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Influence of Rashba spin-orbit coupling on the Kondo effect
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An Anderson model for a magnetic impurity in a two-dimensional electron gas with bulk Rashba spin-orbit
interaction is solved using the numerical renormalization group under two different experimental scenarios. For
a fixed Fermi energy, the Kondo temperature TK varies weakly with Rashba coupling λR , as reported previously.
If instead the band filling is low and held constant, increasing λR can drive the system into a helical regime with
exponential enhancement of TK . Under either scenario, thermodynamic properties at low temperatures T exhibit
the same dependencies on T/TK as are found for λR = 0. Unlike the conventional Kondo effect, however, the
impurity exhibits static spin correlations with conduction electrons of nonzero orbital angular momentum about
the impurity site. We also consider a magnetic field that Zeeman splits the conduction band but not the impurity
level, an effective picture that arises under a proposed route to access the helical regime in a driven system.
The impurity contribution to the system’s ground-state angular momentum is found to be a universal function of
the ratio of the Zeeman energy to a temperature scale that is not TK (as would be the case in a magnetic field
that couples directly to the impurity spin), but rather is proportional to TK divided by the impurity hybridization
width. This universal scaling is explained via a perturbative treatment of field-induced changes in the electronic
density of states.
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I. INTRODUCTION

The field of spintronics has primarily been driven by the
idea of manipulating spin states to create new, spin-based
electronic devices [1,2]. Rashba spin-orbit (SO) coupling [3]
has been proposed as a mechanism for spin control, not
only because of the possibility of its external manipulation,
but also because it is the physical origin of spin-dependent
phenomena such as anisotropic magnetoresistance [4] and
the spin-Hall effect [5]. Interest in SO interactions has also
been motivated by the recent discovery of large Rashba spin
splittings in Bi2Se3 topological insulators [6,7], where the
Rashba parameter can be an order of magnitude higher than in
standard III-V semiconductors.

The study of Kondo correlations in the presence of SO
interactions can be traced back more than 40 years to exper-
iments that seemed to demonstrate suppression of the Kondo
effect by Pt impurities [8]. However, early theoretical studies
of Anderson and Kondo models including SO scattering from
heavy nonmagnetic impurities reached opposing conclusions
as to whether SO interactions cut off the Kondo ln(T/TK )
term in the resistivity [9,10]. Subsequent magnetoresistance
measurements were interpreted as providing evidence for
coexistence of SO scattering and the Kondo effect [11]. A
similar conclusion was reached on the basis of time-reversal
symmetry [12], although this assertion has recently been
challenged [13].

In recent years, several theoretical works have investigated
the effect of SO interaction of the Rashba type on the Kondo
temperature TK . An analysis of the Kondo model for a mag-
netic impurity in an otherwise clean two-dimensional electron
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gas (2DEG) concluded that TK remains essentially unchanged
by Rashba coupling [14]. A numerical renormalization-group
(NRG) study of an Anderson model describing the same
physical situation similarly predicted weak enhancement or
depression of TK , depending on the energy of the impurity
level relative to the Fermi energy [15]. A variational treatment
of the Kondo problem for arbitrary band dispersion and a
general SO coupling also found no significant change of TK ,
although it was claimed that the impurity is only partially
screened [16]. By contrast, a mapping via a generalized
Schrieffer-Wolff transformation [17] of an Anderson impurity
in a two-dimensional host to an effective Kondo model led
to the prediction [18] of an exponential enhancement of TK .
In the specific context of adatoms on graphene, it was shown
[19] that Kondo physics survives the presence of bulk Rashba
coupling, with a Kondo temperature that can change faster or
slower with tuning of the chemical potential than would be the
case in the absence of SO interaction (where the low-energy
excitations are massless Dirac fermions).

This paper revisits the Kondo problem in the presence
of Rashba SO interaction from a different perspective. We
focus on two different scenarios under which the Rashba
coupling in a 2DEG might be externally tuned: (1) an open
electron system with a Fermi level pinned to that of external
reservoirs, and (2) an isolated system with a constant band
filling and a Fermi energy that varies with the Rashba
coupling. The appropriate model for a magnetic impurity
in a Rashba-coupled host is mapped exactly to effective
two-channel and one-channel Anderson models without SO
interaction but with conduction-band densities of states that
are modified to account for the Rashba coupling. For the
specific case of quadratic band dispersion (in the absence of SO
interaction) and local impurity-band hybridization, we use the
NRG technique to solve the effective one-channel model to
calculate thermodynamic properties, from which we extract
the Kondo temperature. For fixed Fermi energy, the case
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considered in previous work, we reproduce the conclusions
of Ref. [15] that many-body screening of the impurity is
complete, thermodynamic properties have conventional Kondo
temperature dependencies, and varying the Rashba coupling
produces only modest changes in the many-body scale TK . For
fixed band filling, by contrast, increasing the Rashba coupling
can drive the system into a helical regime with an increase in
the effective density of states at the Fermi level. In the helical
regime, thermodynamics retain their conventional nature, but
with a characteristic scale TK that is exponentially enhanced.

We also solve numerically the effective two-channel Ander-
son model, which retains angular-momentum information that
is discarded in the one-channel model. Calculations of static
angular-momentum correlations provide explicit confirmation
of the expectation from previous works [14–16,18,19] that
the SO interaction induces an indirect coupling between the
impurity and electrons of nonzero orbital angular momentum.

Entry to the helical regime requires very strong Rashba
couplings and/or low carrier densities [3]. There has been
considerable recent progress in fabrication of very low-density
and clean two-dimensional hole gases [20], but here Coulomb
interactions will likely replace disorder as a barrier to reaching
the helical regime. However, it has been suggested that this
regime may be accessed in a driven system by using circularly
polarized light to create an effective Zeeman field that opens
a gap between the two Rashba bands [21]. (Similar ideas have
been proposed for engineering topological states in insulators
[22,23].) Although the breaking of time-reversal symmetry is
inimical to the Kondo effect, this proposed experiment offers
an opportunity to study Kondo physics in the presence of an
effective magnetic field that couples directly only to the bulk
electrons.

A real magnetic field would couple both to the spin of
the bulk electrons and to the impurity spin, with respective
g factors gb and gi that need not be equal. There have been
numerous studies of Anderson and Kondo models in fields
that couple equally to the bulk and impurity spins (gb = gi) or
only to the impurity (gb = 0). Moreover, it is has been shown
[24] how to map between Kondo models having different pairs
(gb, gi) and (g′

b, g
′
i) so long as gi �= 0 and g′

i �= 0. It is well
understood [25] that in such cases, Kondo correlations are
destroyed once the conduction-band Zeeman splitting 2 εZ
becomes comparable [26] to TK . By contrast, the proposal
of Ref. [21] corresponds to a case gi = 0 that has received
little attention until now. Under these circumstances, we find
(through NRG solution of an effective one-channel Anderson
model) that the impurity contribution to the total angular
momentum of the system’s ground state is a universal function,
not of εZ/TK , but rather of f �εZ/TKD, where � is the
hybridization width of the impurity level, D is a measure of
the conduction-band width, and the dimensionless quantity
f depends on other model parameters: the impurity level
energy and onsite Coulomb repulsion, as well as (in this
particular realization) the Rashba coupling. A perturbative
treatment of field-induced changes in the effective densities
of states for electrons with different components of the total
angular momentum allows the scaling to be interpreted in
terms of an effective spin splitting of the impurity level by
an energy proportional to �εZ/D. A similar picture should
hold for any realization of the Anderson impurity model with

gi = 0, as seems likely to be achievable in lateral quantum
dots [27].

The remainder of the paper is organized as follows.
Section II A describes the Anderson model for a magnetic
impurity in a two-dimensional host with bulk Rashba SO
interaction, and outlines the mapping of the problem to a
one-channel Anderson model with a hybridization function
that depends on energy and, in the presence of a bulk Zeeman
splitting as proposed in Ref. [21], also on the component of
the electron’s total angular momentum parallel to the Zeeman
field. Explicit expressions for the hybridization function are
provided for cases where the band dispersion in the absence
of Rashba coupling is purely quadratic. Section III presents
numerical results for such cases, focusing on the effect of the
Rashba coupling on the Kondo temperature TK and on static
angular-momentum correlations, as well as the variation of the
impurity polarization with bulk Zeeman field. We summarize
our results in Sec. IV. Appendix A describes a perturbative
method used to analyze the effects of Rashba coupling (in
Sec. III A 2) and of a bulk Zeeman splitting (in Sec. III B).
Details of the calculation of angular-momentum correlations
appear in Appendix B.

