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H. Ebert, J. Braun, D. Ködderitzsch, and S. Mankovsky
Department Chemie/Phys. Chemie, Ludwig-Maximilians-Universität München, Germany

(Received 11 December 2015; published 23 February 2016)

The formal basis for fully relativistic Korringa-Kohn-Rostoker (KKR) or multiple scattering calculations for
the electronic Green function in case of a general potential is discussed. Simple criteria are given to identify
situations that require to distinguish between right- and left-hand-side solutions to the Dirac equation when setting
up the electronic Green function. In addition, various technical aspects of an implementation of the relativistic
KKR for general local and nonlocal potentials will be discussed.
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I. INTRODUCTION

Recently, there is strong interest in the impact of spin-orbit
coupling on the electronic structure of solids and surfaces as
this gives rise to many interesting and technically important
phenomena. In this context, one may mention the well-
known magnetocrystalline anisotropy but also the interesting
galvanomagnetic and spin transport phenomena [1–4]. Other
examples for the central role of spin-orbit coupling can be
found in the field of spectroscopy as the magnetooptical
effects and the various magnetodichroic phenomena in x-ray
spectroscopy [5–7]. Finally, one may mention the Rashba
splitting [8,9] of surface states of transition metals as well
as occurrence of the topological surface states in topological
insulators [10,11].

Computational schemes used to describe these phenomena
or materials, respectively, have to account at the same time for
spin-orbit coupling, spin polarization, or magnetic ordering
as well as the structural properties of the investigated system
in a coherent and reliable way. Among the various available
schemes, the Korringa-Kohn-Rostoker (KKR) or multiple
scattering method is especially attractive as it gives direct
access to the Green function (GF). Making use of the Dyson
equation allows for example by means of the corresponding
embedding technique to deal with rather complex systems [12].
Another important field of application for the KKR-GF method
is the investigation of disordered systems usually done in
combination with the coherent potential approximation (CPA)
[13] alloy theory.

The spin-polarized relativistic (SPR) version of the KKR
method set up on the basis of the four-component Dirac
formalism that allows to account for all relativistic effects
and spin magnetism within the framework of L(S)DA [local
(spin) density approximation] on equal footing was worked
out by various authors [14,15]. Extensions to this approach
were made to deal with orbital polarization [16] as well as
the presence of a vector potential coupling to the total current
of the electrons [17,18]. Corresponding implementations and
applications of the KKR method were done in general making
use of the ASA (atomic sphere approximation) that implies
spherical symmetry for the potential functions and rotational
symmetry for the corresponding vector fields coupling to
the spin and current of the electrons. Finally, the so-called
full-potential (FP) version of the SPR-KKR method that
removes the mentioned geometrical restrictions was discussed
and implemented by various authors [19–22].

Compared to the nonrelativistic version of the KKR
method, its fully relativistic formulation leads to a number
of technical complications. The need to distinguish between
right- (RHS) and left-hand-side (LHS) solutions to the Dirac
equation was discussed in particular by Tamura [19] for the
case of a general local potential. Here, we extend this work
discussing among others the impact of a nonlocal site-diagonal
potential and several practical aspects of corresponding KKR
calculations.

II. RELATIVISTIC HAMILTONIAN AND GREEN
FUNCTION FOR GENERAL POTENTIALS

Starting point of our considerations is an effective one-
electron Hamiltonian Ĥ(z) that can be split into an energy-
independent, Hermitian part Ĥ1 and an energy-dependent,
non-Hermitian part:

Ĥ(z) = Ĥ1 + �̂(z) (1)

= Ĥ0 + V̂ + �̂(z) (2)

with the Hermitian adjoined operator

Ĥ†(z) = Ĥ0† + V̂† + �̂†(z) (3)

= Ĥ0 + V̂ + �̂(z∗). (4)

Here, Ĥ0 stands for the Hamiltonian of the free-electron
system, V̂ for an energy-independent Hermitian potential, and
the non-Hermitian self-energy �(z) may depend on the energy
z. Using a fully relativistic formulation based on the four-
component Dirac formalism, the real-space representation of
Ĥ1 takes the form [23]

Ĥ1(r) = −icα · ∇ + 1

2
c2(β − 1) + V (r) (5)

= iγsσrc

(
∂

∂r
+ 1

r
− β

r
K

)

+ 1

2
c2(β − 1) + V (r) (6)

with αi (see following) and β the standard 4 × 4 Dirac
matrices, K the spin-orbit operator, σr = σ · r/r the projection
of the Pauli matrices, and

γs =
(

0 −I2

−I2 0

)
. (7)
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In Eq. (6), atomic Rydberg units (� = 1, e2 = 2, m = 1
2 ) have

been used and the rest mass energy c2/2 has been subtracted
from the energy z. The potential V (r) is assumed to be local
and in the most general case it will be a 4 × 4 matrix function
according to

V (r) = V̄ (r) + β σ · B(r) + eα · A(r)

= V̄ (r) +
(

σ · B(r) 0
0 −σ · B(r)

)

+ e

(
0 σ · A(r)

σ · A(r) 0

)

=
(

V +(r) U (r)
U (r) V −(r)

)
. (8)

Here, V̄ (r) and β σ · B(r) stand for the spin-independent and
spin-dependent parts of the potential, respectively, while the
term eα · A(r) represents the coupling of a vector potential
A(r) to the electronic current density, with α the electronic
velocity operator [23]. Obviously, the auxiliary potential
functions V ±(r) and U (r) are 2 × 2 matrix functions in spin
space [19].

For the real-space representation of the self-energy �(z),
one again has in general a 4 × 4 matrix function �(r,r ′,z) that
may be written in an analogous way:

�(r,r ′,z) = �V (r,r ′,z) + βσ · �B (r,r ′,z)

=
(

�+(r,r ′,z) 0
0 �−(r,r ′,z)

)
, (9)

where we restrict to a spin-dependent self-energy. A current-
dependent one coupling like α · �A could be introduced as
well and treated in analogy to the term σ · A(r) in the local
potential. From Eq. (3), one has for �(r,r ′,z) the property

�†(r,r ′,z) = �(r ′,r,z∗). (10)

In practice, it seems to be sufficient for most applications to
consider a self-energy �(r,r ′,z) that can be represented by an
expansion into a product of suitable basis functions:

�(r,r ′,z) =
∑
��′

φ�(r) ���′(z) φ
†
�′(r ′). (11)

In line with the relativistic representation, the basis functions
φ�(r) are constructed here as four-component functions with
the index � specifying their spin-angular character [23] (see
following).

Explicit forms for the local potential V (r) as given by
Eq. (8) can be derived within the framework of relativis-
tic density functional theory (DFT) [24,25]. Dealing with
magnetic solids, the relativistic version of the local spin
density approximation (LSDA) to DFT is usually adopted
[24,26,27]. This scheme is derived by applying a Gordon
decomposition of the electronic current density into its spin
and orbital contribution and retaining only the corresponding
spin-dependent part of the Hamiltonian [26,28]. The term in
Eq. (8) involving the vector potential A(r) may be derived
within current density functional theory (CDFT) [29,30] that
in particular accounts for the electronic orbital degrees of
freedom. Alternatively, or, in addition, it may represent the

Breit interaction [24] that plays a prominent role for the
magnetocrystalline anisotropy [31].

While the nonlocal self-energy �(r,r ′,z) in Eq. (9) may
stand, for example, for the energy-independent Hartree-
Fock potential, it will in general represent extensions to
the standard relativistic LSDA scheme. Within spectroscopic
investigations, lifetime effects are usually represented by
an optical potential corresponding to a local but complex
and energy-dependent potential [32]. Alternatively, or, in
addition, �(r,r ′,z) may represent correlation effects that
are not accounted for by standard LSDA. Within the rather
simple L(S)DA + U scheme [33], the corresponding nonlocal
self-energy is real and energy independent. On the other hand,
the combination of the more sophisticated dynamical mean
field theory (DMFT) [34,35] with the LSDA implies a complex
and energy-dependent nonlocal self-energy. For both schemes
one restricts usually to local correlations corresponding to a
site-diagonal self-energy (see following). This restriction is
dropped, e.g., for cluster variants of the DMFT [34] and does
not apply to the standard formulation of the GW method [36].

The Green function operator Ĝ(z) associated with the
general Hamiltonian Ĥ(z) in Eqs. (1)–(4) is defined to be
simultaneously the right and left inverse of (z − Ĥ(z))

(z − Ĥ(z)) Ĝ(z) = 1, (12)

Ĝ(z) (z − Ĥ(z)) = 1, (13)

implying the relation

Ĝ†(z) = Ĝ(z∗). (14)

In their real-space representation, Eqs. (12)–(14) read as

(z − Ĥ1(r)) G(r,r ′,z) −
∫

d3r ′′ �(r,r ′′,z) G(r ′′,r ′,z)

= 14 δ(r ,r ′), (15)

δ(r,r ′) 14 = G(r,r ′,z)(z − Ĥ1(r ′))

−
∫

d3r ′′ G(r,r ′′,z) �(r ′′,r ′,z), (16)

G†(r,r ′,z) = G(r ′,r,z∗). (17)

The differential operator contained in Ĥ1(r ′) in Eq. (16) has to
be interpreted to act to the left. The more familiar right-hand-
side form can be obtained by taking the Hermitian adjoint of
this equation and making use of Eqs. (10) and (17):

(z∗ − Ĥ1(r ′)) G(r ′,r,z∗)

−
∫

d3r ′′ �(r ′,r ′′,z∗) G(r ′′,r,z∗) = δ(r ,r ′) 14. (18)

Obviously, replacing z∗ by z, the original right-hand-side
equation (15) is recovered.

