Z
(7)

in order to rewrite the free energy as

F (V,T ,xσ ) = −kBT ln Z

=
∑

σ

xσF σ + kBT
∑

σ

xσ ln xσ

=
∑

σ

xσF σ − T Sconf . (8)

The quantity xσ represents the contribution of one or the
other phase to a determined state of the system and Sconf =
−∑

σ xσ ln xσ is the entropic contribution that arises from the
coexistence of the two phases.

The free energy of a single phase can then be computed
from

Fσ (V,T ) = Uσ (V ) − T
(
Sσ

el + Sσ
mag + Sσ

vib

)
, (9)

where Uσ is the internal energy, Sσ
el is the entropy arising

from electronic degrees of freedom, Sσ
mag is the entropic

contribution of the magnetic moment at each cerium site,
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and Sσ
vib is the entropy associated with lattice vibrations. The

(EX+cRPA)@PBE0 calculations reported in Sec. V B proved
to be a reasonable estimation of the two contributions Uα and
Uγ according to the extrapolation of the experimental data
to zero temperature. Consequently, in the following analysis
Uσ (V ) will be associated with −Eσ

coh(V ), with the latter
obtained from a fit of the (EX+cRPA)@PBE0 results to the
Birch-Murnaghan equation of state [152]

Eσ
coh(V ) = Eσ

0 + Bσ
0 V

B ′σ
0

((
V σ

0 /V
)B ′σ

0

B ′σ
0 − 1

+ 1

)
− Bσ

0 V σ
0

B ′σ
0 − 1

,

(10)
where Eσ

0 is the energy at equilibrium, V σ
0 the equilibrium

volume, Bσ
0 the bulk modulus, and B ′σ

0 the derivative of the
bulk modulus. As it turned out in the present study, the bulk
modulus of Ce19 largely overestimates the experimental values
of 27 GPa and 19 GPa for the α and γ phases, respectively.
This is probably due to the still too small size of the system and
affects the estimation of the α-γ phase diagram considerably.
Instead, periodic PBE0 calculations produce values of the bulk
modulus close to the experimental findings. It was therefore
assumed that the bulk modulus Bσ

0 derived from periodic
calculations would represent the physical situation better than
the cluster Bσ

0 , and it was used in Eq. (9). All other variables
are at their (EX+cRPA)@PBE0 values.

In principle, the contribution Sσ
el can be calculated by either

integrating over the Kohn-Sham DOS at T = 0 K following
the Fermi-Dirac distribution, or by introducing electronic
temperature effects directly in (EX+cRPA)@PBE0. In the
temperature range of interest, i.e. T < 2000 K, the latter gives
a negligible energy contribution. In our case, at variance with
what is observed by Lüders et al. [81], also the Fermi-Dirac
approach does not change the result considerably. The reason
resides in the difference between the PBE DOS, considered
by Lüders et al., and the PBE0 α solution. In PBE0, the
density of states at the Fermi level is low, Fig. 16. Thus, the
integral between the density and the Fermi-Dirac distribution,
see Eq. (24) of Ref. [81], varies slowly with temperature.

We add the entropy arising from the magnetic moment of
the cerium atoms according to the expression

Sσ
mag = kB ln(2J + 1), (11)

where J is the total angular momentum. We here apply Hund’s
rule, which includes the spin-orbit coupling, J = m(2l − m)/2
[153], where l is the orbital angular momentum and m is the
magnetic moment. We showed that the magnetic behavior is
mainly dictated by the f electrons; therefore we set l = 3, and
for m use the magnetic moment of the central atom in the two
phases of the nineteen-atom cluster.