II. MODEL AND PRELIMINARY ANALYSIS

A. Anderson model with Rashba coupling

We consider an Anderson impurity in a two-dimensional
electron gas in the presence of Rashba SO coupling, modeled
by the Hamiltonian [15,18]

H = Hbulk + Himp + Hhyb. (1)

Here, Hbulk = H0 + HRashba, where

H0 =
∑
k,σ

ε(k) c
†
k,σ ck,σ (2)

describes the conduction band in the absence of SO interac-
tion, with operator ck,σ destroying a band electron of two-
dimensional wave vector k = kx x̂ + ky ŷ, spin z component
σ = ± 1

2 (or ↑ , ↓), and energy ε(k). The second term in Hbulk

represents the effect of the Rashba SO interaction λR ẑ · σ×k,
where σ/2 is the electron spin operator:

HRashba = iλR

∑
k

k e−iφk c
†
k,↑ck,↓ + H.c., (3)

where k = |k|, φk = atan (ky/kx) are the polar components of
k, and λR is the SO coupling (assumed in our analysis to be
non-negative).

In isolation, the nondegenerate impurity level is described
by

Himp = (εd + μ)(d†
↑d↑ + d

†
↓d↓) + Ud

†
↑d↑d

†
↓d↓, (4)

where dσ destroys an electron with spin z component σ and
energy εd relative to the chemical potential μ, and U is the
onsite Coulomb repulsion. The impurity state is assumed to
exhibit axial symmetry about ẑ.

The last term in Eq. (1), representing tunneling of electrons
between the impurity and the bulk, is

Hhyb = 1√
Nc

∑
k,σ

V (k)(c†k,σ dσ + H.c.), (5)
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where Nc is the number of unit cells in the host (and hence
the number of distinct k values in the first Brillouin zone) and
the hybridization matrix element V (k) can be taken to be real
and non-negative. We note that although the orbital motion of
the conduction electrons is constrained to two dimensions, all
spin vectors are fully three dimensional.

For simplicity, we consider a jellium host such that the band
dispersion and the hybridization matrix element are isotropic
in k space, i.e., ε(k) = ε(k) and V (k) = V (k).

B. Mapping to a two-channel Anderson model

This section lays out an exact transformation of the
Hamiltonian (1) into the form of an effective two-channel
Anderson model for a magnetic impurity hybridizing with two
bands in which the SO interaction has been subsumed into a
modification of the density of states. The mapping generalizes
the one presented in Ref. [15] to allow for arbitrary forms of
ε(k) and V (k).

We take the thermodynamic limit in the standard manner
by letting the unit-cell number Nc → ∞ and the system area
A → ∞ in such a way that A/Nc → Ac, a finite unit-cell area.
Each summation

∑
k f (k) over a discrete wave vector k can

be replaced by an integral (Ac/4π2)
∫
d2k f (k).

In the absence of SO coupling, it is natural to adopt a basis
of states having a definite z component of the orbital angular
momentum about the impurity site. The transformation [14,28]

ck,σ →
∞∑

m=−∞

√
2π

Ack
eim(φk−π/2) ck,m,σ , (6)

where {ck,m,σ , c
†
k′,m′,σ ′ } = δ(k − k′) δm,m′δσ,σ ′ , allows one to

rewrite Eq. (2) in the diagonal form

H0 =
∑
m,σ

∫
dk ε(k) c

†
k,m,σ ck,m,σ , (7)

while the hybridization term becomes

Hhyb =
√

Ac

2π

∫
dk

√
k V (k) (c†k,0,σ dσ + H.c.), (8)

in which the impurity couples only to the m = 0 mode.
The Rashba Hamiltonian term, which becomes

HRashba = λR

∫
dk k

∑
m

c
†
k,m,↑ ck,m+1,↓ + H.c., (9)

is not diagonal in the (k,m,σ ) basis because Rashba SO
interaction couples spin and orbital degrees of freedom.
However, since HRashba mixes only pairs of states (k,m, ↑) and
(k,m + 1, ↓), Hbulk conserves τ = m + σ , the z component
of total (orbital plus spin) angular momentum. The bulk
Hamiltonian also commutes with the helicity operator

ĥ = ẑ · σ×k̂ =
∫

dk
∑
m

c
†
k,m,↑ ck,m+1,↓ + H.c. (10)

It is therefore convenient to perform a canonical transformation
to a new complete basis of fermionic operators

c̃k,h,τ = 1√
2

(hτ−1/2 ck,τ−1/2,↑ + hτ+1/2 ck,τ+1/2,↓), (11)

each of which annihilates an electron in a state of well-defined
τ = ± 1

2 , ± 3
2 , . . . and definite helicity h = ±1 (abbreviated

h = ± at certain points below).
This transformation diagonalizes the bulk Hamiltonian,

yielding

Hbulk =
∑
h,τ

∫
dk εh(k) c̃

†
k,h,τ c̃k,h,τ (12)

with a helicity-dependent (but total-angular-momentum-
independent) dispersion

εh(k) = ε(k) + hλRk. (13)

The two operators ck0σ to which the impurity couples in
Eq. (8) can be represented in terms of four operators c̃k,h,τ ,
namely, those with h = ± and τ = ± 1

2 . Since these four
operators also involve ck,−1,↑ and ck,1,↓, one sees that the
Rashba SO interaction creates an indirect coupling of the
impurity to conduction electrons with nonzero orbital angular
momentum [14,18].

One can drop the uninteresting contribution to Hbulk

from electrons having total angular-momentum z component
|τ | > 1

2 , thereby reducing Eq. (1) to a two-channel Anderson
Hamiltonian with the helicity h acting as a channel index:

H =
∑
h,τ

∫
dk εh(k) c̃

†
k,h,τ c̃k,h,τ + Himp

+
√

Ac

4π

∑
h,τ

∫
dk

√
k V (k) (c̃†k,h,τ dτ + H.c.). (14)

Due to the difference ε+(k) − ε−(k) = 2λRk, the two helicities
enter Eq. (14) in an inequivalent manner; in particular, they
have different Fermi wave vectors. It is also important to bear
in mind that the index τ = ± 1

2 (or ↑, ↓) labels the z component
of the total angular momentum, although this reduces to the z

component of spin for the impurity operators dτ .
Equation (14) can be transformed to an energy representa-

tion by defining

c̃ε,h,j,τ = |ε′
h(kj )|−1/2 c̃kj ,h,τ , (15)

where ε′
h = dεh/dk and kj (ε,h), j = 1, . . . , nh(ε), are the

numerically distinct roots of the equation εh(kj ) = ε. If εh(k)
is a monotonically increasing function of k, as would be
the case for free fermions in the absence of SO interaction,
then nh(ε) = 0 for ε < εh(0) and nh(ε) = 1 for ε � εh(0).
However, as discussed in greater detail in Sec. II E, the
presence of Rashba SO interaction creates an energy range
within which n−(ε) = 2.

The operators defined in Eq. (15) obey the canonical
anticommutation relations

{c̃ε,h,j,τ , c̃
†
ε′,h′,j ′,τ ′ } = δ(ε − ε′) δh,h′ δj,j ′ δτ,τ ′ (16)

and allow Eq. (14) to be rewritten as

H =
∑
h,τ

∫
dε ε

nh(ε)∑
j=1

c̃
†
ε,h,j,τ c̃ε,h,j,τ + Himp

+
∑
h,τ

∫
dε

nh(ε)∑
j=1

√
�h,j (ε)/π (c̃†ε,h,j,τ dτ + H.c.), (17)

075148-3



WONG, ULLOA, SANDLER, AND INGERSENT PHYSICAL REVIEW B 93, 075148 (2016)

where

�h,j (ε) = Ac kj

4|ε′
h(kj )| V (kj )2 (18)

is the contribution to the helicity-h hybridization function at
energy ε that arises from wave vector k = kj (ε,h).