As shown for the nonrelativistic case by various authors
[37,38], an expression for the Green function defined by
Eqs. (15) and (16) can be given also for the relativistic case in
terms of a spectral representation:

G(r,r ′,z) =
∑

n

φn(r,z) ψ
†
n(r ′,z)

z − En(z)
. (19)
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Here, the so-called right- and left-hand-side solutions φn(r,z)
and ψn(r,z), respectively, are four-component functions
(bispinors) and defined as solutions to the following eigenvalue
equations:

(En(z) − Ĥ1(r)) φn(r,z) −
∫

d3r �(r,r ′,z) φn(r ′,z) = 0,

(20)

(En(z)∗ − Ĥ1(r)) ψn(r,z) −
∫

d3r ′ �(r,r ′,z∗) ψn(r ′,z) = 0

(21)

that have in general complex eigenvalues En(z). On the basis
of Eqs. (20) and (21), it is straightforward to show that Eq. (19)
is indeed a solution to Eqs. (15) and (16). In this context, it
is interesting to note that the homogeneous term 14 δ(r ,r ′) in
these equations is ensured to be covered by the closure relation∑

n

φn(r,z) ψ†
n(r ′,z) = 14 δ(r,r ′). (22)

In case of a nonvanishing energy-dependent self-energy
�(r,r ′,z), the set of eigenvalue equations (20) and (21) has
obviously to be solved for each value of energy z. For that
reason, the spectral representation given in Eq. (19) may not
be very helpful in practice. Nevertheless, it clearly shows
that even in case of a nonvanishing �(r,r ′,z), a real-space
representation of the Green function can in principle be given.

III. MULTIPLE SCATTERING OR KKR
REPRESENTATION OF THE GREEN FUNCTION

The multiple scattering or KKR-GF formalism aims to
supply the Green function G(r,r ′,z) for a given energy z

without making use of the spectral representation given in
Eq. (19). Dealing with an extended system as a cluster of
atoms or a solid the problem to find the Green function is
subdivided by dealing in a first step with the scattering from a
single potential well associated with an atom site and treating
multiple scattering in a subsequent step. According to this,
the discussion following is restricted here to a self-energy
�(r,r ′,z) that is site diagonal, i.e., �(r,r ′,z) = 0 for r or
r ′ outside the regime of the considered potential well. More
complex situations can nevertheless be treated by making use
of the Dyson equation [39]. Furthermore, only on-the-energy-
shell scattering will be considered, i.e., inelastic processes will
be explicitly excluded.

Guided by the eigenvalue equations (20) and (21) connected
with the spectral representation (19), the RHS and LHS
solutions to the so-called single-site Dirac equation will be
considered first. From these, the single-site t matrix and Green
function will be derived. Finally, the multiple scattering will be
considered leading to the Green function of the total system.

A. RHS and LHS solutions to the Dirac equation

The RHS solutions |ψ(z)〉 to the Dirac equation for a given
energy z are defined by

(z − Ĥ(z)) |ψ(z)〉 = 0. (23)

With the real-space representation of the Hamilton operator
Ĥ(z) given by Eqs. (6) and (9), this corresponds for the wave
function ψν(r,z) labeled by the index ν to the equation

Ĥ1(r) ψν(r,z) −
∫

d3r ′ �(r,r ′,z) ψν(r ′,z)

=
[
z − iγsσrc

(
∂

∂r
+ 1

r
− β

r
K

)
− V (r) − (β − 1)

c2

2

]

×ψν(r,z) −
∫

d3r ′ �(r,r ′,z) ψν(r ′,z) = 0, (24)

where the general potential V (r) and self-energy �(r,r ′,z)
are defined as in Eqs. (8) and (9). As multiple scattering is
treated in a most suitable way by working with an angular
momentum representation, we make for ψν(r,z) the standard
ansatz [14,15]

ψν(r,z) =
∑
�

ψ�ν(r,z) (25)

=
∑
�

(
g�ν(r,z)χ�(r̂)

i f�ν(r,z)χ−�(r̂)

)
(26)

with the radial functions g�ν(r,z) and f�ν(r,z) connected with
the large and small, respectively, components of the wave
function. The spin-angular function χ�(r̂) is an eigenfunction
of the spin-orbit operator K

K χ�(r̂) = −κ χ�(r̂) (27)

with the property

σr χ�(r̂) = −χ−�(r̂). (28)

Here, we used the shorthand notation � = (κ,μ) and −� =
(−κ,μ) to give the spin-orbit and magnetic quantum numbers
κ and μ, respectively [23]. The index ν labeling the linearly
independent solutions ψν(r,z) will be dropped in this section.
Later on, it will be replaced by a spin-angular index (�′) that
reflects the asymptotic behavior of the solution ψ�′(r,z).

Inserting the ansatz (25) into the Dirac equation (24), one is
led after some straightforward manipulations to the following
set of radial Dirac equations for the RHS solutions:(

z c
(

∂
∂ r

+ −κ+1
r

)
c
(

∂
∂ r

+ κ+1
r

) −(z + c2)

) (
g�(r,z)
f�(r,z)

)

−
∑
�′

(
V +

� �′(r) −i U� −�′(r)
i U−� �′(r) −V −

−� −�′ (r)

)(
g�′(r,z)
f�′(r,z)

)

−
∑
�′

∫
r ′2 dr ′

(
�+

� �′(r,r ′,z) g�′(r ′,z)

−�−
−� −�′ (r,r ′,z) f�′(r ′,z)

)
= 0. (29)

Here, we used the matrix element functions connected with
the potential

V ±
� �′(r) =

∫
dr̂ χ

†
�(r̂) V ±(r) χ�′(r̂),

U� �′(r) =
∫

dr̂ χ
†
�(r̂) U (r) χ�′(r̂),

and the self-energy

�±
��′(r,r ′,z) =

∫
dr̂

∫
dr̂ ′ χ †

�(r̂) �±(r,r ′,z) χ�′(r̂ ′).
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The LHS solution 〈ψ×(z)| corresponding to the RHS solution
|ψ(z)〉 is defined by the adjoined Dirac equation

〈ψ×(z)|(z − Ĥ(z)) = 0 (30)

with its real-space representation given by

〈ψ×(z)|r ′〉 (z − Ĥ1(r ′))

−
∫

d3r ′′ 〈ψ×(z)|r ′′〉�(r ′′,r ′,z) = 0. (31)

To proceed, we find it more convenient to switch to the
Hermitian adjoined of this equation:

(Ĥ1(r) − z∗) 〈ψ×(z)|r〉†

+
∫

d3r ′ �†(r,r ′,z∗) 〈ψ×(z)|r ′〉† = 0, (32)

where use of the relations Ĥ1(r) = Ĥ1†(r) and �†(r,r ′,z) =
�(r ′,r,z∗) has been made.

Making for 〈ψ×(z)|r〉 the ansatz [19,40]

〈ψ×(z)|r 〉 =
∑
�

[g×
�(r,z) χ

†
�(r̂),−if ×

� (r,z) χ
†
−�(r̂)], (33)

one has for its adjoined wave function

〈ψ×(z)|r〉† =
∑
�

(
g×∗

� (r,z) χ�(r̂)

if ×∗
� (r,z) χ−�(r̂))

)
. (34)

Inserting this expression into Eq. (32) leads to a set of radial
equations that correspond one-to-one to Eq. (29) apart from the
replacements z → z∗, (g,f ) → (g×∗,f ×∗), and �(r,r ′,z) →
�(r,r ′,z∗). Accordingly, Eq. (32) can be rearranged as Eq. (29)
to lead to the radial Dirac equations for the LHS solutions(

z c
(

∂
∂ r

+ −κ+1
r

)
c
(

∂
∂ r

+ κ+1
r

) −(z + c2)

) (
g×

�(r,z)

f ×
� (r,z)

)

−
∑
�′

(
V +

�′ �(r) i U−�′ �(r)

−i U�′ −�(r) −V −
−�′ −�(r)

) (
g×

�′(r,z)

f ×
�′(r,z)

)

−
∑
�′

∫
r ′2 dr ′

(
�+

�′ �(r ′,r,z) g×
�′(r ′,z)

−�−
−�′ −�(r ′,r,z) f ×

�′(r ′,z)

)
= 0. (35)

Here, use of the relations

V ±
� �′(r)∗ = V ±

�′ �(r), (36)

U� �′(r)∗ = U�′ �(r), (37)

�±
� �′(r,r ′,z∗)∗ = �±

�′ �(r ′,r,z) (38)

has been made that reflect the Hermiticity of the potential
[Eq. (8)] as well as the properties of the self-energy [Eq. (9)].
Accordingly, the set of radial Dirac equations (29) and (35)
for the RHS and LHS, respectively, solutions are identical if
the following relations hold:

V ±
� �′(r) = V ±

�′ �(r), (39)

U� �′(r) = −U�′ �(r), (40)

�±
� �′(r,r ′,z) = �±

�′ �(r ′,r,z). (41)

Ignoring the self-energy for the moment, the resulting set of
radial Dirac equations in Eqs. (29) and (35) is completely

equivalent to those obtained by Tamura [19]. Accordingly, the
requirements given by him for the RHS and LHS equations
being the same coincide with Eqs. (39) and (40). A more
detailed discussion under what conditions these relations hold
will be given in the next section.