Estimates for the contribution of lattice vibrations have
been provided by some authors, for example by considering
the Debye-Grüneisen model [17] or by fitting to experimental
data [79]. In this work the vibrational entropy as calculated
by Wang et al. [83] was included in terms of the difference
between the two phases. The authors reported a temperature-
independent difference between the phononic contributions of
the two phases. So the vibrational entropy was considered to be

�Svib = 0.94kB. (12)

Finally, the concentrations of the two phases are expressed
as relative percentages xγ = xeq and xα = (1 − xeq), and
Eq. (5) is evaluated as follows:

F (V,T ,xeq ) = (1 − xeq)
[
Uα(V ) − T Sα

mag

]
+ xeq

[
Uγ (V ) − T Sγ

mag − T �Svib
] − T Sconf,

(13)

where Sconf = −kB

∑
σ xσ ln xσ , as obtained in Eq. (8).

The relative percentage of the two phases at equilibrium
for a given volume and temperature, calculated from Eq. (7),
can be equally obtained [17,79,81] by making the substitution
xeq → x in Eq. (13) with 0 � x � 1, and minimizing the
free energy with respect to x. The Helmholtz free energy of
cerium as calculated by adding entropic contributions to the
(EX+cRPA)@PBE0 results of Ce19 is reported in Fig. 17 as
a function of volume and relative concentration x of the α

and γ phases for six temperatures of interest. For each panel
xeq is also reported as a function of volume. At T = 0 K the
entropic contribution is zero and the free energy is minimized
at each volume by the α and γ internal energies in their range
of stability. Consequently, xeq is zero for small volumes and
approaches one at larger volumes. As the temperature grows,
a mixing of the two phases starts to take place in the region
between the two equilibrium lattice constants. The relative
concentration xeq moves to intermediate values until at high
enough temperatures there is no volume for which the system
is in a pure α phase.

Following Eq. (13), the free energy of the pseudoalloy is
plotted as a function of volume for different values of the
temperature in Fig. 18. At T = 0 K the free energy coincides
with the curves in Fig. 15, except that here the values of the
bulk modulus are taken from periodic PBE0 calculations. This
produces a slightly different transition pressure of −0.79 GPa,
obtained from the double tangent to the curve, still close to the
previous value, and in better agreement with the experimental
extrapolation to zero temperature Pt � −0.8 GPa.

As the temperature grows, the transition pressure moves
towards positive values, until at T = 187 K it equals zero.
The transition temperature at Pt = 0 GPa is a quantity of
interest, as it represents the lowest point at which direct
experimental estimates are available. It was observed that
hysteresis effects play an important role in the α-γ phase
transition [52]. Moreover, the presence of the β phase further
complicates the landscape [6]. Based on the sequence of
structural changes that is found in lanthanum, which has no
f electrons, the crystal modification from fcc (γ phase) to
dhcp (β phase) can be understood in terms of a rearrangement
of d electrons. In this case one would think of the f and d

electrons as if they would act independently on the properties
of the material, the d states not undergoing major changes
across the α-γ and α-β transitions, but causing the structural
change between the γ and β regions. The f electrons, on the
other hand, remain localized in the γ and β phases and are
delocalized in the α phase. However, in view of the mutual
influence that f and d electrons have on each other, the above
considerations cannot be taken for granted; see Ref. [154] for
an analysis of the link between d and f electrons and structural
changes. Nevertheless, the β-α transition temperature at 0 GPa
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FIG. 17. Calculated Helmholtz free energy as a function of volume and relative concentration of the α and γ phases at six temperatures of
interest. For each panel also the equilibrium concentration xeq is plotted as a function of volume. xeq corresponds to the minimum of the free
energy.

is accepted as a reasonable estimation for the α-γ phase
diagram. As summarized in Table II, T0 = 187 K is not far from
the experimental estimation T0 = 141 K [6]. The inclusion of
entropic effects in our calculations gives a volume collapse
associated with the α-γ phase transition of 28% at room
temperature.