Equation (17) is an exact restatement of Eq. (14), and
allows full recovery of dependencies on the radial coordinate
measured from the impurity site, as obtained via Fourier
transformation with respect to k. Further transformations of
the Hamiltonian described in Sec. II C serve to simplify the cal-
culation of certain thermodynamic properties, but necessarily
entail loss of information about radial or angular-momentum
degrees of freedom that could be inferred from a complete
solution of Eq. (17).

C. Further reduction of the model

One simplification of Eq. (17) arises from noting that for
energies ε where nh(ε) > 1, the impurity couples to a single
linear combination of the operators c̃εhjτ , j = 1, 2, . . . , nh(ε).
Defining

√
�h(ε) c̃ε,h,τ =

nh(ε)∑
j=1

√
�h,j (ε) c̃ε,h,j,τ (19)

with a helicity-h hybridization function

�h(ε) =
nh(ε)∑
j=1

�h,j (ε) (20)

allows one to write

H =
∑
h,τ

∫
dε ε c̃

†
ε,h,τ c̃ε,h,τ + Himp

+
∑
h,τ

∫
dε

√
�h(ε)/π (c̃†ε,h,τ dτ + H.c.), (21)

from which have been dropped diagonal terms involving
nh(ε) − 1 linear combinations of the operators c̃ε,h,j,τ that are
orthogonal to c̃ε,h,τ . The mapping from nh(ε) > 1 operators
c̃ε,h,j,τ to a single c̃ε,h,τ involves loss of radial information
since the latter operator cannot be associated with any single
wave vector k.

Another simplification can be made by combining the
h = + and − states of the same energy that couple to the
impurity. Defining√

�(ε) c̃ε,τ =
√

�+(ε) c̃ε,+,τ +
√

�−(ε) c̃ε,−,τ (22)

with a total hybridization function

�(ε) = �+(ε) + �−(ε), (23)

one can again discard decoupled degrees of freedom
[here, associated with

√
�−(ε) c̃ε,+,τ − √

�+(ε) c̃ε,−,τ ] to ar-
rive at an effective one-impurity Anderson model

H =
∑

τ

∫
dε ε c̃†ε,τ c̃ε,τ + Himp

+
∑

τ

∫
dε

√
�(ε)/π (c̃†ε,τ dτ + H.c.). (24)

That the original model in Eq. (1) can be reduced to a
one-channel Anderson impurity model was shown previously
in Ref. [15] for the specific case of a quadratic ε(k) and a local
(k-independent) V (k). However, the derivation above makes
clear that the price paid for going from Eqs. (21) to (24) is the
loss of the ability to distinguish between the spin and orbital
angular momenta within a bulk state of given z component of
the total angular momentum. For this reason, Sec. III presents
not only impurity properties calculated from Eq. (24), but
also impurity-bulk angular-momentum correlations obtained
via numerical solution of Eq. (21).

In the absence of the impurity, the bands entering Eqs. (21)
and (24) would be filled at temperature T = 0 up to a chemical
potential μ = εF . (As will be emphasized in Secs. II E and III,
the Fermi energy εF may or may not take the same value
as for λR = 0, depending on the experimental setup being
described.) In cases where �(−εd ) 	 −εd and �(U + εd ) 	
U + εd , it is appropriate to apply a generalized Schrieffer-
Wolff transformation [17] to map the two- and one-channel
Anderson models to two- and one-channel Kondo models,
respectively. In general, the resulting Kondo models [18] will
not be the same as those obtained by starting with a Kondo
Hamiltonian for a magnetic impurity in a 2DEG and then
incorporating a bulk Rashba SO interaction.

D. Model with bulk Zeeman field

In a recent paper, Ojanen and Kitagawa [21] proposed
to realize a helical system through irradiation of a two-
dimensional electron gas containing Rashba SO interaction by
light in the THz frequency range. After time averaging over
a period of the electromagnetic radiation, the bulk electrons
experience an effective Zeeman coupling of tunable strength
εZ = (λReE0)2/
3, where E0 and 
/2π are the magnitude
and frequency of the applied electric field. Provided that the
characteristic rate kBTK/2π [26] of spin flips involved in
Kondo screening is much slower than 
/2π , the impurity
will effectively interact with the time-averaged band structure.
This regime spans TK 	 50 K for 
/2π = 1 THz and TK 	
500 K for 
/2π = 10 THz, conditions that will be readily
satisfied in most experiments. We also note that for the values
of E0 envisioned in Ref. [21], the magnetic component of the
circularly polarized light is so small as to have negligible effect.

With this motivation, we consider the Hamiltonian (1)
augmented by a term

HZeeman = 2εZ
∑
k,σ

σ c
†
k,σ ck,σ , (25)

where σ = ± 1
2 or ↑, ↓, depending on the context, and we

assume below that εZ � 0. The model can again be mapped to
effective two-channel and one-channel Anderson models via a
sequence of steps along the lines laid out in Secs. II B and II C.

In order to diagonalize Hbulk = H0 + HRashba + HZeeman,
the operator transformation in Eq. (11) must be generalized to

c̃k,h,τ = 1√
2

[hτ−1/2 βh(k) ck,τ−1/2,↑

+hτ+1/2 β−h(k) ck,τ+1/2,↓], (26)
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where

β±1(k) =
√

1 ± εZ(
λ2

Rk2 + ε2
Z

)1/2 . (27)

This yields Eq. (12) with a helicity-dependent dispersion

εh(k) = ε(k) + h

√
λ2

Rk2 + ε2
Z (28)

that features a gap 2 εZ at k = 0, while the impurity-bulk
hybridization becomes

Hhyb =
√

Ac

4π

∑
h,τ

∫
dk

√
k V (k) β2τh(k) (c̃†k,h,τ dτ + H.c.),

(29)

where the value of the product 2τh = ±1 selects between
the two functions β±1(k) defined in Eq. (27). After further
transformation to an energy representation, the problem maps
to a generalized two-channel Anderson model

H =
∑
h,τ

∫
dε ε c̃

†
ε,h,τ c̃ε,h,τ + Himp

+
∑
h,τ

∫
dε

√
�h,τ (ε)/π (c̃†ε,h,τ dτ + H.c.), (30)

containing a helicity- and angular-momentum-dependent hy-
bridization function

�h,τ (ε) =
nh(ε)∑
j=1

Ac kj

4|ε′
h(kj )| [β2τh(kj ) V (kj )]2. (31)

Here, kj (ε,h), j = 1, . . . , nh(ε), are the distinct roots of the
equation εh(kj ) = ε for the gapped dispersion in Eq. (28).

As before, the two-channel Anderson model can be mapped
into an effective one-channel model. It is straightforward to
show that the impurity couples only to the linear combination
of operators defined via√

�τ (ε) c̃ε,τ = √
�+,τ (ε) c̃ε,+,τ + √

�−,τ (ε) c̃ε,−,τ (32)

with

�τ (ε) = �+,τ (ε) + �−,τ (ε), (33)

leading to a Hamiltonian

H =
∑

τ

∫
dε ε c̃†ε,τ c̃ε,τ + Himp

+
∑

τ

∫
dε

√
�τ (ε)/π (c̃†ε,τ dτ + H.c.). (34)

Comparison with Eq. (24) shows that the effect the Zeeman
field is subsumed into an angular-momentum dependence of
the hybridization function.

E. Local hybridization and quadratic band dispersion

The band dispersion ε(k), the hybridization matrix element
V (k), and the Zeeman energy εZ enter Eqs. (30) and (34) only
in combination through the hybridization functions �h,τ (ε),
which reduce to �h(ε) for εZ = 0. Henceforth, we will assume
that the hybridization is local, i.e., V (k) = V , in which case

each hybridization function can be written as an energy-
independent prefactor πV 2 times an appropriately resolved
density of states per unit cell. For example,

�h,τ (ε) = πρh,τ (ε) V 2, (35)

where ρh,τ (ε) is the density of states per unit cell for helicity-h
and total angular-momentum z component τ .

We also specialize to cases in which the band dispersion in
the absence of SO interaction takes the purely parabolic form
[15,26] ε(k) = ε0 + k2/2m∗, where m∗ is the effective mass
and ε0 � 0 is the position of the bottom of the band relative to
the Fermi energy εF = 0. This dispersion yields the density of
states (per unit cell, per spin orientation)

ρ0(ε) = Ac k

2π |dε/dk| = 
0 �(ε − ε0) �(D − ε), (36)

where 
0 = Acm
∗/(2π ) and D ≡ ε(kmax) = ε0 + 
−1

0 is an
upper cutoff introduced to enforce

∫ ∞
−∞ ρ(ε) dε = 1. We

consider situations where the band is less than half-filled
(i.e., |ε0| < D) and take D to be the fundamental energy scale
in the problem.