Finally, it should be mentioned that in the context of the
relativistic L(S)DA + U [41] as well as L(S)DA+DMFT [42]
Eq. (29) or (35), respectively, has been dealt with so far in an
approximate way. Because for both schemes the coupling of
the self-energy is usually restricted to the d or f electrons and
because the basis functions for the self-energy [see Eq. (11)]
have the same l character, it seems justified to interchange
the role of the radial functions to be calculated and of the
basis functions. This transfers the radial integrodifferential
equations into differential equations as they occur in the case
of full-potential type calculations [22]. As a consequence,
the setup of the corresponding Green function simplifies
in a dramatic way as can be seen from the discussions in
Sec. III F.

B. Relation between the RHS and LHS solutions

As the RHS and LHS solutions derive from the same
Hamiltonian, it is obvious that they are not independent from
each other. In fact, the vector space spanned by the LHS
solutions is dual to that spanned by the RHS solutions. In
particular, Tamura [19] could show that the RHS and LHS
solutions are connected via

〈ψ×(B)| = (K̂ |ψ(−B)〉)† (42)

by making use of the behavior of the Hamiltonian Ĥ(B) under
time reversal K̂ . This implies for the radial functions the
relations [19](

g×
κμ(r,z,B)

f ×
κμ(r,z,B)

)
= (−1)μ−1/2Sκ

(
gκ−μ(r,z, − B)
fκ−μ(r,z, − B)

)
, (43)

where Sκ stands for the sign of the quantum number κ

[23] and the vector B represents also the dependence of
the wave functions on the vector potential A as well as the
spin-dependent part of the self-energy � that also reverse sign
under time reversal.

Equation (43) shows that for nonmagnetic systems (B =
0), having time-reversal symmetry, LHS radial functions for
� = (κ,μ) that solve Eq. (35) can easily be obtained from
the RHS radial functions for � = (κ,−μ) by multiplying with
the phase factor (−1)μ−1/2Sκ . For magnetic systems (B �= 0),
on the other hand, it may happen that the two sets of radial
functions have to be calculated individually (see Sec. IV).

In both cases, however, the sets of radial differential
equations for the LHS and RHS solutions, Eqs. (29) and
(35), respectively, are identical if the various potential func-
tions V ±

��′(r), U±
��′(r), and �±

��′(r,r ′,z) are symmetric [see
Eqs. (39)–(41)]. Accordingly, both sets of equations will be
solved by the same set of linearly independent (unnormalized)
radial functions, i.e., these have to be determined only once.
To see under which conditions this favorable situation holds,
we restrict for the moment to the case �±

��′(r,r ′,z) = 0 and
expand the real potentials V̄ (r), B(r), and A(r) in terms of real
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spherical harmonics YL(r̂) according to

V̄ (r) =
∑
L

VL(r)YL(r̂), (44)

B(r) =
∑
L

∑
λ

Bλ
L(r)YL(r̂) êλ, (45)

A(r) =
∑
L

∑
λ

Aλ
L(r)YL(r̂) êλ, (46)

one has for their matrix elements

V ±
��′(r) =

∑
L

(
V̄L(r) 〈χ�|YL|χ�′ 〉

±
∑

λ

Bλ
L(r) 〈χ�|σλ YL|χ�′ 〉

)
, (47)

U��′(r) =
∑
L

∑
λ

Aλ
L(r) 〈χ�|σλ YL|χ�′ 〉, (48)

with real functions V̄L(r), Bλ
L(r), and Aλ

L(r), and λ indicating
the components of the vector fields with êλ the corresponding
unit vector. For the angular matrix elements occurring in
Eqs. (47) and (48), one has the property

〈χ�|YL|χ�′ 〉 = 〈χ�′ |YL|χ�〉∗,
〈χ�|σλ YL|χ�′ 〉 = 〈χ�′ |σλ YL|χ�〉∗

ensuring the Hermiticity of the corresponding potential terms.
For the special cases m(L) � 0 and λ = x or z one finds in

particular that the angular matrix elements are real, implying
that they are symmetric w.r.t. the indices � and �′. Having
only such terms in the expansions in Eqs. (47) and (48) also the
corresponding potential matrix elements are symmetric, i.e.,
the requirement specified in Eqs. (39) and (40) for the LHS
and RHS solutions being identical are fulfilled. The conditions
for this to happen are discussed in some detail in Sec. IV E.

Finally, Eq. (41) will in general not hold for a finite
self-energy �(r,r ′,z) and accordingly one has to determine
the RHS and LHS solutions on the basis Eqs. (29) and (35),
separately. Assuming for �(r,r ′,z) an expansion as given by
Eq. (11) with the basis functions φ�(r) involving real radial
functions, the requirement expressed by Eq. (41) reduces to
the simpler relation

�±
��′(z) = �±

�′�(z). (49)

For a complex, energy-dependent self-energy occurring within
the L(S)DA+DMFT scheme this relation will in general not
be fulfilled. For the L(S)DA + U scheme, on the other hand,
with a real, energy-independent self-energy this relation may
hold depending on the symmetry of the investigated system
(see the discussion above and in Sec. IV E). In this case, again
one does not have to distinguish between the sets of linearly
independent RHS and LHS solutions to Eqs. (29) and (35),
respectively.

C. Green function for the free-electron case

The free-electron gas supplies an important reference
system for the KKR-GF formalism that is used among
others in connection with the Dyson equation. As shown by
several authors [19,21,43–45], the corresponding relativistic

free-electron Green function G0(r,r ′,z) can be expressed in
terms of the nonrelativistic one:

G0(r,r ′,z) = (z + Ĥ0) G0 nrel(r,r ′,z) 14,

where Ĥ0 is the free-electron Dirac operator and G0 nrel(r,r ′,z)
is given by [45]

G0 nrel(r,r ′,z) = −i p
∑
L

jL(r<,z)h+×
L (r>,z). (50)

As indicated by the combined angular momentum index L =
(l,m) and arguments, the spherical Bessel functions jl(pr) and
Hankel functions of the first kind h+

l (pr) have been combined
with the complex spherical harmonics YL(r̂). In Eq. (50), the
superscript × indicates the LHS solution to the free-electron
Schrödinger equation. Using complex spherical harmonics,
this implies that the complex conjugate has to be taken for
YL(r̂). The arguments r< and r> in Eq. (50) coincide with the
vectors r and r ′ depending which is the shorter or longer one,
respectively.

Making use of the eigenfunctions χ�(r̂) of the spin-orbit
operator K one finds

G0(r,r ′,z) = −i p
∑
�

[j�(r,z) h+×
� (r ′,z) θ (r ′ − r)

+h+
�(r,z) j×

� (r ′,z) θ (r − r ′)], (51)

where p̄ = ζp is the relativistic momentum

p(z) = [z(1 + z/c2)]1/2 (52)

scaled by the energy-dependent factor

ζ (z) = 1 + z/c2. (53)

The relativistic forms of the Bessel and (outgoing) first kind
Hankel functions are defined accordingly by

j�(r,z) =
(

jl(pr)χ�(r̂)
ipcSκ

z+c2 jl̄(pr)χ−�(r̂)

)
, (54)

j×
� (r,z) =

(
jl(pr)χ †

�(r̂)
−ipcSκ

z+c2 jl̄(pr)χ †
−�(r̂)

)T

, (55)

h+
�(r,z) =

(
h+

l (pr)χ�(r̂)
ipcSκ

z+c2 h+
l̄

(pr)χ−�(r̂)

)
, (56)

h+×
� (r,z) =

(
h+

l (pr)χ †
�(r̂)

−ipcSκ

z+c2 h+
l̄

(pr)χ †
−�(r̂)

)T

, (57)

where “×” again denotes the LHS solution to the Dirac
equation, Sκ = sign(κ) gives the sign of κ , and l̄ = l − Sκ [23].

It should be noted that the presentation of the free-electron
Green function in Eq. (51) together with the definitions in
Eqs. (52)–(57) is not unique. Alternatively, one may include a
factor ζ 1/2 in the definition of the Bessel and Hankel functions
[22] or combine the factor −ip̄ with the Hankel functions [21]
as it is often done. While all definitions are fully equivalent,
they nevertheless influence all subsequent expressions and
definitions. With respect to the connection to the nonrelativistic
Green function, the various Lippmann-Schwinger equations
and matrix elements occurring later on, the present settings
seem to be most coherent.
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Finally, in analogy to Eqs. (54)–(57) one may introduce
in addition the relativistic second kind Hankel [h−

�(r,z)] and
von Neumann [n�(r,z)] functions in terms of the standard
Bessel [jl(pr)], von Neumann [nl(pr)], and Hankel [h±

l (pr)]
functions with h±

l (pr) = jl(pr) ± inl(pr) [46].