In the phase diagram of cerium the α-γ transition line
terminates in the β phase at low pressure and in a critical
point (C.P.) at Tc = 460 K and Pc = 1.44 GPa [52]. Also
in the present calculations a C.P. manifests. The critical
temperature coincides with the disappearance of a negative
curvature region in the free energy curve, that, from Fig. 18,

appears for Tc = 1095. The calculated critical pressure is
Pc = 4.84 GPa. Previous analysis based on electronic structure
theory also reported values close to the ones obtained in this
work. Johansson et al. found Tc = 980 K and Pc = 3.86 GPa
by means of GGA calculations in which the f electrons
were retained in the valence shell in the α phase and in
the inert core in the γ phase. Using SIC-LSD Svane et al.
reported Tc = 1300 K and Pc = 4.7 GPa and Lüders et al.
obtained Tc = 1377 K and Pc = 5.6 GPa. By means of
LDA+U calculations, Wang et al. found Tc = 476 K and
Pc = 2.22 GPa, but the description of the γ phase was
adjusted to the experimental reference through the tunable
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FIG. 18. Calculated Helmholtz free energy as a function of
volume for six temperatures of interest and relative equilibrium
concentration xeq . In each panel the transition pressure as obtained
by the Gibbs construction is also reported. The double tangent to
the curves is present until Tc = 1095 K. Above that temperature
no volume collapse is registered. Tc = 1095 K; Pc = 4.84 GPa
represents the critical point.

U parameter. Our approach differs from the previous ones by
the starting point. In our calculations the internal energy at
T = 0 K is obtained within a single level of theory and no
adjustable parameters have been introduced. DMFT studies,
which intrinsically include temperature effects, did not report
a phase diagram for cerium.

From Eq. (13) it is possible to obtain, at constant T and
optimal mixing xeq , the pressure dependence of the volume as

P (V,T ,xeq ) = −∂F (V,T ,xeq )

∂V

= −(1 − xeq)
∂Uα(V )

∂V
− (xeq)

∂Uγ (V )

∂V
. (14)

FIG. 19. Calculated pressure versus volume isoterms for temper-
atures between 0 K, lowest curve, and 1600 K, in steps of 100 K. The
results for T = 187 K (in green) and T = 1095 K (red curve) are also
reported as they represent the transition temperature at 0 GPa and the
critical point temperature, respectively. C.P. is the critical point.

By inserting Eq. (10) into (14) through the equivalence
Uσ (V ) = −Eσ

coh(V ), one can further express the pressure
explicitly in terms of the coefficients of the Birch-Murnaghan
equation of state

P (V,T ,xeq ) = (1 − xeq)
Bα

0

B ′α
0

[(
V0

V

)B ′α
0

− 1

]

+ xeq

B
γ

0

B
′γ
0

[(
V0

V

)B
′γ
0

− 1

]
. (15)

The isoterms that correspond to Eq. (15) are reported in Fig. 19.
At each temperature the transition pressure is estimated via the
Gibbs construction as reported in Fig. 18. The discontinuities
in the P-V curves are indicative of the volume collapse
at different temperatures and delimit a region of instability
generally known as the miscibility gap. The jump in volume
between the two phases gradually shrinks with increasing

TABLE II. Results from the present and previous theoretical works and experimental data for the α-γ phase transition. T0: transition
temperature at 0 GPa. Pc: critical pressure. Tc: critical temperature. �Vγ−α: volume collapse associated with the transition at T = 300 K.

