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Quantum electrodynamics of resonance energy transfer in nanowire systems
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Nonradiative resonance energy transfer (RET) provides the ability to transfer excitation energy between
contiguous nanowires (NWs) with high efficiency under certain conditions. Nevertheless, the well-established
Förster formalism commonly used to represent RET was developed for energy transfer primarily between
molecular blocks (i.e., from one molecule, or part of a molecule, to another). Although deviations from Förster
theory for functional blocks such as NWs have been studied previously, the role of the relative distance, the
orientation of transition dipole moment pairs, and the passively interacting matter on electronic energy transfer
are to a large extent unknown. Thus, a comprehensive theory that models RET in NWs is required. In this context,
analytical insights to give a deeper and more intuitive understanding of the distance and orientation dependence
of RET in NWs is presented within the framework of quantum electrodynamics. Additionally, the influence of an
included intermediary on the rate of excitation energy transfer is illustrated, embracing indirect energy transfer
rate and quantum interference. The results deliver equations that afford new intuitions into the behavior of virtual
photons. In particular, results indicate that RET efficiency in a NW system can be explicitly expedited or inhibited
by a neighboring mediator, depending on the relative spacing and orientation of NWs.
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I. INTRODUCTION

Radiationless near-field transportation of energy from a
donor particle initially in its excited electronic state to an
acceptor in its ground state is of considerable interest for
diverse applications in science and engineering. Beyond wave-
function overlap, a compelling photophysical process known
as resonance energy transfer (RET) gains control. RET, also
often known as electronic energy transfer (EET) [1], has
been extensively exploited in artificial light harvesting antenna
devices [2–4], spasers [5,6], and especially in biology as a
spectroscopic ruler to study conformational dynamics [7]. The
study of RET in nanostructures has recently envisaged various
prospective applications ranging from solar cell systems
[8–10] to optical switching [11–14].

Nanotechnology offers the means to study and fabricate
nanostructures with large aspect ratios and small diameters,
commonly termed nanowires (NWs) [15,16]. These have
been the focus of extensive research during the past few
decades [17–20]. Their length is sufficiently large for easy
manipulation as building blocks in fabricating superstructures.
Electronic interactions between NWs at the nanoscale elevate
the properties of a superstructure. Here, too, one of the
important mechanisms for strong interaction is the RET, which
results from Coulomb interaction between excitons confined
in NWs [21–23].

Numerous studies have previously been reported on the
resonance energy transfer mechanism and related effects
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in systems consisting of NWs [24–26]. In many respects,
the process of RET is well illustrated by semiclassical
theories of radiationless energy transfer [26]. In this form
of representation, the phenomenon is commonly considered
as a first-order perturbative process. However, in reality,
RET processes are fully quantum mechanical in nature,
and they are formally described within the framework of
quantum electrodynamics (QED) [27–33]. Here, direct energy
transfer emerges as a second-order process, mediated by the
intermolecular propagation of virtual photons. The higher
order reflects taking due account of causality and retardation;
the electronic decay of one component and the resultant
excitation of another, at a different point in space, cannot be
simultaneous. Moreover, indirect energy transfer that emerges
via a vicinal neighboring object occurs as a fourth-order
process [34]. Therefore, QED has been widely applied to
electronic coupling between the donor and acceptor over all
distances, producing a unified theory that reconciles both RET
and radiative energy transfer as the short- and long-range
asymptotics of one mechanism [35,36].

The main purpose of this paper is to investigate RET
in NW systems analytically by developing a comprehensive
quantum electrodynamical analysis including state-sequence
methodology. Here, we extend our recent analysis [37] by
relaxing the uniaxial constraint imposed on the coupling
photon. Of particular interest to this study is the distance
and orientational dependence of a pair of NWs embedded
within another vicinal NW. Interestingly, a path is established
toward a formalism that will allow the identification of specific
attributes to expedite or inhibit electronic energy transfer,
providing a detailed picture and understanding of RET in NWs.
In Sec. II of this paper, the background molecular QED theory
of RET is reviewed for both direct and third-body modified
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energy transfer. The direct and indirect RET for NWs are
presented in Secs. III and IV respectively. Results are discussed
in Sec. V followed by the conclusions in Sec. VI.