D. Single-site t matrix and Lippmann-Schwinger equations
for a general potential

Starting point for the calculation of the single-site Green
function Gn(r,r ′,z) associated with a potential well located at
site n is the Dyson equation in terms of the single-site t-matrix
operator t̂ that is given in its real-space representation by

Gn(r,r ′,z) = G0(r,r ′,z) +
∫

d3r ′′
∫

d3r ′′′G0(r,r ′′,z)

×t(r ′′,r ′′′,z) G0(r ′′′,r ′,z), (58)

where G0(r,r ′,z) is the free-electron Green function.
As t(r,r ′,z) is restricted to the volume � covered by the

single-site potential well that is bound by a sphere of radius rcrit

the integration can be restricted to r, r ′ < rcrit. Making use of
the expansion of G0(r,r ′,z) as given by Eq. (51), G(r,r ′,z)
can be written for r > rcrit and r ′ > rcrit as

Gn(r,r ′,z) = −ip̄
∑
��′

[j�(r,z) δ��′ − ip̄ h+
�(r,z) t��′(z)]

×h+×
�′ (r ′,z) θ (r ′ − r) + h+

�(r,z)

× [j×
� (r ′,z) δ��′ − ip̄ t��′(z) h+×

�′ (r ′,z)]

× θ (r − r ′), (59)

where we introduced the formal definition for the single-site t

matrix:

t��′(z) =
∫

d3r

∫
d3r ′j×

� (r,z) t(r,r ′,z) j�′(r ′,z). (60)

Equation (59) suggests to introduce special RHS and LHS so-
lutions to the radial Dirac equations (29) and (35), respectively,
by specifying their asymptotic behavior for r > rcrit according
to

R�(r,z) =
∑
�′

j�(r,z) δ��′ − ip̄ h+
�′(r,z) t�′�(z), (61)

H�(r,z) = h+
�(r,z), (62)

R×
�(r,z) =

∑
�′

j×
� (r,z) δ��′ − ip̄ t��′(z) h+×

�′ (r,z), (63)

H×
� (r,z) = h+×

� (r,z), (64)

with the label � used to specify the boundary conditions for
these functions [see Eq. (25)].

The functions R�(r,z) and R×
�(r,z) in Eqs. (61) and (63),

respectively, can also be seen as solutions to a corresponding
Lippmann-Schwinger equation. For the RHS case, the two
equivalent forms of this equation in terms of the potential and
the t-matrix operator, respectively, are given by

|R(z)〉 = |R0(z)〉 + Ĝ0(z) [V̂ + �̂(z)] |R(z)〉 (65)

= |R0(z)〉 + Ĝ0(z) t̂(z) |R0(z)〉, (66)

with |R0(z)〉 the solution for the free-electron case as given
by Eq. (54). Adopting again a real-space angular momentum

representation, these equations correspond to

R�(r,z) = j�(r,z) +
∫

d3r ′
∫

d3r ′′ G0(r,r ′,z)

× [V (r ′)δ(r ′,r ′′) + �(r ′,r ′′,z)] R�(r ′′,z) (67)

= j�(r,z) +
∫

d3r ′
∫

d3r ′′ G0(r,r ′,z)

× t(r ′,r ′′,z) j�(r ′′,z). (68)

From the boundary conditions reflected by these equations
it is obvious that the function R�(r,z) will be regular at the
origin (r = 0). On the other hand, Eq. (58) implies that the
function H�(r,z) will in general be irregular at the origin. The
same applies to the LHS functions R×

�(r,z) and H×
� (r,z) (see

following).
Making use of the explicit expression for the free-electron

Green function given in Eq. (51), one has for r outside the
potential regime (r > rcrit) the asymptotic behavior

R�(r,z) = j�(r,z) − ip̄
∑
�′

h+
�′(r,z)

∫
d3r ′

∫
d3r ′′ j×

�′

×(r ′,z)[V (r ′)δ(r ′,r ′′) + �(r ′,r ′′,z)]R�(r ′′,z)

(69)

= j�(r,z) − ip̄
∑
�′

h+
�′(r,z)

∫
d3r ′

∫
d3r ′′ j×

�′

× (r ′,z)t(r ′,r ′′,z) j�(r ′′,z), (70)

implying for the t matrix the relation

t�′�(z) =
∫

d3r

∫
d3r ′ j×

�′(r,z)[V (r)δ(r,r ′)

+�(r,r ′,z)] R�(r ′,z). (71)

Dealing with the LHS solutions 〈R×(z)| to the Dirac equation,
one is led to the two equivalent forms of the Lippmann-
Schwinger equation

〈R×(z)| = 〈R0×(z)| + 〈R×(z)| [V̂ + �̂(z)] Ĝ0(z) (72)

= 〈R0×(z)| + 〈R0×(z)| t̂(z) Ĝ0(z) (73)

with their real-space angular momentum representation given
by

R×
�(r,z) = j×

� (r,z) − ip̄
∑
�′

∫
d3r ′

∫
d3r ′′ R×

�(r ′,z) [V (r ′)

×δ(r ′,r ′′) + �(r ′,r ′′,z)] j�′(r ′′,z) h+×
�′ (r,z) (74)

= j×
� (r,z) − ip̄

∑
�′

∫
d3r ′

∫
d3r ′′ j×

� (r ′,z)

× t(r ′,r ′′,z) j�′(r ′′,z) h+×
�′ (r,z). (75)

This implies for the t matrix the alternative and completely
equivalent expression in terms of the LHS solution 〈R×(z)|:

t��′(z) =
∫

d3r

∫
d3r ′ R×

�(r,z)

× [V (r)δ(r,r ′) + �(r,r ′,z)] j�′(r ′,z). (76)

To see that Eqs. (71) and (76) are indeed equivalent, one can
insert repeatedly Eqs. (65) and (72), respectively. The resulting
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series can be replaced by the t matrix that satisfies the relations

t̂(z) = (1 − [V̂ + �̂(z)] Ĝ0(z))−1 [V̂ + �̂(z)] (77)

= [V̂ + �̂(z)] (1 − Ĝ0(z) [V̂ + �̂(z)])−1. (78)

In both cases, one is led this way to Eq. (60). It should be noted
that this manipulation in addition implies the helpful relations

[V̂ + �̂(z)] |R(z)〉 = t̂(z) |R0(z)〉, (79)

〈R×(z)| [V̂ + �̂(z)] = 〈R0×(z)| t̂(z). (80)

The Lippmann-Schwinger equations (67) and (74) for the
RHS and LHS solutions R�(r,z) and R×

�(r,z), respectively,
together with the expression (51) for the free-electron Green
function G0(r,r ′,z) imply that these functions have for r → 0
the asymptotic behavior

R�(r,z) =
∑
�′

j�′(r,z) α�′�(z), (81)

R×
�(r,z) =

∑
�′

α×
��′(z) j×

�′(r,z). (82)

Here, the so-called enhancement factors have been introduced,
that play an important role for the so-called Lloyd formula for
the integrated density of states [47–49]. Due to Eqs. (67) and
(74) as well as Eqs. (68) and (75) or alternatively Eqs. (79)
and (80), respectively, these quantities are given by

α�′�(z) = δ�′� − ip̄

∫
d3r

∫
d3r ′ h+×

�′ (r,z) [V (r)δ(r,r ′)

+�(r,r ′,z)] R�(r ′,z) (83)

= δ�′� − ip̄

∫
d3r

∫
d3r ′ h+×

�′ (r,z) t(r,r ′,z)

× j�(r ′,z), (84)

α×
��′(z) = δ��′ − ip̄

∫
d3r

∫
d3r ′ R×

�(r,z) [V (r)δ(r,r ′)

+�(r,r ′,z)] h+
�′(r ′,z) (85)

= δ��′ − ip̄

∫
d3r

∫
d3r ′ j×

� (r,z) t(r,r ′,z)

×h+
�′(r ′,z). (86)

The simple behavior given in terms of the relativistic spherical
Bessel functions expressed by Eqs. (81) and (82) clearly shows
that R�(r,z) and R×

�(r,z) are indeed regular solutions at the
origin (r = 0).

As the regular RHS and LHS solutions R�(r,z) and
R×

�(r,z), respectively, also their irregular counterparts H�(r,z)
and H×

� (r,z) can be expressed in terms of a corre-
sponding Lippmann-Schwinger equation. Taking into ac-
count their asymptotic behavior for r > rcrit as expressed
by Eqs. (62) and (64), respectively, one is led to the
expressions

H�(r,z) =
∑
�′

h+
�′(r,z)

[
δ��′ − ip̄

∫
d3r ′

∫
d3r ′′ j�′(r ′,z)

× [V (r ′)δ(r ′,r ′′) + �(r ′,r ′′,z)] H�(r ′′,z)

]

+
∫

d3r ′
∫

d3r ′′ G0(r,r ′,z) [V (r ′)δ(r ′,r ′′)

+�(r ′,r ′′,z)] H�(r ′′,z), (87)

H×
� (r,z) =

∑
�′

[
δ��′ − ip̄

∫
d3r ′

∫
d3r ′′ H×

� (r ′,z)

× [V (r ′)δ(r ′,r ′′) + �(r ′,r ′′,z)] j�′(r ′′,z)

]

×h+×
� (r,z) +

∫
d3r ′

∫
d3r ′′ H×

� (r ′,z) [V (r ′)

× δ(r ′,r ′′) + �(r ′,r ′′,z)] G0(r ′′,r,z). (88)

Again, these Lippmann-Schwinger equations imply for the
RHS and LHS solutions H�(r,z) and H×

� (r,z), respectively, a
simple asymptotic behavior for r → 0:

H�(r,z) =
∑
�′

h+
�′(r,z) β�′�(z), (89)

H×
� (r,z) =

∑
�′

β×
��′(z) h+×

�′ (r,z), (90)

with the corresponding enhancement factors

β�′�(z) = δ��′ − ip̄

∫
d3r

∫
d3r ′ j�′(r,z) [V (r ′)δ(r,r ′)

+�(r,r ′,z)] H�(r ′,z), (91)

β×
��′(z) = δ��′ − ip̄

∫
d3r

∫
d3r ′ H×

� (r,z) [V (r)δ(r,r ′)

+�(r,r ′,z)] j�′(r ′,z). (92)

Again, the simple behavior in terms of the relativistic Hankel
functions clearly shows that H�(r,z) and H×

� (r,z) are indeed
irregular solutions at the origin (r = 0).