Present work Previous works Experiments

T0 (K) 187 135a, 169b 141 ± 10c

Pc (GPa) 4.84 3.86a, 5.6b, 4.7d, 2.22e 1.96 ± 2c, 1.8f, 1.5g, 1.44h

Tc (K) 1095 980a, 1377b, 1300d, 476e 600 ± 50c, 485f, 480g, 460h

�Vγ−α (300 K) (%) 28 20a, 20.5b, 23.4d, 16.5e 14.7f, 14h

aJohansson et al., GGA [17].
bLüders et al., SIC-LSD [81].
cKoskenmaki et al., exp. [6].
dSvane et al., SIC-LSD [79].
eWang et al., LDA+U [83].
fSchiwek et al., exp. [155].
gLipp et al., exp. [15].
hDecremps et al., exp. [52].
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FIG. 20. Calculated temperature-pressure phase diagram of
cerium (black crosses) as obtained by adding entropic contributions
to the (EX+cRPA)@PBE0 results. C.P. is the calculated critical point
(black square). The green cross indicates the transition temperature at
Pt = 0. Experimental results for C.P., identified by the blue symbols,
are from Koskenmaki et al. [6,139] (open circle), Schiwek et al.
[155] (open square), Lipp et al. [15] (open diamond, obscured by
the triangle), and Decremps et al. [52] (open triangle). Previous
theoretical data are reported in red from Johansson et al. [17] (filled
circle), Lüders et al. [81] (filled square), Svane et al. [79] (filled
diamond), and Wang et al. [83] (filled triangle).

temperature, until at Tc = 1095 K the isoterm becomes smooth
and the volume varies continuously with pressure. This
determines the critical point of the phase transition, at the
associated transition pressure Pc = 4.84.

Finally, by plotting the transition temperature as a function
of pressure, the phase diagram of the α-γ phase transition
can be drawn; see Fig. 20. With respect to the experimental
phase diagram, see Fig. 1, the transition line is extended to
negative pressures. This is a natural consequence of the fact
that in our calculations the phase transition can be described
at T = 0 K. Due to the lack of experimental references the
survival of the phase transition in the negative pressure region
has been a matter of debate. A first problematic aspect is the
presence of the β phase. In addition, some authors suggested
other possible reasons for the disappearance of the phase
transition. De Medici et al. [156] for example proposed that
delocalization of f electrons via a Mott transition mechanism
would be suppressed by Kondo screening at low enough tem-
peratures. The present calculations show, however, that a phase
diagram can be produced in close resemblance to experiment
by adding entropic contributions to the T = 0 K internal
energy.

The estimated position of the critical point is quite distant
from the one reported in experiments. Eventually, introducing
the effect of spin-orbit coupling could lead to a renormalization
of the temperature, as suggested by Bieder et al. [92]. Never-
theless, it is a considerable achievement that the experimental
critical points fall on the calculated transition line. This is
also expected from the fact that the extrapolated transition

pressure to zero temperature agrees well with the calculated
one. We find that the transition line displays a linear behavior,
which is also observed experimentally. In this sense the
present outcome further strengthens the previous conclusion
that the difference of the α phase with respect to the γ phase
can be understood in terms of “direct” delocalization of f

electrons.

VII. SUMMARY AND PERSPECTIVES

Hybrid functional calculations with no constraints produce
multiple, distinct solutions for both bulk cerium and cerium
clusters at zero temperature. The same behavior can be recov-
ered in PBE by imposing magnetic moment constraints on the
system. The hybrid functional solutions can be discriminated
by their magnetic moment and the degree of f -electron
localization and have been associated with the α and γ

phases of cerium. An analysis of the band structure and the
electronic density distribution of the two solutions for different
magnetic configurations proved that hybrid functionals capture
a change in the f wave functions around the region of
the experimental α and γ lattice constants. This cannot be
reproduced within PBE calculations. A first consequence of
this result is that the debate on whether the α-γ phase transition
would survive at low temperature or not could be resolved
in favor of the former hypothesis. It is one of the main
achievements of this work that both phases can be reproduced,
at zero temperature, within a single theoretical framework,
even if the spectral properties are not well reproduced within
hybrid functionals. In fact, DFT is a ground state theory,
and the right electronic excitation spectrum is not needed to
account for the structural properties of the two phases at zero
temperature.

At the hybrid functional level, the energetic ordering of the
two solutions is reversed compared to the zero temperature
extrapolation. Including correlation effects at the level of the
EX+cRPA approach is then essential to rectify this failure
and recovers the right ordering, which highlights the role of
correlation in rare-earth systems. The nineteen-atom cluster
provides a good foundation for reproducing the cerium phase
diagram, which is obtained by adding entropy contributions
and allowing the two phases to mix at finite temperature. The
calculated finite temperature phase diagram is in reasonable
agreement with experimental evidence, preserving the linear-
ity of the transition line.