When Rashba SO interaction is taken into account, the
helicity-h dispersion defined in Eq. (13) can be expressed as

εh(k) = ε̃0 + (k + hkR)2

2m∗ , (37)

where it is convenient to define a Rashba wave vector
kR = m∗λR and a Rashba energy εR = k2

R/2m∗ = m∗λ2
R/2 =

λRkR/2, such that ε̃0 = ε0 − εR is the energy at a parabolic
minimum in ε−(k) located at k = kR . These dispersions,
plotted schematically in Fig. 1(a), yield helicity-resolved
densities of states (per unit cell, per total angular-momentum
z component)

ρh(ε)=

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩


0
εR√

εR(ε − ε̃0)
δh,− for ε̃0 < ε < ε0,


0

2

[
1−h

εR√
εR(ε − ε̃0)

]
for ε0 < ε < Dh,

0 otherwise.

(38)

The upper cutoff of the helicity-h band has shifted
from D to Dh = εh(kmax) = D + 2h

√
εR(D − ε0) such that

FIG. 1. Schematic plots of (a) the dispersion relations εh(k) and
(b) the densities of states per helicity channel ρh(ε), in the presence
of Rashba SO interaction. The middle curve in (a) represents the
dispersion ε(k) in the absence of Rashba interaction. In (b), the
combined density of states ρ(ε) (dashed line) is constant and equal to
its no-Rashba value ρ0(ε) throughout the energy range ε0 < ε < D−.
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∫ ∞
−∞ ρh(ε) dε = 1

2 . The densities of states ρh(ε) are plotted
schematically in Fig. 1(b). When compared with 1

2ρ0(ε)
[to which ρ+(ε) and ρ−(ε) reduce for εR = 0], the most
striking features are (i) the shift of h = + states to higher
energies D < ε < D+, resulting in a monotonic depression
of ρ+(ε) to zero as ε → 0+, and (ii) the shift of h = −
states from D− < ε < D to lower energies, and particularly
the 1/

√
ε − ε̃0 variation of ρ−(ε) over the range ε̃0 < ε < ε0.

The van Hove singularity in ρ−(ε) at ε = ε̃0 arises from the
parabolic minimum in ε−(k) at k = kR .

Figure 1(b) also shows (dashed line) the density of states
ρ(ε) = ρ+(ε) + ρ−(ε) for the effective one-channel Anderson
problem defined in Eq. (24). This function is identical to its
counterpart in the absence of Rashba interaction over a wide
energy window ε0 � ε � D−, with ρ(ε) differing from ρ0

only in the redistribution of weight around the upper band
edge (ε > D−), with part of that weight being transferred into
the low-energy upturn spanning ε̃0 < ε < ε0.

In Sec. III, we examine the effect of increasing the
Rashba energy εR , as might be achieved experimentally by
increasing the strength of an electric field applied perpendic-
ularly to the two-dimensional electron gas. We consider two
scenarios:

(1) The Fermi energy is fixed at εF = 0, as would be the case
if the system were maintained in equilibrium with a reservoir of
electrons at fixed chemical potential. As illustrated in Fig. 2(a),
the filling fraction of each helicity band ηh = 2

∫ εF

−∞ ρh(ε) dε

changes with the Rashba energy in such a way that the overall
filling fraction increases linearly with εR:

η = 1

2
(η+ + η−) = 2 εR − ε0

D − ε0
. (39)

(2) The overall band filling is held constant, as would
occur if the system were isolated from any external source
of electrons. In this case, as illustrated in Fig. 2(b), varying
the Rashba coupling still leads to changes in η+ and η−, but
it does not alter their mean η = −ε0/(D − ε0). This comes
about because with increasing εR , the Fermi energy decreases
according to

εF (εR) =
{−2 εR, εR < |ε0|/2

ε0 − εR + ε2
0

/
4εR, εR � |ε0|/2.

(40)

FIG. 2. Helicity-resolved conduction-band filling fractions η±
and overall filling fraction η = (η+ + η−)/2, plotted as functions
of Rashba energy εR for ε0 = −0.08D and (a) fixed Fermi energy
εF = 0, (b) constant filling fraction η = −ε0/(D − ε0) ≈ 0.074.

For εR > |ε0|/2, the Fermi energy lies below ε0, with two
important consequences. First, the occupied bulk states all
have h = −, resulting in the formation of an unconventional,
helical metal. Second, the total density of states at the Fermi
level is ρ(εF ) = 2
0εR/|ε0|, which is enhanced over its value

0 for εR = 0. This situation is unlikely to be realized
in standard III-V semiconductor heterostructures [3] since
it would require very high Rashba couplings or very low
carrier densities that will be affected by disorder or Coulomb
interactions. However, driven systems may allow investiga-
tion of this interesting regime provided that one takes into
account the effective Zeeman splitting of the helicity-resolved
bands [21].

In the presence of a bulk Zeeman field as well as Rashba
interaction, the helicity-h dispersion in Eq. (28) can be
expressed as

εh(k) = ε̃0 +
(√

k2 + k2
Z + hkR

)2

2m∗ , (41)

where kZ = εZ/λR and we have redefined

ε̃0 = ε0 − εR − ε2
Z

4εR

= ε0 − εZ − (2εR − εZ)2

4εR

. (42)

Equation (41) implies that ε+(k) rises monotonically with
increasing k from ε+(0) = ε0 + εZ . If kZ < kR , which is
equivalent to the condition εZ < 2εR , the h = − dispersion has

a parabolic minimum at a nonzero wave vector k =
√

k2
R − k2

Z ,
as shown schematically in Fig. 3(a); otherwise, ε−(k) rises
monotonically from ε−(0) = ε0 − εZ , with a small-k behavior
that is quartic in k for εZ = 2εR but quadratic for any εZ > 2εR

[see Fig. 3(b)].

FIG. 3. Schematic plots of the effective angular-momentum-
resolved densities of states ρτ (ε) obtained from Eq. (43) for (a) weak
Zeeman splitting εZ < 2 εR , (b) strong Zeeman splitting εZ > 2 εR . In
both panels, ρτ (ε) is constant and equal to its no-Rashba value ρ0(ε)
throughout the energy range ε0 + εZ < ε < D−.

075148-6



INFLUENCE OF RASHBA SPIN-ORBIT COUPLING ON . . . PHYSICAL REVIEW B 93, 075148 (2016)

The helicity- and angular-momentum-resolved densities of states entering Eq. (35) become

ρh,τ (ε) =

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩


0
εR − τεZ√
εR(ε − ε̃0)

�(2 εR − εZ) δh,− for ε̃0 < ε < ε0 − εZ,


0

2

[
1 − h

εR − τεZ√
εR(ε − ε̃0)

]
for ε0 + hεZ < ε < Dh.

0 otherwise,

(43)

where Dh = D + 2h
√

εR(D − εR − ε̃0). For weak Zeeman
splittings εZ � 2 εR , ρ−,τ (ε) features a van Hove singularity
at ε = ε̃0, associated with the minimum in ε−(k). By contrast,
for strong Zeeman splittings εZ > 2εR , there is no divergence
of any ρh,τ (ε).

Figure 3 also shows schematic plots of the angular-
momentum-resolved densities of states ρτ (ε) = ∑

h ρh,τ (ε),
which determine �τ (ε) entering Eq. (34). These densities of
states coincide with ρ0(ε) over the energy range ε0 + εZ < ε <

D−. For εZ � 2εR , each density of states, plotted schematically
in Fig. 3(c), inherits a van Hove singularity at ε = ε̃0 from the
divergence of ρ−,τ (ε). In addition, ρ−1/2(ε) exhibits a jump
as the energy drops below ε = ε0 − εZ due to the onset of
contributions from h = − states close to k = 0. [There is
no corresponding jump in ρ1/2(ε) because β−1(k) vanishes
at k = 0.] For εZ > 2εR , by contrast, ρ1/2(ε) approaches zero
and ρ−1/2(ε) rises smoothly to a constant limiting value as ε

approaches ε0 − εZ from above, and both densities of states
vanish for ε < ε0 − εZ , as sketched in Fig. 3(d).