II. EXCITATION ENERGY TRANSFER:
QED PERSPECTIVE

A. System Hamiltonian

It is appropriate to begin with the generic quantum energy
operator for a system comprised of a number of particles
and the radiation field, described by multipolar formulation
of molecular QED. This Hamiltonian is expressible as fol-
lows [28]:

Htot =
∑

ξ

Hint(ξ ) +
∑

ξ

Hmat(ξ ) + Hrad, (1)

where Hint(ξ ) is the interaction Hamiltonian of the particle
ξ with the radiation field, Hmat(ξ ) is the matter Hamil-
tonian of the particle ξ , and Hrad represents the second-
quantized radiation field Hamiltonian of the incident light
field. Hint(ξ ) describes interactions such as absorption and
emission (equally for either real or virtual photons), and it
is described using the multipolar Hamiltonian in the dipole
approximation [28],

Hint = −μ(ξ ).E(Rξ ), (2)

where the interaction Hamiltonian compromises contributions
for each species ξ located at Rξ , the μ(ξ ) is the electric-dipole
moment operator, and E(Rξ ) is the operator for the electric
displacement field at the specified location Rξ .

The transfer of energy beyond significant wave-function
overlap generally entails a mechanism known as RET, mainly
associated with electric dipole–electric dipole (E1-E1) cou-
pling. In this event, an excited donor (D) emits excitation
energy that is transferred to an acceptor (A); the donor
falls back to its ground state while the acceptor is excited,
corresponding to the process

Dα + A0 −→ D0 + Aβ.

Here, the superscripts denote donor and acceptor states.
In QED theory, this process is mediated by a virtual photon,
coupling the donor decay and acceptor excitation through its
creation and subsequent annihilation. The quantum amplitude
for RET is based on a Schrödinger state vector representation
of quantum dynamics, where the matrix element for RET is
represented as a sum of differently time-ordered contribu-
tions [28]. However, one can apply alternative formulations,
for example in terms of a density matrix in Liouville space [38].
The state sequence representation of the two time-ordered
contributions is depicted in Fig. 1(a), and the corresponding
Feynman diagrams [39] are depicted in Figs. 1(b) and 1(c).
As shown in the figures, tracing the upper pathway, the virtual
photon is created at D and annihilated at A. The lower path
depicts the case in which the virtual photon is created at A and
annihilated at D, as is also consistent with the time-energy
uncertainty basis for conventional time orderings. As both
paths lead to the same final state, calculation of the full RET
quantum amplitude requires their summation.
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FIG. 1. State-sequence diagram (a) for direct RET. In each box,
the state of donor D is represented by the symbol on the left and the
state of acceptor A by the symbol on the right, while p denotes virtual
photon. The Feynman diagrams show the time order: (b) (X) → (Y );
(c) (Y ) → (X).

B. Direct energy transfer and the influence
of an included intermediary

The standard starting point for the development of the QED
formalism of RET is Fermi’s Golden Rule rate equation. For
a system proceeding from its initial state I to its final state
F , the transfer rate (probability per unit time) is explicitly
given by

�tran = 2π

�
|MFI |2ρ, (3)

where ρ represents the density of final states, and MFI is
the matrix element connecting the initial and final states of
the system (sometimes loosely termed the quantum amplitude
of the energy transfer process), which has the perturbation
expansion

MFI = 〈F |Hint|I 〉 +
∑
R

〈F |Hint|R〉〈R|Hint|I 〉
EI − ER

+
∑
R,S

〈F |Hint|R〉〈R|Hint|S〉〈S|Hint|I 〉
(EI − ER)(EI − ES)

+
∑

R,S,T

〈F |Hint|T 〉〈T |Hint|S〉〈S|Hint|R〉〈R|Hint|I 〉
(EI − ER)(EI − ES)(EI − ET )

+ · · · , (4)

where I and F are the initial and final state, respectively, and
R,S,T denote intermediate states. If ζ = I,F,R,S,T , then Eζ

denotes the corresponding eigenenergy.
For the case of direct energy transfer, electronic energy

transfer from a donor to an acceptor in the absence of a
surrounding medium is calculated from the second term in
the time-dependent perturbation series given in Eq. (4). Thus,
the general formula for the direct interaction between two
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FIG. 2. State-sequence diagram for the indirect RET. Time
progresses left to right, with each of the 16 boxes representing one
of the possible overall states of the system in one of the five stages:
I,R,S,T ,F . p,q denote virtual photons.

nanoparticles can be expressed as

Md
FI = μ0α

n (D)μβ0
m (A)

2V ε0

∑
a

E∗
an(RD)Eam(RA)p

k − p

− Ean(RD)E∗
am(RA)p

k + p
. (5)

Here a concise notation for the transition dipole moments
is introduced, e.g., μ0α(D) ≡ 〈D0|μ(D)|Dα〉, and a = { p,λ}
represents the photonic modes, V is an arbitrary quantization
volume, and i,j are Cartesian coordinates; also p is the
corresponding photon wave number, which need not be equal
to k.