Based on the analysis of the band structure and the
electronic density, hybrid functional results appear consistent
with a Mott transition scenario, in particular, with the Mott
interpretation of localized and delocalized f states in the γ and
α phases, respectively. However, we know that the transition
is complex, and different mechanisms may cooperate. Our
results do not rule out the importance of Kondo physics
at finite temperatures. They suggest, rather, that the driving
mechanism of the volume collapse should already occur at
zero temperature, and therefore could be more directly related
to the hybridization between f states.

At the same time, our conclusions do not exclude, see
Sec. V A, a quadrupolar charge density alignment in the α

phase. Spin unpolarized hybrid functional calculations for

075153-19



CASADEI, REN, RINKE, RUBIO, AND SCHEFFLER PHYSICAL REVIEW B 93, 075153 (2016)

cerium bulk demonstrate that the emergence of the two
solutions is linked to a change in the wave functions. In
addition, the charge density difference between the solu-
tions shows that there are preferred directions along which
the f electron density tends to align. One future goal
is therefore to increase the dimension of the unit cell.
This would allow the system to explore more degrees of
freedom in the quantum mechanical calculations and might
provide insight into the possible relevance of the quadrupolar
symmetry of the charge density suggested by Nikolaev
et al. [61].
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[157] G. Stollhoff, A. M. Oleś, and V. Heine, Phys. Rev. B 41, 7028

(1990).
[158] F. B. van Duijneveldt, J. G. C. M. van Duijneveldt–van de Rijdt,

and J. H. van Lenthe, Chem. Rev. 94, 1873 (1994).
[159] R. S. Mulliken, J. Chem. Phys. 23, 1833 (1955).