III. NUMERICAL RESULTS

In order to study Hamiltonians (21), (24), and (34) with
the densities of states defined in Eqs. (38) and (43), we have
applied the numerical renormalization-group (NRG) method
for the solution of the Anderson model [29], as adapted to
treat arbitrary densities of states [30,31]. We set the Wilson
discretization parameter to � = 2.5, retaining at least 2000
many-body states after each iteration. Results are shown for
ε0 = −0.08D and various combinations of U , εd , and the hy-
bridization width � ≡ π
0V

2. Any value of � employed in an
NRG calculation should be equivalent in the continuum limit to
a hybridization width �eff = �/A�, where A� = 1

2 (ln �)(� +
1)/(� − 1) 
 1.069 accounts for a reduction in the density of
states that arises from the NRG discretization [29].

The results shown in Sec. III A 3 were obtained by solving
the two-channel Anderson model [Eq. (21)]. All other data
presented in this section come from calculations performed on
a one-channel model [either Eq. (24) or (34)].

A. Results without a Zeeman field

1. Thermodynamic properties

We begin by showing the temperature variation of the impu-
rity contribution to two thermodynamic quantities calculated
using the effective one-channel Anderson model [Eq. (24)]:
the magnetic susceptibility χimp (calculated for equal impurity
and band g factors, gi = gb) and the entropy Simp. To reduce
NRG discretization errors, we employed interleaved averaging
[32] over three different band discretizations.

In order to investigate the universality of the low-
temperature physics, Fig. 4 shows T χimp and Simp for a
symmetric impurity (U = −2εd = 0.1D, � = 0.005D) as
functions of T/TK . Note that we have defined χimp to be
the impurity contribution to the static part of the correlation
function for the z component of the total angular momentum,
which reduces to the customary static spin susceptibility in the
case εR = 0. The Kondo temperature TK was determined via
the conventional criterion [26,29]

TK χimp(TK ) = 0.0701 (44)

or, equivalently, via the condition Simp(TK ) = 0.383. The
fact that for T � TK the curves for εR/D = 0.04 and 0.08,
calculated both for fixed Fermi energy (dotted lines) and for
constant band filling (dashed lines), lie on top of the curve for
εR = 0 (solid line) provides evidence that the low-temperature
thermodynamic properties are those of a conventional Kondo
effect, with limT →0 T χimp = 0 and limT →0 Simp = 0 indicat-
ing complete ground-state screening of the impurity degree of
freedom.

Even well above the Kondo temperature, four of the
five curves in each panel of Fig. 4 are virtually indistin-
guishable, exhibiting both a high-temperature free-impurity
regime (in which T χimp 
 1

8 , Simp 
 ln 4) and an intermediate-
temperature local-moment regime (where T χimp 
 1

4 ,
Simp 
 ln 2). The only exception is the curve for εR = 0.08D

at constant band filling. Here, the Fermi energy is pushed down
into the van Hove singularity in the effective one-channel
density of states. The enhanced hybridization width drives

FIG. 4. Impurity contribution to (a) temperature times magnetic
susceptibility T χimp, and (b) entropy Simp, both plotted vs scaled
temperature T/TK for five different cases: a no-Rashba reference
(black solid line), and Rashba energies εR/D = 0.04 (red and orange
curves) and 0.08 (green and blue curves) under the scenarios of fixed
Fermi energy (dotted lines) and constant band filling (dashed lines).
The two dotted lines lie directly on top of one another on the scale of
this plot. The Kondo temperature TK is as defined in Eq. (44). Data
are for ε0 = −0.08D, U = −2εd = 0.1D, and � = 0.005D.
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FIG. 5. (a) Scaled Kondo temperature TK/T 0
K vs Rashba energy

εR for fixed Fermi energy εF = 0 and for different values of εd

expressed in the legend in units of D. Symbols represent NRG data
and lines are the result of the perturbative treatment described in
the text. (b) Perturbative shifts ε̃d − εd and Ũ − U in the effective
impurity parameters vs εR for the same cases shown in (a). Data are
for ε0 = −0.08D, U = 0.1D, and � = 0.005D.

the system from its local-moment regime into mixed valence,
where T χimp never rises close to 1

4 and with decreasing
temperature Simp drops from ln 4 to 0 with at most a weak
shoulder around ln 2.

2. Kondo temperature

Given that the low-temperature physics is characterized by
a single scale TK , we now examine more closely the effect
of Rashba coupling on the Kondo temperature. Figures 5(a)
and 6(a) plot the ratio of the Kondo temperature TK at Rashba
energy εR to its value T 0

K in the absence of SO interaction.
Figure 5 treats the scenario of fixed Fermi energy εF = 0

for ε0 = −0.08D, U = 0.1D, and � = 0.005D. The Kondo
temperature in the absence of SO interaction varies with εd ,
taking its smallest value around εd = −U/2 = −0.05D, for
which case T 0

K 
 1.7×10−6D. This is very close to the value
1.4×10−6D given by substituting �(εF ) = �eff into Haldane’s
estimate [26,33]

TK 
 0.29
√

U �(εF ) exp

[
πεd (U + εd )

2U �(εF )

]
(45)

for the Kondo temperature of an Anderson impurity in the limit
that 0 < �(εF ) 	 U + εd, − εd 	 D.

FIG. 6. Kondo temperature for a constant band-filling fraction
η 
 0.074: (a) TK/T 0

K vs εR for different values of εd and U expressed
in the legend in units of D; (b) results for εR � 0.04D plotted as
−1/ ln(TK/D) vs ρ[εF (εR)]/ρ0(0). Data are for ε0 = −0.08D and
� = 0.005D.

The data symbols in Fig. 5(a) show TK to be only weakly
affected by Rashba coupling, just as was found in Ref. [15].
The Kondo scale displays a quasilinear εR dependence [34]
with a slope that is positive for εd < −U/2, negative for
εd > −U/2, and essentially vanishing for εd = −U/2 (also in
agreement with Ref. [15]). Since the effective density of states
ρ(ε) is independent of εR in a window of energies around εF ,
any modification of TK must arise from changes in the total
density of states near the band edges.

One can attempt to analyze the effect of density of
states changes via a perturbative treatment along the lines
of Haldane’s derivation of poor-man’s scaling equations for
the Anderson impurity model [35]. This treatment, described
further in Appendix A, can be used to map the Anderson impu-
rity model with density of states ρ(ε) onto another Anderson
impurity model with the no-Rashba density of states ρ0(ε), but
with the impurity parameters εd and U replaced by modified
values ε̃d and Ũ chosen so as to preserve (approximately) the
same low-energy impurity properties as the original model. As
explained in Appendix A, the hybridization matrix element V

remains unchanged under this approach.
For purely quadratic band dispersion in the absence of

Rashba SO interaction, expressions for the renormalized
parameter ε̃d and Ũ can be obtained in closed form, but they are
too cumbersome to reproduce here. Instead, Fig. 5(b) shows
the evolution with εR of the shifts ε̃d − εd and Ũ − U for
each of the three εd values illustrated in Fig. 5(a). An upward
shift in the level energy and a downward shift in the onsite
interaction both grow with εR and with −εd , becoming 10%
corrections in the most extreme case shown. Upon substitution
into the Haldane formula [Eq. (45)], these shifts in ε̃d and Ũ

have opposite effects on TK , so any overall change in TK is
the result of a subtle balance. The predicted curves for TK/T 0

K

vs εR [solid lines in Fig. 5(a)] display the correct trends with
growing −εd , but the fact that NRG and perturbative curves
for the same value of εd are not in close correspondence is
an indication of the delicacy of the interplay between the
parameter renormalizations.

Figure 6(a) shows very different behavior in cases where the
band filling is fixed. For weak SO interaction, the total density
of states ρ(ε) near the Fermi energy remains independent of
εR , and TK has a quasilinear behavior similar to that found
for fixed εF . However, once εR > |ε0|/2, the system enters the
helical metal regime and both ρ(εF ) and �(εF ) rise rapidly.
This rise is magnified in the Kondo temperature due to the
exponential dependence of TK on �(εF ) shown in Eq. (45).
Figure 6(b) confirms such a dependence of the numerically
determined value of TK . The five lower curves exemplify the
Kondo regime, where the weak deviations from linearity in
this plot of −1/ ln(TK/D) vs ρ(εF ) can be attributed primarily
to the

√
ρ(εF ) prefactor in Eq. (45). The remaining two cases

(U = 0.1D, εd = 0, and εd = −0.1D) correspond to mixed
valence, where the low-temperature scale is no longer expected
to depend exponentially on �(εF ).