Finally, it should be emphasized here that the self-energy
�(r,r ′,z) enters the expressions for the various enhancement
factors α

(×)
��′(z), and β

(×)
��′(z), but does not alter the scaling

behavior as such for the corresponding wave functions
for r → 0 as given by Eqs. (81), (82), (89), and (90),
respectively.

E. Relativistic Wronskian

The relativistic form of the Wronskian for arbitrary
RHS and LHS solutions ψν and φ×

ν ′ to the corresponding
Dirac equations (24) and (31), respectively, is obtained by
multiplying the radial RHS equation (29) from the left

with the matrix A = (1 0
0 −1

)
and then with the row vector

of LHS radial functions x×T
�′′ν ′ (r,z) = [g×

�′′ν ′(r,z) f ×
�′′ν ′(r,z)].

Analogously, the radial LHS equation (35) is also multiplied
from the left with the matrix A and then with the row vector
of RHS radial functions xT

�′′ν(r,z) = [g�′′ν(r,z) f�′′ν(r,z)].
Both resulting equations are subtracted from each other
and finally a sum is taken over �′′. Representing the first
2 × 2 matrix occurring in Eqs. (29) and (35) involving the
differential operator ∂/∂r by the symbol Dκ ′′ (r), one finds for
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this term∑
�′′

x×T
�′′ν ′(r,z) Dκ ′′ (r) x�′′ν(r,z) − xT

�′′ν(r,z) Dκ ′′(r) x×
�′′ν ′(r,z)

= ∂

∂ r

∑
�′′

cr2(g×
�′′ν ′(r,z) f�′′ν(r,z)

− g�′′ν(r,z) f ×
�′′ν ′(r,z)). (93)

Dealing with the terms connected with the local potential
functions V(×)

�′′�′′′ (r) [second term in Eqs. (29) and (35),
respectively] one finds by making use of their Hermiticity∑

�′′�′′′
x×T

�′′ν ′(r,z) V�′′�′′′(r) x�′′′ν(r,z)

− xT
�′′ν(r,z) V×

�′′�′′′ (r) x×
�′′′ν ′ (r,z) = 0. (94)

Restricting for the moment to the case of a local potential
Eqs. (93) and (94) imply for the relativistic Wronskian of the
RHS and LHS functions ψν(r,z) and φ×

ν ′ (r,z), respectively,
defined by [50]

[φ×
ν ′ ,ψν] =

∑
�′′

c(g×
�′′ν ′ (r,z) f�′′ν(r,z)

− f ×
�′′ν ′(r,z) g�′′ν(r,z)), (95)

the simple expression

[φ×
ν ′ ,ψν] = −[ψν,φ

×
ν ′ ] = C

r2
, (96)

where C is a constant.
To fix the constant C in Eq. (96) one considers the free-

electron solutions ψν(r,z) = j�(r,z) or h+
�(r,z) and φ×

ν ′ (r,z) =
j×
�′(r,z) or h+×

�′ (r,z), respectively, given in Eqs. (54)–(57)
for which one can identify the label ν (ν ′) with � (�′).
Furthermore, these functions have pure spin-angular character
�′′. For that reason there is only one contribution to the sum
in Eq. (96) with �′′ = �′ = �. Making use of the standard
Wronskian of the nonrelativistic spherical Bessel and Hankel
functions [46] that is leading to the relation

Sκ (jl(x) h+
l̄

(x) − jl̄(x) h+
l (x)) = i

x2
, (97)

one finds for their relativistic counterparts as defined by
Eqs. (54)–(57)

[j×
� ,j�′] = [h×

�,h�′] = 0, (98)

[j×
� ,h�′] = −[h×

�,j�′] = w δ��′ , (99)

with

w = i

ζpr2
= i

p̄r2
, (100)

where ζ (z) = 1 + z/c2 [see Eq. (53)].
With the asymptotic behavior of the normalized functions

R�(r,z), H�(r,z), R×
�(r,z), and H×

� (r,z) given by Eqs. (61)–
(64), one has accordingly for �(r,r ′,z) = 0

[R×
�,R�′] = [H×

� ,H�′] = 0, (101)

[R×
�,H�′ ] = −[H×

� ,R�′] = w δ��′ . (102)

Because of the relation given by Eq. (94), this holds not only
for r > rcrit, but for all r .

As pointed out by Tamura [19], any general RHS and LHS
solutions ψν(r,z) and φ×

ν ′ (r,z) can be expanded in terms of the
normalized solutions R�(r,z) and H�(r,z), respectively,

ψν(r,z) =
∑
�

R�(r,z) C�ν(z) + H�(r,z) S�ν(z), (103)

φ×
ν ′ (r,z) =

∑
�

C×
ν ′�(z) R×

�(r,z) + S×
ν ′�(z) H×

� (r,z), (104)

with the expansion coefficients given by the Wronski relations

C�ν(z) = − 1

w
[H×

� ,ψν], (105)

S�ν(z) = 1

w
[R×

�,ψν], (106)

C×
ν ′�(z) = 1

w
[φ×

ν ′ ,H�], (107)

S×
ν ′�(z) = − 1

w
[φ×

ν ′ ,R�]. (108)

Because of the asymptotic behavior of R�(r,z) and H�(r,z)
[see Eqs. (61)–(64)] and the Wronski relations (98) and (99)
for the spherical functions, one has for the Wronski relation of
the solutions ψν(r,z) and φ×

ν ′ (r,z)

[φ×
ν ′ ,ψν] = w

∑
�

C×
ν ′�(z) S�ν(z) − S×

ν ′�(z) C�ν(z) (109)

that at the same time is given by Eq. (95). Imposing at
an arbitrary point r suitable values for the small and large
components of φ×

�(r,z) and ψ�′(r,z), respectively (indicated
by � and �′), Tamura could derive the following additional
Wronski relations of the second kind for the case of a local
potential [�(r,r ′,z) = 0] [19]:

w δ��′ = c
∑
�′′

gR×
�′�′′(r,z) f H

��′′(r,z)

− f R×
��′′ (r,z) gH

�′�′′ (r,z), (110)

−w δ��′ = c
∑
�′′

f R×
�′�′′ (r,z) gH

��′′(r,z)

− f H×
�′�′′ (r,z) gR

��′′(r,z), (111)

0 = c
∑
�′′

gR×
�′�′′(r,z) gH

��′′(r,z)

− gH×
�′�′′(r,z) gR

��′′(r,z), (112)

0 = c
∑
�′′

f R×
�′�′′ (r,z) f H

��′′(r,z)

− f H×
�′�′′ (r,z) f R

��′′(r,z), (113)

where the superscript R indicates for example that the small
component f R

�′�(r,z) belongs to the normalized function
R�(r,z).
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If one considers finally for the arbitrary RHS and LHS
functions ψν(r,z) and φ×

ν ′ (r,z) the case of a finite self-energy
represented by a 2 × 2 matrix function �(r,r ′,z) [third term
in Eqs. (29) and (35), respectively], one finds for the terms
related to this the contribution∑

��′
x×T

�ν ′(r,z)
∫

r ′2 dr ′ ���′(r,r ′,z) x�′ν(r ′,z)

− xT
�ν(r,z)

∫
r ′2 dr ′ �×

��′(r,r ′,z) x×
�′ν ′(r ′,z) (114)

This expression obviously vanishes only if g�ν(r,z) =
g×

�ν ′(r,z), f�ν(r,z) = f ×
�ν ′ (r,z), and �±

��′(r,r ′,z) =
�±

�′�(r ′,r,z). This means that the Wronskian of a RHS
and LHS solution will in general not be given by the simple
relation in Eq. (102). Due to this, the Wronskian relations of
second kind given by Eqs. (110)–(113) will also not hold with
important consequences for the expression for the single-site
Green function Gn(r,r ′,z) (see following).