The exchange of an additional virtual photon with an
included intermediary is the lowest-order coupling process
that promotes RET to third-body-mediated RET [40–42].
In our previous work, we described how the four distinct
matter-radiation interaction events (W, X, Y, Z in Fig. 2)
modify the direct RET rate to third-body-modified RET [37].
Figure 2 illustrates the system evolution through all five stages
in one state-sequence diagram. Essentially, at each event, one
particle undergoes a transition between states 0,α,r,β, and
one photon is either created or annihilated by giving rise to
4! = 24 Feynman diagrams. Therefore, the coupling matrix
element for the case of third-body-mediated RET is calculated
from the fourth term in the time-dependent perturbation series
stated in Eq. (4),

Mi
FI = −

∑
a

∑
b

(
�cp

2V ε0

)(
�cq

2V ε0

)
μ0α

n (D)μβ0
m (A)αkl(M; k)

×
{

Ean(RD)E∗
ak(RM )Ebm(RA)E∗

bl(RM )

(p − k)(q − k)

+ Ean(RD)E∗
ak(RM )E∗

bm(RA)Ebl(RM )

(p − k)(q + k)

+E∗
an(RD)Eak(RM )Ebm(RA)E∗

bl(RM )

(p + k)(q − k)

+ E∗
an(RD)Eak(RM )E∗

bm(RA)Ebl(RM )

(p + k)(q + k)

}
, (6)

αkl(M; k) =
∑

r

μr0
k (M)μ0r

l (M)

{
1

Er0 − �ck
+ 1

Er0 + �ck

}
.

(7)

Here, also, αkl(M; k) is the dynamic polarizability of particle
M [43,44].

The total matrix element is given by the sum of the second
and fourth terms in Eq. (4), and the transfer rate is then seen
to be a sum of three terms, namely

�tot
tran = 2π

�

∣∣Md
FI + Mi

FI

∣∣2
ρ

= 2π

�

[∣∣Md
FI

∣∣2 + ∣∣Mi
FI

∣∣2 + 2 ReM
d

FIM
i
FI

]
ρ, (8)

where the third term is a quantum-interference contribution to
the rate arising from both direct and indirect mechanisms.

III. DIRECT COUPLING OF A TWO-NANOWIRE SYSTEM

We consider a system comprised of the radiation field
and two NWs of length L separated by a distance R

(center-to-center separation), as depicted in Fig. 3(a). In
contrast to our previous work [37], the significance is in the
removal of the directional constraint on the coupling photon.
Due to the cylindrical symmetry of NWs, it is convenient
to model EM waves using the Hankel function of order
n [25,45,46]: e(λ)( p)

∑
n Hn(pR)einα , where e(λ)( p) is the

polarization vector, and R and α are the radial and angular
coordinates, respectively. Directly substituting into Eq. (5)
and converting the discrete summation over the virtual photon

θDA

R

θD

θA

D

A

Donor transition 

dipole plane

Acceptor transition 

dipole plane

(b)

(a)

ħk

Donor (D)
Acceptor (A)

FIG. 3. Schematics for the direct resonance energy transfer (a)
NW to NW. (b) The orientational factors in Eq. (17), where θD and
θA are the angles formed by the donor and acceptor transition dipole
moments with respect to the displacement vector R, and θDA is the
angle between the two transition dipole moments.
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wave vector [25,46],
∑

p ⇒ ∫
A

(2π)2 d
2 p, to an integral yields

Md
FI = μ0α

n (D)μβ0
m (A)

8π2Lε0
(−∇2δnm + ∇n∇m)

×
∫ ∞

0

∫ 2π

0

H
(1)
0 (pR)

k − p
− H

(2)
0 (pR)

k + p
dφ dp. (9)

Expanding the Hankel function, performing contour inte-
gration, and using the residue theorem, we have

Md
FI = μ0α

n (D)μβ0
m (A)

2πLR2ε0
(−∇2δnm + ∇n∇m)

×
∮

c

ikRY0(c) + c2J0(kR)

(kR − c)(kR + c)
dc, (10)

Md
FI = μ0α

n (D)μβ0
m (A)

4Lε0
(−∇2δnm + ∇n∇m)

×{Y0(kR) − iJ0(kR)}, (11)

where Y0(kR) and J0(kR) are zero-order second and first kind
of Bessel functions, respectively,

Md
FI = μ0α

n (D)μβ0
m (A)

4Lε0

[
kδnm

{
−Y2(kR) + Y1(kR)

kR

}

− k

{
Y1(kR)

(
δnm − R̂nR̂m

R

)

+ kR̂nR̂m

(
−Y2(kR) + Y1(kR)

kR

)}

− ikδnm

{
−J2(kR) + J1(kR)

kR

}

+ ik

{
J1(kR)

(
δnm − R̂nR̂m

R

)

+ kR̂nR̂m

(
−J2(kR) + J1(kR)

kR

)}]
. (12)

We now deploy the asymptotic series for 0 < kR 
 √
n + 1

and n �= 0 [47],

Yn(kR) ∼ −�(n)