3. Static angular-momentum correlations

Further insight can be gained into the nature of Kondo
physics in presence of Rashba SO interaction by studying the
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)

FIG. 7. Static correlations between the impurity spin and the total
angular momentum in different conduction-band channels, calculated
for (a), (c) fixed Fermi energy εR = 0, or (b), (d) constant band
filling η ≈ 0.074. The upper panels show 〈Sd · Jh〉 for helicity h = ±,
while the lower panels plot the correlation of Sd with Jm=0 (the total
angular momentum of all electrons with orbital angular momentum
m = 0) and with Jm �=0 defined in Eq. (49). Data are for ε0 = −0.08D,
U = −2εd = 0.1D, and � = 0.005D.

correlations between the impurity spin

Sd = 1

2

∑
τ,τ ′

d†
τ σ τ,τ ′ dτ ′ (46)

and the total angular momentum

Jh = 1

2

∑
τ,τ ′

∫
dk c̃

†
k,h,τ σ τ,τ ′ c̃k,h′,τ ′ (47)

of all conduction-band electrons that have helicity h and
angular-momentum z component ± 1

2 . The Appendix provides
details of how such correlations can be obtained within the
NRG treatment of the two-channel Anderson Hamiltonian
[Eq. (21)]. The results presented are static values calculated in
the limit of absolute temperatures T → 0.

Figure 7(a) plots 〈Sd · Jh〉 vs εR under the scenario where
the Fermi energy is fixed at εF = 0. At zero Rashba energy,
〈Sd · Jh〉 is the same for helicities h = ±. As εR increases,
the impurity spin becomes more strongly correlated with the
h = − channel and less strongly with the h = + electrons.
This can be understood as a density of states effect because
the dimensionless ratio

rh = 〈Sd · Jh〉/[Dρh(εF )] (48)

(not plotted) turns out to be almost independent of εR and
h. Since the combined Fermi-level density of states ρ(εF ) =
ρ+(εF ) + ρ−(εF ) remains constant, it is therefore unsurprising
that 〈Sd · (J+ + J−)〉 barely changes with εR .

In cases where the band filling is constant [e.g., Fig. 7(b)],
the behavior found for Rashba energies εR < −ε0/2 is
qualitatively the same as for fixed εF . However, once the

helical regime is reached (εR > −ε0/2), ρ+(εF ) = 0 and
〈Sd · J+〉 almost vanish; the impurity spin is almost exclusively
correlated with the h = − channel. In this parameter range,
the growth of ρ−(εF ) inside the helical regime increases the
occupancy of the empty and doubly occupied impurity states
and decreases the local-moment character, leading to a gradual
decline in the magnitude of 〈Sd · (J+ + J−)〉 with increasing
εR . The contrast with the fixed-εF scenario is highlighted by
the facts that r+ = ∞ due to the numerator on the right-hand
side of Eq. (48) being small but nonzero due to correlation of
Sd with high-energy electrons, while r− rapidly approaches
zero with increasing εR due to 〈Sd · J−〉 being nearly saturated
but ρ−(εF ) still rising.

Figures 7(c) and 7(d) separate (for the fixed-εF and
constant-η scenarios, respectively) two contributions to
the overall impurity-band angular-momentum correlation
〈Sd · (J+ + J−)〉: (i) 〈Sd · Jm=0〉, where Jm=0 is the total
angular momentum of all electrons with orbital angular
momentum m = 0, and (ii) 〈Sd · Jm�=0〉, where

Jm�=0 = J+ + J− − Jm=0. (49)

In both panels, the most striking result is the appearance for
εR > 0 of a nonzero correlation 〈Sd · Jm�=0〉 that arises, not
through direct interaction with the impurity (which is confined
to m = 0), but rather indirectly through Rashba mixing of
m = 0 states with m = ±1 states.

The details of Figs. 7(c) and 7(d) can be understood in
terms of the helicity-resolved densities of states. Equation (11)
shows that the operators c̃k,h,τ entering Eq. (14) contain m = 0
and ±1 components of equal magnitude with a relative phase
that is opposite for h = + and −. For εR = 0, the two helicity
channels participate equally in Kondo screening in a manner
that produces complete destructive interference of correlations
contributing to 〈Sd · Jm�=0〉. With increasing εR there is a
growing difference ρ−(ε) − ρ+(ε) for energies ε near εF ,
leading to imperfect cancellation of correlations between the
impurity and m = ±1 electrons and a gradual convergence of
〈Sd · Jm=0〉 and 〈Sd · Jm�=0〉. Once the system enters the helical
regime [εR > −ε0/2 = 0.04D in Fig. 7(d)], ρ+(εF ) = 0, and
the two correlation measures differ only due to contributions
from electrons far from the Fermi energy.

B. Results with a Zeeman field

In order to study the combined effect of Rashba and Zeeman
couplings on Kondo correlations, we have calculated the zero-
temperature impurity polarization Mimp = 〈Jz〉 − 〈Jz〉0, where
Jz is the z component of the total system angular momentum,
and 〈. . .〉 and 〈. . .〉0 denote, respectively, expectation values
in the presence and absence of the impurity. Mimp is the
natural extension of the usual impurity spin magnetization
〈Sz〉 − 〈Sz〉0, to which it reduces in the absence of Rashba
coupling (i.e., for εR = 0).

Initially, we focus on the scenario of fixed Fermi energy
εF = 0. Figure 8(a) shows the zero-temperature impurity
polarization Mimp as a function of εZ for U = −2 εd = 0.15D,
for εR/D = 0 and 0.1, and for �/D = 0.003 and 0.005. The
impurity parameters are such that for εR = 0, the Kondo
temperatures T 0

K (� = 0.003D) ≈ 4.4×10−12D and T 0
K (� =

0.005D) ≈ 2.6×10−8D differ by four orders of magnitude.
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FIG. 8. (a) Zero-temperature impurity polarization Mimp vs
Zeeman energy εZ for a system with fixed Fermi energy εF = 0.
Data are for ε0 = −0.08D, U = −2 εd = 0.15D, and the values of
� and εR labeled on the plot in units of D. (b) Same data as in (a),
replotted vs 2f �εZ/TKD, where f = 2.4 and 1.8 for εR/D = 0 and
0.1, respectively.

As expected, Mimp is in all cases an increasing function of εZ .
For a given value of εZ > 0, Mimp is a decreasing function of
εR . This can be understood by noting that the Zeeman field
enters Eq. (43) in the combination εR − τεZ . Therefore, the
splitting of the density of states for τ = ± 1

2 becomes less
significant with increasing Rashba coupling.

Figure 8(b) demonstrates a very good collapse of the
polarization data in Fig. 8(a) when plotted as a function of
2f �εZ/TKD, where TK is the Kondo temperature for εZ = 0
and f is a dimensionless fitting parameter that depends on εR .
It is particularly notable that for given εR (including the case
of no Rashba coupling), the Zeeman field is scaled by TK/�

rather than by the Kondo temperature itself, as would be the
case for a nonzero impurity g factor. Small deviations from
the scaling collapse occur only in the parameter range εZ � �.

The scaling shown in Fig. 8(b) can be understood via a
second application of the perturbative treatment outlined in
Appendix A. One can regard the Zeeman field as introducing
a spin-dependent change �ρτ = ρτ (ε) − ρ(ε) in the density
of states of electrons with angular-momentum z component
τ , where ρ(ε) = ρ+(ε) + ρ−(ε) is derived from Eq. (38).
The perturbative method maps the problem to a one-channel
Hamiltonian of the form of Eq. (24) in which both spin species
share the same density of states ρ(ε) and to lowest order in εZ
and �, the onsite Coulomb repulsion U and the hybridization
width � remain unchanged, but the impurity level energy
becomes τ dependent [36]:

ε̃d,τ 
 εd − 2τf (εR,U,εd ) �εZ/D. (50)

In other words, the Zeeman coupling effectively spin splits
the impurity level by an amount proportional to �εZ . Just
as would be the case if this splitting were caused by a
magnetic field that coupled directly to the impurity spin, the
Kondo correlations are destroyed when the splitting becomes
comparable to TK . In the present context, the result is a scaling
dependence on the dimensionless quantity �εZ/DTK rather
than the conventional (i.e., gi �= 0) combination εZ/TK . This
conclusion is not restricted to situations involving Rashba SO
interaction, and holds quite generally for realizations of the
Anderson impurity model with gi = 0.