Obviously, the expression in (114) involving the self-energy
�(r,r ′,z) vanishes for r > rcrit. For that reason, the Wronski
relation in Eq. (102) holds for r > rcrit even for a nonlocal
potential, i.e., in case of �(r,r ′,z) �= 0 for r and r ′ < rcrit.
This property can be exploited when calculating the t matrix
t��′ (see following). Assuming in addition that �(r,r ′,z) = 0
in the limit r and r ′ → 0, Eq. (102) holds also for this regime.
Expressing the asymptotic behavior of the wave functions
R�(r,z), H�(r,z), R×

�(r,z), and H×
� (r,z) in terms of the

enhancement factors α�′�(z), α×
��′(z), β�′�(z), and β×

��′(z),
as given by Eqs. (81), (82), (89), and (90), respectively one is
led for these factors to the relations∑

�′′
α×

��′′(z) β�′′�′(z) = δ��′ , (115)

∑
�′′

β×
��′′(z) α�′′�′(z) = δ��′ . (116)

These relations hold in particular for a local potential
[�(r,r ′,z) = 0 for any r and r ′] and connect the asymptotic
behavior of the regular and irregular wave functions R×

�(r,z)
and H�(r,z) as well as H×

� (r,z) and R�(r,z), respectively.
When dealing with matrix elements of the potential

V (r)δ(r,r ′) + �(r,r ′,z) as occurring in Eqs. (60), (71), (83),
or (91), that involve a LHS free-electron-like solution φ×

�′(r,z)
as given in Eqs. (54)–(57), i.e., φ×

�′(r,z) = j×
� (r,z), n×

�(r,z), or
h±×

� (r,z), it is in general possible to convert the volume integral
into a surface integral that in turn can be expressed by a cor-
responding Wronskian. This is achieved by expressing the in-
tegral

∫
d3r ′ [V (r)δ(r,r ′) + �(r,r ′,z)] ψ�(r ′,z) by means of

the RHS Dirac equation (24) and using the LHS Dirac equation
(31) for the free-electron solution φ×

�′(r,z) [Ĥ1(r) = Ĥ0(r)]:

I�′�(z) =
∫

d3r

∫
d3r ′ φ×

�′(r,z)

× [V (r)δ(r,r ′) + �(r,r ′,z)] ψ�(r ′,z)

= ic

{ ∫
r=rcrit

dr̂ r2 φ×
�′(r,z) αr ψ�(r,z)

− lim
r→0

∫
dr̂ r2 φ×

�′(r,z) αr ψ�(r,z)

}
(117)

= c
{
r2

crit

(
g

φ×
�′ (r,z) f

ψ

�′�(r,z)

− f
φ×
�′ (r,z) g

ψ

�′�(r,z)
)
r=rcrit

− lim
r→0

r2
(
g

φ×
�′

× (r,z) f
ψ

�′�(r,z) − f
φ×
�′ (r,z) g

ψ

�′�(r,z)
)}

(118)

= r2
crit [φ×

�′,ψ�]r=rcrit − lim
r→0

r2 [φ×
�′,ψ�]r , (119)

with g
φ×
�′ (r,z) = g

φ×
�′′�′(r,z) δ�′′�′ and f

φ×
�′ (r,z) =

f
φ×
�′′�′(r,z) δ�′′�′ . In an analogous way, one finds the relation

I×
��′(z) =

∫
d3r

∫
d3r ′ ψ×

� (r,z)[V (r)δ(r,r ′)

+�(r,r ′,z)] φ�′(r ′,z)

= c
{
r2

crit

(
g

ψ×
�′�(r,z) f

φ

�′(r,z) − f
ψ×
�′�(r,z) g

φ

�′(r,z)
)
r=rcrit

− lim
r→0

r2 (
g

ψ×
�′�(r,z) f

φ

�′(r,z) − f
ψ×
�′�(r,z) g

φ

�′(r,z)
)}

(120)

= r2
crit [ψ×

�,φ�′]r=rcrit − lim
r→0

r2 [ψ×
�,φ�′]r . (121)

It should be mentioned that converting the volume integrals
over an atomic cell (in general, a polyhedron) by means of
Gauss theorem, one is led to a complicated integral over the
surface of the cell [21]. As one has V (r)δ(r,r ′) + �(r,r ′,z) =
0 for r or r ′ outside the cell, the volume integral can be
performed over a sphere of radius rcrit that circumscribes the
cell. Accordingly, in this case the surface normal is always
parallel to r̂ leading to a very simple surface integral. The same
applies to the surface integral over the sphere with r → 0.

Applying Eq. (118) when dealing with the t matrix t�′�(z)
via Eq. (71) one has φ×

�(r,z) = j×
� (r,z) and ψ�(r,z) =

R�(r,z). In this case, the second term in Eq. (118) does not
contribute. Making use of the asymptotic behavior of R�(r,z)
for r > rcrit as given by Eq. (61), one is led to the identity
t�′�(z) = t�′�(z). This obviously confirms the consistency of
the various transformations leading to Eq. (118). In a similar
way, one can deal with the enhancement factor α�′�(z) as
given by Eq. (83). In this case, one has φ×

�(r,z) = h+×
�′ (r,z)

and ψ�(r,z) = R�(r,z). Expressing the asymptotic behavior
of R�(r,z) for r → 0 by means of Eq. (81), one gets α�′�(z) =
α�′�(z) confirming once more the coherence of the various
expressions. The same is true when dealing with Eqs. (85),
(91), and (92) for α×

�′�(z), β�′�(z), and β×
�′�(z), respectively,

using Eqs. (118) and (120). However, it should be stressed
that these equations are nevertheless quite helpful (see, for
example, Sec. IV).

F. Single-site Green function for a general potential

Inserting the regular and irregular solutions to the RHS and
LHS Dirac equations, R(r,z), H (r,z), R×(r,z), and H×(r,z),
respectively, specified by their asymptotic behavior r > rcrit

given by Eqs. (61)–(64), one can write the expression for the
single-site Green function Gn(r,r ′,z) in Eq. (59) in a compact
way:

Gn(r,r ′,z) = −ip̄
∑
�

R�(r,z) H×
� (r ′,z) θ (r ′ − r)

+H�(r,z) R×
�(r ′,z) θ (r − r ′). (122)
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Equation (122) holds by construction for r > rcrit and
r ′ > rcrit, i.e., it is a solution to the defining equations (16)
and (17) for the regime with V (r) = 0 and �(r,r ′,z) = 0.

For r < rcrit and r ′ > rcrit or r > rcrit and r ′ < rcrit,
Eq. (122) gives still the proper solution to Eqs. (15) and (16)
as the inhomogeneous term, i.e., the δ function does not show
up and the functions R�(r,z), H�(r,z), R×

�(r,z), and H×
� (r,z)

solve the corresponding RHS and LHS Dirac equations (24)
and (32), respectively. In addition, the Green function adopts
this way the required regular asymptotic behavior for r → 0.
For r < rcrit and r ′ < rcrit, however, the last property is no
more sufficient as the inhomogeneous term has to be recovered
when inserting Eq. (122) into Eq. (15) or (16). A proof that
this additional requirement is indeed satisfied by the product
representation for Gn(r,r ′,z) in Eq. (122) has been given
by Tamura [19] for the case of a local potential V (r), i.e.,
�(r,r ′,z) = 0. This proof relies on the fact that the RHS
and LHS solutions to the Dirac equation satisfy the Wronski
relation of second kind given by Eq. (110). This in turn is
ensured by the validity of the Wronski relation of the first
kind in Eqs. (101) and (102) that hold for any local potential.
For a nonlocal self-energy �(r,r ′,z) present, however, the
Wronski relation of first kind given by Eq. (96) does not hold
anymore because of the nonvanishing term in Eq. (114). As a
consequence, one has to conclude that the product ansatz for
the Green function given in Eq. (122) is no more acceptable
for a nonlocal self-energy. The same conclusion can be drawn
from an alternative proof that Eq. (122) is acceptable for a
local potential given in the Appendix.

As suggested by Eq. (58), an on-the-energy-shell repre-
sentation of the Green function can nevertheless be given
within the framework of scattering theory also for a finite
nonlocal self-energy �(r,r ′,z) without making use of the
spectral representation [see Eq. (19)]. Starting again from
Eq. (58) without restrictions concerning r and r ′, one is led to
an expansion of the Green function in terms of the Bessel and
Hankel functions

G(r,r ′) =
∑
��′

j�(r) G
jj

��′(r,r ′) j×
�′(r ′)

+ j�(r) G
jh

��′(r,r ′) h×
�′(r ′)

+h�(r) G
hj

��′(r,r ′) j×
�′(r ′)

+h�(r) Ghh
��′(r,r ′) h×

�′(r ′), (123)

with the expansion coefficient functions G
αβ

��′(r,r ′) [α (β) =
j, h] given as integrals involving the real-space representation
t(r,r ′,z) of the t operator [see right-hand side of Eqs. (A14)–
(A17) for explicit expressions]. While Eq. (123) clearly shows
that a scattering representation of the Green function can
indeed be given, it is not very helpful for practical applications
as it requires an explicit expression for t(r,r ′,z). A useful
expression for the single-site Green function Gn(r,r ′,z) for
the case �(r,r ′,z) �= 0 can nevertheless be deduced by making
use of the Dyson equation. Denoting G1(z) the Green function
operator connected with the HamiltonianH1 that contains only
the local potential, one has

Ĝn(z) = Ĝ1(z) + Ĝ1(z) �̂(z) Ĝn(z). (124)

This equation can be solved by a series expansion, i.e., by
inserting the equation repeatedly into itself leading to

Ĝn(z) = Ĝ1(z) + Ĝ1(z) �̂(z) Ĝ1(z)

+ Ĝ1(z) �̂(z) Ĝ1(z)�̂(z) Ĝ1(z) + · · ·
= Ĝ1(z) + Ĝ1(z) �t̂(z) Ĝ1(z) (125)

with

�t̂(z) = �̂(z) + �̂(z) Ĝ1(z)�̂(z)

+ �̂(z) Ĝ1(z)�̂(z) Ĝ1(z)�̂(z)

+ �̂(z) Ĝ1(z)�̂(z) Ĝ1(z)�̂(z) Ĝ1(z)�̂(z) + · · ·
= �̂(z) + �̂(z) Ĝ1(z) �t̂(z)

= [1 − �̂(z) Ĝ1(z)]−1 �̂(z) (126)

= �̂(z) [1 − Ĝ1(z) �̂(z)]−1, (127)

where �t̂(z) represents the correction to the single-site t-
matrix operator due to the nonlocal self-energy �̂(z).