π

(
2

kR

)n

+ 1

�(n + 1)

(
kR

2

)n

cot(nπ ),

(13)

Jn(kR) ∼ 1

�(n + 1)

(
kR

2

)n

. (14)

By applying near-field limits 0 < kR 
 1 on Eq. (12), we
obtain

Md
FI = μ0α

n (D)μβ0
m (A)

4Lε0

{
�(1)

π

(
2

kR

)(
δnm − R̂nR̂m

R

)

+ kR̂nR̂m

[
− �(2)

π

(
2

kR

)2

+ �(1)

πkR

(
2

kR

)]}
,

(15)

where �(n) is the standard Gamma function, which is
expressed in

∫ ∞
0 tn−1e−t dt = (n − 1)�(n − 1). Therefore,

Eq. (15) becomes

Md
FI = μ0α

n (D)μβ0
m (A)

2πLR2ε0
(δnm − 2R̂nR̂m)

= κDA

∣∣μ0α
n (D)

∣∣∣∣μβ0
m (A)

∣∣
2πLR2ε0

, (16)

where |κDA|2 is an orientation factor. |κDA|2 describes the
influence of the relative orientations of the transition dipole
moments of the donor and acceptor NWs, as given by

κDA = μ̂0α
n (D)(δnm − 2R̂nR̂m)μ̂β0

m (A)

= cos(θDA) − 2 cos(θD) cos(θA), (17)

where θD is the angle between donor and separation vector
(R), and θA is the angle between acceptor and R. θDA is the
angle between donor and acceptor NWs [Fig. 3(b)].

The energy transfer rate can be obtained from Eq. (3) and
emerges in the following simple form:

�d
tran = |κDA|2∣∣μ0α

n (D)
∣∣2∣∣μβ0

m (A)
∣∣2

ρ

2πL2R4ε0
2�

. (18)

A. Distance dependence

From Eq. (18), it is observed that the direct energy
transfer in NWs exhibits an inverse fourth power dependence
on the separation distance. This is because the quantum
amplitude is inversely proportional to the spacing between
donor and acceptor (Md

FI ∝ R−2), and the energy transfer rate
is proportional to the square modulus of the quantum amplitude
of the RET process (�tran ∝ |Md

FI |2). The plots of Eqs. (16)
and (18) are shown in Figs. 4 and 5, respectively. In the
development of the plots, the following values were used [48]:
|μ0α(D)| = |μβ0(A)| = 5 × 10−30 C m; ρ = 2 × 1025 J−1.
Figure 4(a) shows the functional dependence of resonant
dipole-dipole interaction (RDDI) for various values of the
donor-acceptor separation distance (R). It is observed that due
to the behavior of the virtual photon propagation in a 2D realm,
the RDDI decreases with R by following an inverse square
power dependence, resulting in a gradual decline of the energy
transfer efficiency with the distance, as illustrated in Fig. 5(a).
Figures 4(b) and 5(b) compare the NW-to-NW coupling and
transfer efficiency with quantum dot (QD) to QD as a function
of R, where the distance dependence of latter is sharper than
that of the former, signifying the high physical losses in
the transmission medium due to the spherical symmetry of
the QD.

B. Orientational dependence

The relative orientation of the donor and acceptor, and their
individual orientations with respect to the relative separation
vector [see Fig. 3(b)], influence the RDDI in Eq. (16) in a
variety of ways, as depicted in Fig. 4(c). Here, we explore
the variation of RDDI at different θD values ranging from 0
to π

2 for fixed θDA (at 0 and π ) and θA (at 0). The coupling
matrix element reaches its peak when the donor is orthogonal
to the displacement vector (θD = π

2 ), θDA = 0 and also when
θD = 0, θDA = π . Further, it becomes minimum when θD =
π
2 , θDA = π and also θD = 0, θDA = 0. Therefore, the transfer

075151-4



QUANTUM ELECTRODYNAMICS OF RESONANCE ENERGY . . . PHYSICAL REVIEW B 93, 075151 (2016)

2

6

10

14

18

4 8 12 16 20

−18

−12

x 10

QD-QD

NW-NW

R (nm) R (nm)

(a) (b)

M
 (

e
v

)

lo
g

(M
)

4 8 12 16 20

−1

0

1

x 10
−7

10 30 50 70 90

−7

θD (degrees)

(c)

M
 (

e
v

)

θDA =0

θDA =π

θD

D
A

θDD
A

(d)

θDA =0

θDA =π

FIG. 4. RDDI strength in direct RET: (a) as a function of the relative distance (R) between D and A; (b) NW to NW and QD to QD with
respect to R; (c) variation as a function of θD when θDA = 0 and θDA = π ; (d) corresponding schematics for the relative orientations depicted
in (c).

rate depends strongly on the orientation factor. It is clear from
Eq. (17) that κ2 does not change if the following operations
are performed [29]:

(i) Flip the donor transition moment [μ̂0α(D) →
−μ̂0α(D)].