FIG. 9. Quantity f entering the scaling collapse of the impurity
polarization for a system with fixed Fermi energy εF = 0: (a) f

vs εR for different values of U and εd expressed in the legend in
units of D. Each symbol was obtained via an NRG calculation of
the compensating local field for �εZ/TKD = 0.1, while the lines
represent algebraic results based on Eq. (50). (b) NRG values of f vs
�εZ/TKD for U = 0.15D and different values of εR and εd expressed
in the legend in units of D. Lines are guides to the eye showing that
f is independent of εZ for �εZ/TKD � 10. Data in both panels are
for ε0 = −0.08D and � = 0.005D.

Equation (A5) yields an algebraic expression for f to
lowest order in εZ/εR that is rather cumbersome and will
not be reproduced here. More generally, one can consider a
combination of a bulk Zeeman splitting and a local field Bloc

that couples only to the impurity. After integrating out the
Zeeman field, one arrives at a renormalized impurity energy
ε̃d,τ = εd − 2τf (εR,U,εd ) �εZ/D + τgiBloc. This allows the
numerical determination of f as f = giBcomp/(2�εZ), where
Bcomp is the compensation value of the local field such that
ε̃d,τ = εd and hence Mimp = 0.

Figure 9(a) illustrates the behavior of f vs εR for different
combinations of U and εd . All cases show a monotonic
decrease of f with increasing εR . There is also an interplay
between U and εd , such that the f values for (U/D,εd/D) =
(0.2, − 0.1) and (0.15, − 0.045) lie almost on top of each
other. In all the cases shown, there is good quantitative
agreement between the numerical and algebraic values plotted
using symbols and lines, respectively.

FIG. 10. (a) Zero-temperature impurity polarization Mimp vs
Zeeman energy εZ for constant band filling η 
 0.074. Data are
for ε0 = −0.08D, U = −2 εd = 0.15D, and the values of � and
εR labeled on the plot in units of D. (b) Same data as in (a), replotted
vs 2f �εZ/TKD with values of f shown in the legend. In this case,
f depends on � as well as εR .
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FIG. 11. Quantity f entering the scaling collapse of the impurity
polarization for a system with constant band filling η 
 0.074: (a)
f vs εR for different values of U and εd expressed in the legend in
units of D. Each symbol was obtained via an NRG calculation of
the compensating local field for �εZ/TKD = 0.1, while the lines are
guides to the eye. (b) NRG values of f vs �εZ/TKD for U = 0.15D

and different values of εR and εd expressed in the legend in units of
D. Lines are guides to the eye showing that f is independent of εZ
for �εZ/TKD � 10. Data in both panels are for ε0 = −0.08D and
� = 0.005D.

Figure 9(b) shows f as a function of �εZ/TKD for
U = 0.15D and a few selected values of εR and εd . The
most salient feature is that f remains constant as �εZ/TKD

is varied over four orders of magnitude, indicating the lack of
dependence on � and/or εZ . Deviations from universality are
again seen only in the regime of very large Zeeman fields where
the impurity polarization approaches saturation at Mimp = 0.5.

Finally, we consider the effect of Zeeman splitting under
the scenario of constant band filling. Figure 10(a) shows Mimp

vs εZ for U = −2 εd = 0.15D, for εR/D = 0.06 and 0.08,
and for �/D = 0.003 and 0.005. Since Rashba SO interaction
changes the Fermi-energy density of states, the Zeeman
energy needed to destroy Kondo correlations is exponentially
sensitive to both εR and �. As under the fixed-εF scenario,
all the polarization curves share a similar shape (except for
εZ � �) and a universal scaling dependence on 2f �εZ/TKD

is confirmed in Fig. 10(b). In this case, however, the parameter
f depends not just on εR , U , and εd , but also decreases with
�. Under the constant-filling scenario, the Fermi level lies in
an energy range where the density of states is spin split, so a
perturbative approach to first order in � is likely insufficient to
reproduce the parameter dependencies of f . For this reason, we
focus on the numerical estimation of f via the compensation
field. Figure 11 plots the results for the same parameters as
were used in Fig. 9. Note that f exhibits a nonmonotonic
dependence on εR , with a maximum at εR = −ε0/2 = 0.04D.
For εR � −ε0/2, the value of f under the constant-filling
scenario is generally greater than for fixed Fermi energy.
For εR > −ε0/2, the range where the system is in its helical
regime for εZ = 0, f decreases rapidly with increasing Rashba
coupling and may even become negative.

IV. SUMMARY

We have studied the effect of bulk Rashba SO interaction
on Kondo correlations between a magnetic impurity and
a two-dimensional electron gas. The low-temperature ther-

modynamic properties exhibit the conventional Kondo form
with scaling in terms of T/TK , providing evidence for
complete quenching of the impurity degree of freedom as
T → 0. In most situations, the Kondo temperature TK is little
affected by the Rashba coupling, as has been pointed out
previously [15]. However, within a helical regime that can
in principle be accessed for high Rashba couplings and/or
low electron densities, the Kondo temperature exhibits an
exponential enhancement compared to the situation without
Rashba interaction.

Our analysis of static angular-momentum correlations
demonstrates and quantifies an indirect, Rashba-induced
coupling of the impurity spin with conduction channels
of nonzero orbital angular momentum about the impurity
site. This coupling can be regarded as a manifestation of a
Dzyaloshinskii-Moriya term found previously by mapping
the Anderson impurity model with bulk Rashba SO inter-
action to an effective Kondo model [18]. A perturbative
renormalization-group analysis of this Kondo model showed
an exponential enhancement of TK . We should note, however,
that the RG equations were solved neglecting the helicity
dependence of the Fermi wave vector. A complete analysis
of the effective Kondo model will be presented elsewhere.

Optical irradiation experiments seem to be good candidates
to explore the helical regime of a Rashba-coupled 2DEG. Mo-
tivated by the proposal of Ref. [21], we have also investigated
Kondo physics in the presence of both Rashba SO interaction
and Zeeman splitting of the bulk electrons (but not of the
impurity). The characteristic Zeeman energy scale for the
destruction of the Kondo effect is not TK , as would be expected
in the case of a true magnetic field that couples directly to
the impurity spin, but rather TK/� where � is the impurity
hybridization width. The behavior can be accounted for to
reasonable quantitative accuracy by a perturbative treatment
of the Zeeman splitting of the host density of states.
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APPENDIX A: PERTURBATIVE ANALYSIS

This appendix considers an Anderson impurity model

H =
∑

σ

∫
dε ε c†ε,σ cε,σ +

∑
σ

εd,σ d†
σ dσ + Ud

†
↑d↑d

†
↓d↓

+
∑

σ

Vσ

∫
dε ρσ (ε) (c†ε,σ dσ + H.c.), (A1)

where the conduction-band density of states ρσ (ε), the impu-
rity level energy εd,σ , and the hybridization matrix element Vσ

are all allowed to depend on σ =↑ , ↓. The goal is to construct
an approximate mapping of Eq. (A1) to a similar Hamiltonian
having a different conduction-band density of states ρ̃σ (ε), and
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with the impurity parameters ε̃d,σ , Ũ , and Ṽσ chosen to ensure
that the two models share the low-energy physics (at least as
it pertains to the impurity properties).

Haldane, in his derivation of poor-man’s scaling equations
for the Anderson model [35], used perturbation theory in
the hybridization matrix element to take into account the
effect of all conduction-band states in a narrow window of
energies near each band edge. Here, we perform a similar
calculation in order to find energy shifts arising from the
density-of-states difference �ρσ (ε) = ρσ (ε) − ρ̃σ (ε) at all
energies ε. Like Haldane, our focus is on four many-body states
|0〉, |σ 〉 = d†

σ |0〉, and |2〉 = d
†
↑d

†
↓|0〉, formed by combining

the conduction-band ground state [having Nk electrons of
energy ε(k) < εF ] with one of the possible configurations of
the Anderson impurity level. These many-body states have
energies E0, Eσ = E0 + εd , and E2 = E↑ + E↓ − E0 + U ,
respectively.