The real-space representation of Eq. (124) can be reformu-
lated as follows:

Gn(r,r ′,z) = G1(r,r ′,z) +
∫

d3r ′′
∫

d3r ′′′ G1(r,r ′′,z)

×�(r ′′,r ′′′,z) Gn(r ′′′,r ′,z) (128)

= G1(r,r ′,z) − ip̄
∑
�

[
R1

�(r,z)
∫ rcrit

r

d3r ′′

×
∫

d3r ′′′H 1×
� (r ′′,z) �(r ′′,r ′′′,z) Gn(r ′′′,r ′,z)

+H 1
�(r,z)

∫ r

0
d3r ′′

∫
d3r ′′′R1×

� (r ′′,z)

×�(r ′′,r ′′′,z) Gn(r ′′′,r ′,z)

]
(129)

= G1(r,r ′,z) +
∑
�

R1
�(r,z) A1×

� (r,r ′,z)

+H 1
�(r,z) B1×

� (r,r ′,z) (130)

with the auxiliary functions

A1×
� (r,r ′,z) = −ip̄

∫ rcrit

r

d3r ′′
∫

d3r ′′′ H 1×
� (r ′′,z)

×�(r ′′,r ′′′,z) Gn(r ′′′,r ′,z), (131)

B1×
� (r,r ′,z) = −ip̄

∫ r

0
d3r ′′

∫
d3r ′′′ R1×

� (r ′′,z)

×�(r ′′,r ′′′,z) Gn(r ′′′,r ′,z). (132)

Here, we used the explicit expression for G1(r,r ′,z)

G1(r,r ′,z) = −ip̄
∑
�

R1
�(r,z) H 1×

� (r ′,z) θ (r ′ − r)

+H 1
�(r,z) R1×

� (r ′,z) θ (r − r ′) (133)

in terms of the regular and irregular wave functions R1
�(r,z),

H 1
�(r,z), R1×

� (r,z), and H 1×
� (r,z) connected with the local

Hamiltonian H1(r) in correspondence to Eq. (122) that holds
for any r and r ′.
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For r > rcrit and r ′ > rcrit, one may use for Gn(r,r ′,z)
the representation given in Eq. (122) in terms of the regular
and irregular wave functions R�(r,z), H�(r,z), R×

�(r,z), and
H×

� (r,z) connected with the full Hamiltonian H(r,r ′,z). With
this one finds immediately an explicit expression for the
angular momentum representation of �t̂(z):

�t��′(z) =
∫

d3r

∫
d3r ′

×R1×
� (r,z) �(r,r ′,z) R�′(r ′,z). (134)

Accordingly, the full t matrix t��′(z) can be obtained from

t��′(z) = t1
��′(z) + �t��′(z) (135)

with t1
��′(z) the t matrix corresponding to the local Hamilto-

nian H1(r). These relations fully coincide with those one is led
to if one calculates the regular function R�(r,z) connected with
the full Hamiltonian H(r,r ′,z) via the Lippmann-Schwinger
equation with the reference system referring to the local Hamil-
tonian H1(r) with its associated solutions R1

�(r,z), H 1
�(r,z),

R1×
� (r,z), and H 1×

� (r,z) (see Sec. IV D). Furthermore, one may
note that Eq. (134) is obviously the counterpart to Eq. (71) for
the full t matrix.

Obviously, the representation of the single-site Green
function Gn(r,r ′,z) given by Eq. (130) is not unique. Starting
from the alternative form of the Dyson equation

Ĝ(z) = Ĝ1(z) + Ĝ(z) �̂(z) Ĝ1(z), (136)

one would get the corresponding expressions

Gn(r,r ′,z) = G1(r,r ′,z) +
∑
�

A1
�(r,r ′,z) R1×

� (r ′,z) + B1
�(r,r ′,z) H 1×

� (r ′,z) (137)

with

A1
�(r,r ′,z) = −ip̄

∫ rcrit

r ′
d3r ′′

∫
d3r ′′′Gn(r,r ′′,z)�(r ′′,r ′′′,z) H 1

�(r ′′′,z), (138)

B1
�(r,r ′,z) = −ip̄

∫ r ′

0
d3r ′′

∫
d3r ′′′ Gn(r,r ′′,z)�(r ′′,r ′′′,z) R1×

� (r ′′′,z), (139)

�t��′(z) =
∫

d3r

∫
d3r ′R×

�(r,z) �(r,r ′,z) R1
�(r ′,z), (140)

where again one may note that Eq. (140) is obviously the counterpart to Eq. (76) for the full t matrix.
As Eq. (125) indicates, one can get a more symmetric representation for the single-site Green function Gn(r,r ′,z) in terms of

the solutions R1
�(r,z), H 1

�(r,z), R1×
� (r,z), and H 1×

� (r,z) associated with the local Hamiltonian H1(r) than given by Eqs. (130)
and (137). Performing a series expansion w.r.t. the self-energy, one is led to

Gn(r,r ′,z) =
∑
��′

R1
�(r,z) GRR

��′(r,r ′,z) R1×
�′ (r ′,z) +

∑
��′

R1
�(r,z) GRH

��′ (r,r ′,z) H 1×
�′ (r ′,z)

+
∑
��′

H 1
�(r,z) GHR

��′(r,r ′,z) R1×
�′ (r ′,z) +

∑
��′

H 1
�(r,z) GHH

��′(r,r ′,z) H 1×
�′ (r ′,z) (141)

with

GRR
��′(r,r ′,z) = (−ip̄)2

∫ rcrit

r

d3r1

∫ rcrit

r ′
d3r2 H 1×

� (r1,z)�(r1,r2,z) H 1
�′ (r2,z) + (−ip̄)2

∫ rcrit

r

d3r1

∫
d3r2

∫
d3r3

×
∫ rcrit

r ′
d3r4 H 1×

� (r1,z)�(r1,r2,z) G1(r2,r3,z)�(r3,r4,z) H 1
�′(r4,z) + · · · , (142)

GRH
��′(r,r ′,z) = (−ip̄)2

∫ rcrit

r

d3r2

∫ r ′

0
d3r1 H 1

�(r1,z)�(r1,r2,z) R1×
�′ (r2,z) + · · · − ip̄ δ��′ θ (r ′ − r), (143)

GHR
��′(r,r ′,z) = (−ip̄)2

∫ r

0
d3r1

∫ rcrit

r ′
d3r2 R1×

� (r1,z)�(r1,r2,z) H 1
�′(r2,z) + −ip̄ δ��′θ (r − r ′), (144)

GHH
��′(r,r ′,z) = (−ip̄)2

∫ r

0
d3r2

∫ r ′

0
d3r1 R1

�(r1,z)�(r1,r2,z) R1×
�′ (r2,z) + . . . , (145)

where the terms involving δ��′ represent the contributions
connected with G1(r,r ′,z) [see Eq. (133)].

Equation (141) together with Eqs. (142)–(145)) obviously
provides an explicit expression for the Green function in terms

of the solutions R1
�(r,z), H 1

�(r,z), R1×
� (r,z), and H 1×

� (r,z)
associated with H1(r). As these in turn can be expanded
w.r.t. the Bessel and Hankel functions [see the corresponding
expressions in Eqs. (A1), (A2), (A9), and (A10)], Eq. (141)
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could be expressed as well in terms of the Bessel and Hankel
functions. The new expansion coefficient functions obviously
correspond to those used in Eq. (123).

While Eqs. (130), (137), and (141) may be solved iteratively
or by summing up the series expansion, respectively, one
notes that the single-site Green function is not obtained as a
simple product representation as in Eq. (122) that completely
decouples the dependency on r and r ′. In fact, Zeller [51] has
given arguments that this convenient representation should not
exist for a self-energy that has no restrictions concerning its
dependency on r and r ′.