(ii) Flip the acceptor transition moment [μ̂β0(A) →
−μ̂β0(A)].

(iii) Allow the donor and acceptor to trade places (R →
−R).

(iv) Interchange the donor and acceptor transition moments
[μ̂0α(D) ↔ μ̂β0(A)].
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FIG. 5. Direct RET rate: (a) as a function of the relative distance (R) between D and A; (b) NW to NW and QD to QD with respect to R;
(c) as a function of θD for four different relative distances (5, 6, 7, and 8 nm) between D and A.
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2 ,
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2 , κDA = 0.

The angles θDA,θD,θA are dependent on one another.
Therefore, we consider three cases to study the orientational
dependence of the RET rate:

Case 1: θDA = 0,θD = 0,θA = 0; κDA = −1 [Fig. 6(a)].
Case 2: θDA = 0,θD = π

2 ,θA = π
2 ; κDA = 1 [Fig. 6(b)].

Case 3: θDA = π
2 ,θD = π

2 ,θA = π
2 ; κDA = 0 [Fig. 6(c)].

As can be anticipated, the orientation factor becomes most
favorable when the transition dipole moments are parallel (or
antiparallel) to one another and to the displacement vector. This
is classic Förster behavior. Additionally, the coupling may also
be prohibited between NWs by arranging them such that the
transition dipole moments are mutually orthogonal. We further
investigate this factor by keeping θDA,θA fixed at 0 and varying
θD from 0 to π

2 . Interestingly, the orientation dependence of
the rate becomes weaker as the separation distance between
the donor and the acceptor decreases, which is illustrated in
Fig. 5(c). This is similar to numerous studies reported for
molecules and QDs discussed in [49,50], with one important
difference: Due to the cylindrical symmetry and the physical
nature of the exchanged photon virtue in the 2D geometry, the
orientation factor varies from 0 � κ2 � 1.

IV. NANOWIRE-TO-NANOWIRE RET IN THE VICINITY
OF ANOTHER NANOWIRE

We now insert a third NW, M , which acts as a bridge
species between D and A as shown in Fig. 7(a). M is engaged
in relaying energy between the donor and the acceptor, but
otherwise it remains unchanged overall. Direct substitution
into Eq. (6) yields

Mi
FI = −μ0α

n (D)μβ0
m (A)

(2V ε0)2

∑
p

∑
q

e(λ)
n ( p)e(λ)

l ( p)e(λ)
m (q)e(λ)

k (q)

×αkl(M; k)p2q2

×
{

H
(2)
0 (pR′)H (1)

0 (qR′′)
(p − k)(q − k)

+ H
(2)
0 (pR′)H (2)

0 (qR′′)
(p − k)(q + k)

AD

ħk

D

R 

θD

θDM

θA

θM

R 
/ //

A

MDonor transition

dipole plane

Acceptor transition

 dipole plane

Passive NW transition

 dipole plane

(a)

(b)

M

θMA

FIG. 7. Schematics for the third-body modified resonance energy
transfer of (a) NW to NW. (b) The orientational factors in Eqs. (25)
and (26): θD is the angle between the donor and the displacement
vector, θA is the angle between the acceptor and the displacement
vector, θDM is the angle between the D,M transition dipole moments,
and θMA is the angle between the M,A transition dipole moments.

+ H
(1)
0 (pR′)H (1)

0 (qR′′)
(p + k)(q − k)

+ H
(1)
0 (pR′)H (2)

0 (qR′′)
(p + k)(q + k)

}
,

(19)

where R′ = RM − RD and R′′ = RA − RM , so that R =
RA − RD ,

Mi
FI = −μ0α

n (D)μβ0
m (A)

(2V ε0)2

∑
p

∑
q

e(λ)
n ( p)e(λ)

l ( p)e(λ)
m (q)e(λ)

k (q)

×αkl(M; k)p2q2

×
(

H
(2)
0 (pR′)
p − k

+ H
(1)
0 (pR′)
p + k

)

×
(

H
(1)
0 (qR′′)
q − k

+ H
(2)
0 (qR′′)
q + k

)
. (20)

By converting the discrete summation over p,q to an integral,
we obtain

Mi
FI = −μ0α

n (D)μβ0
m (A)

(8π2Lε0)2
(−∇2δnl+∇n∇l)(−∇2δmk + ∇m∇k)

×
∫ ∞

0

∫ 2π

0

∫ ∞

0

∫ 2π

0
αkl(M; k)

×
(

H
(2)
0 (pR′)
p − k

+ H
(1)
0 (pR′)
p + k

)