075153-22

http://dx.doi.org/10.1088/0953-8984/1/4/005
http://dx.doi.org/10.1088/0953-8984/1/4/005
http://dx.doi.org/10.1088/0953-8984/1/4/005
http://dx.doi.org/10.1088/0953-8984/1/4/005
http://dx.doi.org/10.1103/PhysRevB.57.2102
http://dx.doi.org/10.1103/PhysRevB.57.2102
http://dx.doi.org/10.1103/PhysRevB.57.2102
http://dx.doi.org/10.1103/PhysRevB.57.2102
http://dx.doi.org/10.1143/PTP.45.1382
http://dx.doi.org/10.1143/PTP.45.1382
http://dx.doi.org/10.1143/PTP.45.1382
http://dx.doi.org/10.1143/PTP.45.1382
http://dx.doi.org/10.1103/PhysRevB.82.195128
http://dx.doi.org/10.1103/PhysRevB.82.195128
http://dx.doi.org/10.1103/PhysRevB.82.195128
http://dx.doi.org/10.1103/PhysRevB.82.195128
http://dx.doi.org/10.1103/PhysRevB.80.235109
http://dx.doi.org/10.1103/PhysRevB.80.235109
http://dx.doi.org/10.1103/PhysRevB.80.235109
http://dx.doi.org/10.1103/PhysRevB.80.235109
http://dx.doi.org/10.1103/PhysRev.82.625
http://dx.doi.org/10.1103/PhysRev.82.625
http://dx.doi.org/10.1103/PhysRev.82.625
http://dx.doi.org/10.1103/PhysRev.82.625
http://dx.doi.org/10.1103/PhysRev.85.338
http://dx.doi.org/10.1103/PhysRev.85.338
http://dx.doi.org/10.1103/PhysRev.85.338
http://dx.doi.org/10.1103/PhysRev.85.338
http://dx.doi.org/10.1103/PhysRev.92.626
http://dx.doi.org/10.1103/PhysRev.92.626
http://dx.doi.org/10.1103/PhysRev.92.626
http://dx.doi.org/10.1103/PhysRev.92.626
http://dx.doi.org/10.1103/PhysRev.92.609
http://dx.doi.org/10.1103/PhysRev.92.609
http://dx.doi.org/10.1103/PhysRev.92.609
http://dx.doi.org/10.1103/PhysRev.92.609
http://dx.doi.org/10.1103/PhysRev.106.364
http://dx.doi.org/10.1103/PhysRev.106.364
http://dx.doi.org/10.1103/PhysRev.106.364
http://dx.doi.org/10.1103/PhysRev.106.364
http://dx.doi.org/10.1103/PhysRevLett.102.096404
http://dx.doi.org/10.1103/PhysRevLett.102.096404
http://dx.doi.org/10.1103/PhysRevLett.102.096404
http://dx.doi.org/10.1103/PhysRevLett.102.096404
http://dx.doi.org/10.1063/1.1884112
http://dx.doi.org/10.1063/1.1884112
http://dx.doi.org/10.1063/1.1884112
http://dx.doi.org/10.1063/1.1884112
http://dx.doi.org/10.1103/PhysRevLett.106.153003
http://dx.doi.org/10.1103/PhysRevLett.106.153003
http://dx.doi.org/10.1103/PhysRevLett.106.153003
http://dx.doi.org/10.1103/PhysRevLett.106.153003
http://dx.doi.org/10.1021/jz200238f
http://dx.doi.org/10.1021/jz200238f
http://dx.doi.org/10.1021/jz200238f
http://dx.doi.org/10.1021/jz200238f
http://dx.doi.org/10.1103/PhysRevB.81.115126
http://dx.doi.org/10.1103/PhysRevB.81.115126
http://dx.doi.org/10.1103/PhysRevB.81.115126
http://dx.doi.org/10.1103/PhysRevB.81.115126
http://dx.doi.org/10.1103/PhysRevLett.103.056401
http://dx.doi.org/10.1103/PhysRevLett.103.056401
http://dx.doi.org/10.1103/PhysRevLett.103.056401
http://dx.doi.org/10.1103/PhysRevLett.103.056401
http://dx.doi.org/10.1103/PhysRevB.77.045136
http://dx.doi.org/10.1103/PhysRevB.77.045136
http://dx.doi.org/10.1103/PhysRevB.77.045136
http://dx.doi.org/10.1103/PhysRevB.77.045136
http://dx.doi.org/10.1103/PhysRevB.85.041403
http://dx.doi.org/10.1103/PhysRevB.85.041403
http://dx.doi.org/10.1103/PhysRevB.85.041403
http://dx.doi.org/10.1103/PhysRevB.85.041403
http://dx.doi.org/10.1103/PhysRevB.84.033402
http://dx.doi.org/10.1103/PhysRevB.84.033402
http://dx.doi.org/10.1103/PhysRevB.84.033402
http://dx.doi.org/10.1103/PhysRevB.84.033402