The state |0〉 can decrease its energy through virtual
tunneling of an electron of spin σ from a band state below the
Fermi level to the impurity and then back to the original band
state. Integrating the contribution to such processes arising just
from the density of states difference �ρσ (ε), then summing
over σ , transforms the state |0〉 to one |0̃〉 having an energy Ẽ0

that, to second order in V , is

Ẽ0 = E0 −
∑

σ

V 2
σ

∫ εF

−∞

�ρσ (ε) dε

−ε + εd,σ

. (A2)

Similarly, the state |2〉 can decrease its energy through
virtual tunneling of a spin-σ electron from the impurity to a
band state above the Fermi level and then back to the impurity.
The contribution to such processes arising from �ρσ (ε), when
summed over σ , transforms |2〉 to |2̃〉 with energy

Ẽ2 = E2 −
∑

σ

V 2
σ

∫ ∞

εF

�ρσ (ε) dε

ε − U − εd,σ

. (A3)

Lastly, the state |σ 〉 can lower its energy through (i)
tunneling of an electron with spin σ from the impurity to a
band state above the Fermi level and then back to the impurity,
and (ii) tunneling of an electron with spin −σ from a band
state below the Fermi energy to the impurity and then back
to the original band state. The contribution to such processes
arising from �ρ(ε) transforms |σ 〉 to |σ̃ 〉 with energy

Ẽσ = Eσ − V 2
σ

∫ ∞

εF

�ρσ (ε) dε

ε − εd,σ

−V 2
−σ

∫ εF

−∞

�ρ−σ (ε) dε

−ε + U + εd,−σ

. (A4)

Equations (A2)–(A4) can be used to define shifted impurity
parameters

ε̃d,σ = Ẽσ − Ẽ0 (A5)

and

Ũ = Ẽ2 + Ẽ0 − Ẽ↑ − Ẽ↓. (A6)

Corrections to the hybridization matrix elements (arising as a
consequence of wave-function renormalization) are found to
be of order V 3, so at the level of our approximation,

Ṽσ = Vσ . (A7)

Since �ρσ (ε) everywhere enters the above equations
multiplied by V 2

σ , the analysis can be recast as the derivation
of shifts in the impurity parameters εd and U to account
for a change ��σ (ε) = π �ρσ (ε) V 2

σ in the spin-dependent
hybridization function.

We note that an equation equivalent to Eq. (A4) appears in
Refs. [37,38], which examine the spin splitting of the impurity
level arising from entirely integrating out the conduction
band. In our language, this case corresponds to ρ̃σ (ε) = 0 and
�ρσ (ε) = ρσ (ε). These earlier works did not take into account
changes in the energies of the empty and doubly occupied
states that can lead to a shift in the onsite interaction U .

APPENDIX B: COMPUTATION OF
ANGULAR-MOMENTUM CORRELATIONS

This appendix describes the calculation of static correla-
tions between the impurity spin Sd defined in Eq. (46) and
one of Jh, Jm=0, and Jm�=0 representing the total angular-
momentum operators of helicity-h electrons, of electrons
having orbital angular momentum m = 0, and of electrons
with angular momentum m �= 0.

Within the numerical renormalization-group treatment of
the effective two-channel Anderson model described by
Eq. (21), an appropriate representation of Jh [defined in
Eq. (47)] for the calculation of the thermal average 〈Sd · Jh〉 at
temperatures T ∼ D�−N/2 is

Jh =
N∑

n=0

Jn,h (B1)

with

Jn,h = 1

2

∑
τ,τ ′

f̃
†
n,h,τ σ τ,τ ′ f̃n,h,τ ′ , (B2)

where f̃n,h,τ destroys an electron of total angular-momentum
z component τ = ± 1

2 on site n of the Wilson chain that results
[29] from applying the Lanczos procedure to a discretized
version of the bulk Hamiltonian Hbulk in Eq. (12).

The calculation of 〈Sd · Jm=0〉 and 〈Sd · Jm�=0〉, related to
〈Sd · Jh〉 by Eq. (49), is more complicated since orbital angular
momentum is not a good quantum number of the bulk states.
Since the NRG Lanczos procedure preserves spin and orbital
angular momenta, one can write

f̃n,h,τ = 1√
2

(hτ−1/2fn,τ−1/2,↑ + hτ+1/2fn,τ+1/2,↓) (B3)

in terms of annihilation operators fn,m,τ for orbital angular-
momentum eigenstates, in direct analogy with Eq. (11).
Substitution of Eq. (B3) into (B2) allows one to write

Jn,+ + Jn,− = Jm=0
n + Jm�=0

n , (B4)

where

Jm=0
n = 1

2

∑
τ,τ ′

f
†
n,0,τ σ τ,τ ′ fn,0,τ ′ , (B5)

Jm�=0
n = 1

2

∑
τ,τ ′

f
†
n,2τ,−τ σ τ,τ ′ fn,2τ ′,−τ ′ . (B6)
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Equation (B6) makes clear that Jm�=0
n includes terms that are

off diagonal in the orbital angular-momentum index.
Equation (B3) can be inverted to yield, for m = 0, τ = ± 1

2
and for m = ±1, τ = ∓ 1

2 ,

fn,m,τ = 1√
2

[f̃n,+,τ + (−1)mf̃n,−,τ ]. (B7)

Substitution of Eq. (B7) into Eqs. (B5) and (B6) yields

Jm=0 = 1

2

N∑
n=0

(Jn,+ + Jn,− + J̃n), (B8)

Jm�=0 = 1

2

N∑
n=0

(Jn,+ + Jn,− − J̃n), (B9)

where

J̃n = 1

2

∑
h,τ,τ ′

f̃
†
n,h,τ σ τ,τ ′ f̃n,−h,τ ′ (B10)

is off diagonal in the helicity index.
Equations (B1), (B2), and (B8)–(B10) contain the prescrip-

tion for constructing the total angular-momentum operators
in our NRG calculations. In order to obtain ground-state
correlations, we took the thermal averages of Sd with Jh, Jm=0,
and Jm�=0 in the limit of large iteration numbers corresponding
to temperature scales far below TK .

[1] S. A. Wolf, D. D. Awschalom, R. A. Buhrman, J. M. Daughton,
S. von Molnár, M. L. Roukes, A. Y. Chtchelkanova, and D. M.
Treger, Science 294, 1488 (2001).
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MacDonald, Rev. Mod. Phys. 78, 809 (2006).

[5] T. Jungwirth, J. Wunderlich, and K. Olejnı́k, Nat. Mater. 11, 382
(2012).

[6] P. D. C. King, R. C. Hatch, M. Bianchi, R. Ovsyannikov, C.
Lupulescu, G. Landolt, B. Slomski, J. H. Dil, D. Guan, J. L.
Mi, E. D. L. Rienks, J. Fink, A. Lindblad, S. Svensson, S. Bao,
G. Balakrishnan, B. B. Iversen, J. Osterwalder, W. Eberhardt,
F. Baumberger, and Ph. Hofmann, Phys. Rev. Lett. 107, 096802
(2011).

[7] Z.-H. Zhu, G. Levy, B. Ludbrook, C. N. Veenstra, J. A. Rosen,
R. Comin, D. Wong, P. Dosanjh, A. Ubaldini, P. Syers, N. P.
Butch, J. Paglione, I. S. Elfimov, and A. Damascelli, Phys. Rev.
Lett. 107, 186405 (2011).

[8] D. Gainon and A. J. Heeger, Phys. Rev. Lett. 22, 1420
(1969).

[9] B. Giovannini, Phys. Rev. B 3, 870 (1971).
[10] H. U. Everts, Z. Phys. 251, 42 (1972).
[11] G. Bergmann, Phys. Rev. Lett. 57, 1460 (1986).
[12] Y. Meir and N. S. Wingreen, Phys. Rev. B 50, 4947 (1994).
[13] E. Eriksson, A. Ström, G. Sharma, and H. Johannesson,

Phys. Rev. B 86, 161103(R) (2012).
[14] J. Malecki, J. Stat. Phys. 129, 741 (2007).
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