×
(

H
(1)
0 (qR′′)
q − k

+ H
(2)
0 (qR′′)
q + k

)
dφdpdϕdq. (21)

In a similar manner to the previous case discussed in Sec. III,
the quantum amplitude, upon performing contour integration
and using the residue theorem twice over two virtual photons,
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becomes

Mi
FI = −μ0α(D)μβ0(A)αkl(M; k)

(4Lε0)2

[
kδnl

{
−Y2(kR′) + Y1(kR′)

kR

}
− k

{
Y1(kR′)

(
δnl − R̂′

nR̂
′
l

R′

)
+ kR̂′

nR̂
′
l

(
−Y2(kR′)

+Y1(kR′)
kR′

)}
− ikδnl

{
−J2(kR′) + J1(kR′)

kR′

}
+ ik

{
J1(kR′)

(
δnl − R̂′

nR̂
′
l

R′

)
+ kR̂′

nR̂
′
l

(
−J2(kR′) + J1(kR′)

kR′

)}]

×
[
kδmk

{
−Y2(kR′′) + Y1(kR′′)

kR′′

}
− k

{
Y1(kR′′)

(
δmk − R̂′′

mR̂′′
k

R

)
+ kR̂′′

mR̂′′
k

(
−Y2(kR′′) + Y1(kR′′)

kR′′

)}

−ikδmk

{
−J2(kR′′) + J1(kR′′)

kR′′

}
+ ik

{
J1(kR′′)

(
δmk − R̂′′

j R̂
′′
k

R′′

)
+ kR̂′′

mR̂′′
k

(
−J2(kR′′) + J1(kR′′)

kR′′

)}]
. (22)

Equation (22) for the matrix element can be simplified by
imposing near-field limits and using Eqs. (13) and (14),

Mi
FI = −μ0α(D)μβ0(A)

(2πLR′R′′ε0)2

× [(δnl − 2R̂′
nR̂

′
l)(δmk − 2R̂′′

mR̂′′
k )αkl(M; k)]. (23)

Therefore, in the presence of a neighboring mediator, the
matrix element for the mechanism of RET is duly modified
to Eq. (23), which can also be written in the following form:

Mi
FI = −|μ0α(D)||μβ0(A)|κDMκMA

(2πLR′R′′ε0)2
|αkl(M; k)|, (24)

where κDM,κMA are expressed as

κDM = μ̂0α(D)(δnl − 2R̂′
nR̂

′
l)μ̂

r0(M)

= cos(θDM ) − 2 cos(θ ′
D) cos(θM ),

(25)

κMA = μ̂0r (M)(δmk − 2R̂′′
mR̂′′

k )μ̂β0(A)

= cos(θMA) − 2 cos(θ ′
M ) cos(θ ′

A),
(26)

in which θ ′
D is the angle between μ(D) and the D-M separation

vector (R′), and θ ′
A is the angle between μ(A) and R′′. θDM

is the angle between μ(D) and μ(M), and θMA is the angle
between μ(M) and μ(A). θM,θ ′

M are angles formed by μ(M)
with respect to R′ and R′′ [Fig. 7(b)].

The application of Fermi’s Golden Rule now gives rise to
the following expression for the transfer rate:

�i
tran = |μ0α(D)|2|μβ0(A)|2||κDM |2|κMA|2αkl(M; k)|2ρ

8π�(L2R′2R′′2ε0
2)2

.

(27)

Ideally, the result in Eq. (27) should be used to evaluate
the indirect contribution to the RET rate mediated by the
neighboring body M in the near-field regime. Undoubtedly, the
key factors are the position, orientation, and trace polarizability
of the passive NW.

In the development of the plots in Sec. IV, the fol-
lowing values were used [48]: |μ0α(D)| = |μβ0(A)| = 5 ×
10−30 C m; ρ = 2 × 1025 J−1. Again, αkl(M; k) is the ground-
state dynamic polarizability of the passive nanostructure.
Polarizability values are related to the refractive index by
the Clausius-Mossotti equation, and an in-depth analysis of
relevance to the current application has been carried out
in [41,43,44]. Therefore, in the development of the graphs,

we assume that |αkl(M; k)| of the included intermediary takes
a typical value of 25 × 10−35 J−1 C2 m2 [42].

It is important to note that values of R,R′,R′′ < 1 nm will
generally signify the possibility of wave-function overlap. In
this regime, an alternative mode of energy transfer occurs,
called the Dexter mechanism, and it is predicted to have an
essentially exponential dependence on the separation distance.
In the present study, we restrict ourselves to separations where
RET processes are mediated only via Coulombic interactions.
Therefore, the values of the quantum amplitude and the energy
transfer rate in this region should not be regarded as physically
significant (also in the Dexter zone, the expressions presented
in our work are less meaningful as the neighboring matter could
no longer be regarded as electronically separate entities).