http://dx.doi.org/10.1103/PhysRevB.80.045402
http://dx.doi.org/10.1103/PhysRevB.80.045402
http://dx.doi.org/10.1103/PhysRevB.80.045402
http://dx.doi.org/10.1103/PhysRevB.80.045402
http://dx.doi.org/10.1103/PhysRevLett.101.266106
http://dx.doi.org/10.1103/PhysRevLett.101.266106
http://dx.doi.org/10.1103/PhysRevLett.101.266106
http://dx.doi.org/10.1103/PhysRevLett.101.266106
http://dx.doi.org/10.1016/j.cpc.2009.06.022
http://dx.doi.org/10.1016/j.cpc.2009.06.022
http://dx.doi.org/10.1016/j.cpc.2009.06.022
http://dx.doi.org/10.1016/j.cpc.2009.06.022
http://dx.doi.org/10.1063/1.467943
http://dx.doi.org/10.1063/1.467943
http://dx.doi.org/10.1063/1.467943
http://dx.doi.org/10.1063/1.467943
http://dx.doi.org/10.1016/j.cpc.2015.02.021
http://dx.doi.org/10.1016/j.cpc.2015.02.021
http://dx.doi.org/10.1016/j.cpc.2015.02.021
http://dx.doi.org/10.1016/j.cpc.2015.02.021
http://dx.doi.org/10.1103/PhysRevB.89.184426
http://dx.doi.org/10.1103/PhysRevB.89.184426
http://dx.doi.org/10.1103/PhysRevB.89.184426
http://dx.doi.org/10.1103/PhysRevB.89.184426
http://dx.doi.org/10.1016/0378-4363(85)90406-1
http://dx.doi.org/10.1016/0378-4363(85)90406-1
http://dx.doi.org/10.1016/0378-4363(85)90406-1
http://dx.doi.org/10.1016/0378-4363(85)90406-1
http://dx.doi.org/10.1103/PhysRevB.27.3390
http://dx.doi.org/10.1103/PhysRevB.27.3390
http://dx.doi.org/10.1103/PhysRevB.27.3390
http://dx.doi.org/10.1103/PhysRevB.27.3390
http://dx.doi.org/10.1103/PhysRevB.23.1266
http://dx.doi.org/10.1103/PhysRevB.23.1266
http://dx.doi.org/10.1103/PhysRevB.23.1266
http://dx.doi.org/10.1103/PhysRevB.23.1266
http://dx.doi.org/10.1103/PhysRevLett.98.176103
http://dx.doi.org/10.1103/PhysRevLett.98.176103
http://dx.doi.org/10.1103/PhysRevLett.98.176103
http://dx.doi.org/10.1103/PhysRevLett.98.176103
http://dx.doi.org/10.1103/PhysRevB.89.155106
http://dx.doi.org/10.1103/PhysRevB.89.155106
http://dx.doi.org/10.1103/PhysRevB.89.155106
http://dx.doi.org/10.1103/PhysRevB.89.155106
http://dx.doi.org/10.1073/pnas.30.9.244
http://dx.doi.org/10.1073/pnas.30.9.244
http://dx.doi.org/10.1073/pnas.30.9.244
http://dx.doi.org/10.1073/pnas.30.9.244
http://dx.doi.org/10.1103/PhysRevB.61.R11863
http://dx.doi.org/10.1103/PhysRevB.61.R11863
http://dx.doi.org/10.1103/PhysRevB.61.R11863
http://dx.doi.org/10.1103/PhysRevB.61.R11863
http://dx.doi.org/10.1038/srep06398
http://dx.doi.org/10.1038/srep06398
http://dx.doi.org/10.1038/srep06398
http://dx.doi.org/10.1038/srep06398
http://dx.doi.org/10.1080/08957950212799
http://dx.doi.org/10.1080/08957950212799
http://dx.doi.org/10.1080/08957950212799
http://dx.doi.org/10.1080/08957950212799
http://dx.doi.org/10.1103/PhysRevLett.95.066402
http://dx.doi.org/10.1103/PhysRevLett.95.066402
http://dx.doi.org/10.1103/PhysRevLett.95.066402
http://dx.doi.org/10.1103/PhysRevLett.95.066402
http://dx.doi.org/10.1103/PhysRevB.41.7028
http://dx.doi.org/10.1103/PhysRevB.41.7028
http://dx.doi.org/10.1103/PhysRevB.41.7028
http://dx.doi.org/10.1103/PhysRevB.41.7028
http://dx.doi.org/10.1021/cr00031a007
http://dx.doi.org/10.1021/cr00031a007
http://dx.doi.org/10.1021/cr00031a007
http://dx.doi.org/10.1021/cr00031a007
http://dx.doi.org/10.1063/1.1740588
http://dx.doi.org/10.1063/1.1740588
http://dx.doi.org/10.1063/1.1740588
http://dx.doi.org/10.1063/1.1740588