A. Distance dependence of the indirect RET rate

From the matrix element for indirect RET given in
Eq. (23), it can be seen that the RDDI depends on the
relative position of all three particles, exhibiting an inverse
square power dependence on each of the donor and acceptor
distances relative to body M . Moreover, compared to the direct
interaction of two NWs derived in Eq. (16), creation and
annihilation of two virtual photons displays a (R′)−4(R′′)−4

distance dependence of indirect RET rate [see Eq. (27)].
Furthermore, the indirect RET rate gradually decreases as a
function of the displacement of A from M and D (keeping
M at the midpoint of the D-A axis). In addition, the indirect
transfer rate is less distinguishable when M is located in the
center of the D-A axis, as shown in Fig. 8(a).

We now focus on the important possibility of altering the
energy transfer rate via indirect energy transfer by analyzing
the ratio of the direct to indirect transfer rates. This is depicted
in Fig. 8(b) for various R′ values at fixed R. It can be observed
that the influence of the included intermediary NW, (M),
becomes more prominent when it is situated close to either
the donor or the acceptor.

B. Orientational dependence of the indirect RET rate

The relative orientation of D,M,A and their individual
orientations with respect to relative separation vectors strongly
influence the quantum amplitude (Mi

FI ∝ |κDM ||κMA|) and the
indirect energy transfer rate (�i

tran ∝ |κDM |2|κMA|2). We now
conduct a comprehensive analysis of how the transfer rate
varies as a function of θM for various R′ and R values. As
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of direct RET with respect to R′, keeping R constant at 20 nm; (c) as a function of θM for three different relative distances (3, 5, and 10 nm)
between D and M .

illustrated in Fig. 8(c), the orientation dependence of the rate
becomes substantial when M gets closer to either the acceptor
or the donor. The orientation factor is less significant when
the passive NW is placed at the center of the donor-acceptor
displacement vector. Moreover, analogous to the direct energy
transfer, the orientational factor becomes stronger when the
acceptor is placed near the donor.

The angles given in Eqs. (25) and (26) are dependent on
one another. Once again, we identify three nontrivial cases
to study the orientational dependence of third-body modified
energy transfer:

Case 1: θDM = θMA = 0,θ ′
D = θ ′

A = θM = θ ′
M = 0;

κDM = κMA = −1 [Fig. 9(a)].
Case 2: θDM = θMA = 0,θ ′

D = θ ′
A = 0,θM = θ ′

M = π
3 ;

κDM = κMA = 0 [Fig. 9(b)].
Case 3: θDM = θMA = π

3 ,θ ′
D = θ ′

A = θM = θ ′
M = π

3 ;
κDM = κMA = 0 [Fig. 9(c)].

In all three cases, θDA = θD = θA = 0.

θ’D=θ’A=θM=θ’M=0

A

θDA=θDM=θMA= 0

D

(a) (b)

(c)

κDM =κMA= -1

M

θ’D=θ’A=0

A

D

M

θM =θ’M= π/3
θDA=θDM=θMA= 0

θDM =θMA = π/3

M

A

θM = θ’M = π/3

D

θ’D = θ’A = π/3

κDM = κMA = 0

D,M,A transition

 dipole planes
D,M,A transition

 dipole planes

M transition

 dipole plane

D,A transition

 dipole planes when, 

θDA=0,

θD = θA = 0

κDM =κMA= 0

FIG. 9. Indirect RET orientation factor in Eqs. (25) and (26): (a)
M lies in the D-A separation vector, and all D,M,A are parallel to
each other; (b) M lies in the D-A separation vector, θM = θ ′

M = π

3 ,
and θDM = θMA = 0; (c) θDA = π

3 , θM = θ ′
M = θ ′

D = θ ′
A = π

3 . Note
that in all cases, θDA = θD = θA = 0.

The first case corresponds to situations in which the
transition dipole moments are parallel (or antiparallel) to
each other and to the separation vectors, leading to |κDM |2 =
|κMA|2 = 1. This geometrical configuration of three NWs
gives the highest indirect RET rate. In the second case, we
keep all angles unaltered except for θM,θ ′

M , where the dipole
moment of M forms angle π

3 with respect to both R′,R′′,
leading to a prohibited indirect energy transfer rate. Case 3 is
similar to case 2, except that the plane of M makes an angle of
π
3 with respect to donor and acceptor transition dipole planes.
This configuration of the NW system causes the indirect RET
rate contribution to the total energy transfer rate to vanish.

C. Quantum-interference contribution to the transfer rate

From the matrix elements for direct and indirect transfer, it
is straightforward to calculate the third term of Eq. (8), which
arises from the interference of these two processes,

�int
tran = 4πρ

�
Re

{
M

d

FIM
i
FI

}

= −|μ0α(D)|2|μβ0(A)|2κDAκDMκMA|αkl(M; k)|ρ
2π2L3R2R′2R′′2ε0

3�
.

(28)

The quantum interference, Eq. (28), displays the inverse
square power dependence on each relative displacement
component (R,R′,R′′). Figure 10(a) shows the interference
dependence as a function of the position of the third NW. As
can be anticipated, it is clear from the plot that the quantum
interference acquires higher values for lower or higher values
of R′, delivering a minimum direct to interference ratio when
M is at the center of the D-A displacement, as illustrated in
Fig. 10(b).

Inspection of Fig. 10(c) allows one to gain insight into how
the interference term is influenced by the relative orientation of
particles, exhibiting the quantum-interference variation with
respect to θM when θDM = 0,π . In both cases, quantum
interference is maximum when θM = π

3 and minimum when
θM = 0, π

2 . For a collinear arrangement of the three NWs, the
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quantum interference between direct and indirect transfer can
be negative, decreasing the total exchange rate.

Thus, the total third-body-modified energy transfer rate
becomes

�tot
tran = |μ0α(D)|2|μβ0(A)|2|κ|2ρ

2πL2R4ε0
2�

+|μ0α(D)|2|μβ0(A)|2|κDM |2|κMA|2|αkl(M; k)|2ρ
8π�L4R′4R′′4ε0

4

−|μ0α(D)|2|μβ0(A)|2κDAκDMκMA|αkl(M; k)|ρ
2π2L3R2R′2R′′2ε0

3�
.

(29)

The result, Eq. (29), can be interpreted as the rate for RET
between donor and acceptor NWs, modified by the presence
of the passively interacting medium.

V. DISCUSSION

We have derived resonance energy transfer rate equations
for a system consisting of nanowires of the same dimension-
ality. The calculations are presented for direct RET and the
influence of a passive NW on the energy transfer rate. The
results have demonstrated the relative spacing between NWs
along with the relative orientation of the transition dipoles,
which determines the controllability of the resonance energy
transfer rate. Furthermore, the RET in NW systems displays a
slower spatial decay compared to a system consisting of QDs.

In Sec. III, unmediated RET between two NWs has been
studied by applying the second-order perturbation theory. The
results have demonstrated that the energy transfer rate exhibits
an R−4 distance dependence. The orientation factor |κ|2 varies
from 0 to 1. Moreover, in Sec. IV, third-body-mediated RET
has been investigated, exploiting the fourth-order perturbation
mechanism. Here, the passive NW, M , remains in its ground
state, but it is excited in intermediate states. It participates
in the transfer of excitation as a polarizable body coupled
to the electromagnetic field. Therefore, the energy transfer
rate embraces additional contributions associated with the
indirect RET rate and quantum interference. We obtained

analytical expressions for both the indirect energy transfer rate
and the quantum-interference contribution to the total third-
body-mediated RET rate. The indirect coupling of resonance
energy transfer becomes more significant as the density of
particles, M , increases. In a nutshell, these results suggest
that when designing an artificial energy transfer system,
optimal configurations for fast transfer between nearby sites
are those in which the NW transition dipole moments and the
separation vector are collinear. However, coupling may also
be “switched off” between particles by arranging them such
that the transition dipole moments are perpendicular to each
other. This can, in effect, enable one to design a nanoantenna
system that is optimized to focus the energy transfer to specific
points. Moreover, an interacting third NW can effectively
enhance or inhibit the RET between donor and acceptor, and
this contribution can be significant if a sufficient number of
passive objects (M) are present.

VI. CONCLUSIONS

In this article, the direct RET between two NWs and the
influence of a passively interacting NW have been studied
using the theory of molecular quantum electrodynamics.
Within the QED context, with a treatment of resonance energy
transfer in both cases, exchange of excitation is mediated
by electromagnetic signals propagating at the speed of light.
Thus, the coupling matrix elements and rate equations are
derived for both cases, and the intricate interplay of the
relative distance and orientation, as well as the effect of
the passively interacting medium on the transfer efficiency,
have been studied to a greater extent.

Summarizing, the ensuing results demonstrated the pos-
sibility of altering the strength and the directivity of the
resonance energy transfer between two NWs by careful
engineering of the spacing, orientation, and inclusion of
additional quantum objects in the vicinity. The analysis thus
demonstrates a way to control and optimize the transfer
of energy between discrete components, potentially in any
multinanowire system, inviting surface and layer applications.
Therefore, this research opens up substantial opportunities to
develop a thorough understanding of the well-known RET
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mechanism in NWs based on quantum electrodynamics. In
particular, the results we have obtained should facilitate further
improvement in the design of biological sensors, organic pho-
tovoltaics, light-driven catalysis, and optical switching through
the achievement of new methods for optically controlled
transmission.
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