In the following, the special case of a self-energy �(r,r ′,z)
is considered that is represented by an expansion into a product
of basis functions φ�(r) according to Eq. (11). Inserting this
expression into Eq. (128) for the single-site Green function
G(r,r ′,z), one gets together with Eq. (133) for G1(r,r ′,z)

Gn(r,r ′,z) = G1(r,r ′,z)

+
∑
��′

[ ∫
d3r ′′ G1(r,r ′′,z) φ�(r ′′)

]

×���′(z)

[ ∫
d3r ′′′ φ†

�′(r ′′′)Gn(r ′′′,r ′,z)

]
(146)

= G1(r,r ′,z) +
∑
��′

ρ1
�(r,z)���′(z) ρ×

�′(r ′,z)

(147)

with the auxiliary function

ρ1
�(r,z) =

∫
d3r ′ G1(r,r ′,z) φ�(r ′) (148)

= −ip̄
∑
�1

[
R1

�1
(r,z)

∫ rcrit

r

d3r ′ H 1×
�1

(r ′,z) φ�(r ′′)

+H 1
�1

(r,z)
∫ r

0
d3r ′ R1×

�1
(r ′,z) φ�(r ′)

]
(149)

=
∑
�1

[
R1

�1
(r,z) C1

�1�
(r,z) + H 1

�1
(r,z) S1

�1�
(r,z)

]
(150)

that can be calculated directly for a self-energy as given by
Eq. (11). The remaining function ρ×

� (r,z) can be obtained
iteratively from the following expression:

ρ×
� (r,z) =

∫
d3r ′ φ†

�(r ′) Gn(r ′,r,z) (151)

=
∫

d3r ′ φ†
�(r ′) G1(r ′,r,z)

+
∑
�2

∑
�1

[ ∫
d3r ′ φ†

�(r ′) ρ�1 (r ′,z)

]

×��1�2 (z) ρ×
�2

(r,z) (152)

= ρ1×
� (r,z) +

∑
�1�2

〈φ�|ρ�1 (z)〉��1�2 (z) ρ×
�2

(r,z),

(153)

where ρ1×
� (r,z) is defined in analogy to Eqs. (148) and (151).

As in the case of Eq. (130), the representation for the
single-site Green function in Eq. (147) is obviously not unique.
Starting from the alternative form of the Dyson equation given
by Eq. (136), one would fix ρ1×

� (r,z) but would have to
determine ρ�(r,z), in analogy to Eq. (137), where ρ1×

� (r,z) and
ρ�(r,z) are again defined in analogy to Eqs. (148) and (151).

To get to a symmetric form for the single-site Green
function G(r,r ′,z), one may start from Eq. (128). Making
use of the expansion for the self-energy �(r,r ′,z) given by
Eq. (11) and inserting Eqs. (128) again and again into itself,
one is led to the following series expansion:

Gn(r,r ′,z) = G1(r,r ′,z) +
∑
��′

ρ1
�(r,z) ���′(z) ρ×

�′(r ′,z)

= G1(r,r ′,z) +
∑
��′

ρ1
�(r,z) ���′(z) ρ1×

�′ (r ′,z)

+
∑
��′

∑
�1�2

ρ1
�(r,z)���1 (z) G̃1

�1�2
(z)

×��2�′(z) ρ1×
�′ (r ′,z) + · · ·

= G1(r,r ′,z) +
∑
��′

ρ1
�(r,z) [�(z) + �(z) G̃

1
(z)

×�(z) + �(z) G̃
1
(z) �(z) G̃

1
(z) �(z)

+ · · · ]��′ρ1×
�′ (r ′,z)

= G1(r,r ′,z) +
∑
��′

ρ1
�(r,z) ���′(z) ρ1×

�′ (r ′,z),

(154)

where the underline indicates matrices w.r.t. the spin-angular
index �. The auxiliary Green function matrix G̃

1
(z) is defined

by the projection of the single-site Green function G1(r,r ′,z)
on to the basis functions φ�(r):

G̃1
��′(z) =

∫
d3r

∫
d3r ′φ†

�(r) G1(r,r ′,z) φ�′(r ′), (155)

while the matrix �(z) is given by

�(z) = �(z) + �(z) G̃
1
(z) �(z) + �(z) G̃

1
(z) �(z) G̃

1
(z)

×�(z) + · · · = �(z) + �(z) G̃
1
(z) [�(z) + �(z)

×G̃
1
(z) �(z) + �(z) G̃

1
(z) �(z) G̃

1
(z) �(z) + · · · ]

= �(z) + �(z) G̃
1
(z) �(z)

= (1 + �(z) G̃
1
(z))−1 �(z). (156)

Using now the expansion of ρ1
�(r,z) in terms of R1

�1
(r,z) and

H 1
�1

(r,z) as given in Eq. (150) together with its counterpart
for ρ1×

� (r,z), one can give the expansion coefficient functions
in Eq. (141) explicitly as

GRR
��′(r,r ′) = (−ip̄)2

∑
�′′�′′′

C1
��′′(r,z) ��′′�′′′ (z)C1×

�′′′�′(r ′,z),

(157)

GRH
��′(r,r ′) = (−ip̄)2

∑
�′′�′′′

C1
��′′(r,z) ��′′�′′′ (z) S1×

�′′′�′(r ′,z)

− ip̄ δ��′ θ (r ′ − r), (158)
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GHR
��′(r,r ′) = (−ip̄)2

∑
�′′�′′′

S1
��′′(r,z) ��′′�′′′ (z) C1×

�′′′�′(r ′,z)

− ip̄ δ��′ θ (r − r ′), (159)

GHH
��′(r,r ′) = (−ip̄)2

∑
�′′�′′′

S1
��′′(r,z) ��′′�′′′ (z)S1×

�′′′�′(r ′,z).

(160)

Comparing Eq. (156) with (126), one can see that the
renormalized self-energy matrix �(z) essentially corresponds
to the change in the t matrix �t(z) caused by the self-energy
matrix w.r.t. that for the local Hamiltonian.

Furthermore, one should mention that Eqs. (147) and (154)
clearly show that in case of a product representation of the self-
energy [see Eq. (11)], a product representation of the Green
function can be given as well. In fact, in this case the arguments
[51] given against a product representation as in Eq. (122) do
not apply anymore.

Recently, an alternative representation for the single-site
Green function has been suggested that is based on Krein’s
theorem [52,53]. While this scheme obviously allows to avoid
numerical problems connected with the irregular solutions to
the Dirac equation in particular in the case of full potential
calculations (see below), it will not be applicable in the most
general case as it is restricted to Hermitian Hamiltonians.

Finally, it should be noted that instead of working with
the set of functions R�(r,z), H�(r,z), R×

�(r,z), and H×
� (r,z)

specified by Eqs. (61)–(64) it is sometimes more convenient
to work with an alternative set of regular [Z�(r,z), Z×

�(r,z)]
and irregular [J�(r,z), J×

� (r,z)] functions that are related to
the original ones by the relations

R�(r,z) =
∑
�′

Z�′(r,z) t�′�(z), (161)

−ip̄H�(r,z) = Z�(r,z) −
∑
�′

J�′ (r,z) m�′�(z), (162)

R×
�(r,z) =

∑
�′

t��′(z) Z×
�′(r,z), (163)

−ip̄H×
� (r,z) = Z×

�′(r,z) −
∑
�′

m��′(z) J×
�′(r,z), (164)

where the matrix m(z) is the inverse of the single-site t matrix,
i.e., m��′(z) = (t−1(z))

��′ . The alternative set of functions
obviously have the asymptotic behavior for r > rcrit:

Z�(r,z) =
∑
�′

j�′(r,z) m�′�(z) − ip̄ h+
�(r,z), (165)

J�(r,z) = j�(r,z), (166)

Z×
�(r,z) =

∑
�′

m��′(z) j×
�′(r,z) − ip̄ h+×

� (r,z), (167)

J×
� (r,z) = j×

� (r,z). (168)

Starting from Eq. (122) and using the relations (161)–(164),
the single-site Green function Gn(r,r ′,z) can now be written
as

Gn(r,r ′,z) =
∑
��′

Z�(r,z) t��′(z) Z×
�′(r ′,z)

−
∑
�

[Z�(r,z) J×
� (r ′,z) θ (r ′ − r)

+ J�(r,z) Z×
�(r ′,z) θ (r − r ′)]. (169)

Here, it is interesting to note that Eq. (169) that is based on the
so-called Oak-Ridge-Bristol convention, i.e., normalization of
the wave function according to Eqs. (165)–(168), holds for
the case of an arbitrary t matrix. Originally, its nonrelativistic
counterpart was derived by assuming explicitly a symmetric t

matrix [54]. If one coherently distinguishes between the RHS
and LHS solutions and their associated Lippmann-Schwinger
equations, this restriction is obviously not necessary. It should
be emphasized once more that Eq. (169) as Eq. (122) holds for
any r and r ′ in case of a local Hamiltonian Ĥ1. In case of a
nonlocal self-energy involved in Ĥ, both equations hold only
if at least r or r ′ is larger than rcrit.

Finally, it should be noted that the normalization of the
regular and irregular wave functions according to Eqs. (61)–
(64) or alternatively according to Eqs. (165)–(168) are not
the only possible ones. Other sets of functions and with this
other representations of the Green function can be obtained
by imposing a suitable asymptotic behavior for the regular
functions and constructing the irregular functions accordingly
[21,55]. See also the Appendix concerning this.

G. Green function for extended systems

The multiple scattering or KKR formalism allows to obtain
the Green function of an extended system by introducing
the corresponding (total) t-matrix operator T̂ (z) and its
decomposition into the site (i,j ) resolved scattering path
operator τ̂ ij (z) [54]:

Ĝ(z) = Ĝ0(z) + Ĝ0(z) T̂ (z) Ĝ0(z), (170)

T̂ (z) =
∑
i,j

τ̂ ij (z) (171)

with the equations of motion

τ̂ ij (z) = t̂ i(z) δij + t̂ i(z) Ĝ0(z)
∑
k �=i

τ̂ kj (z) (172)

= t̂ i(z) δij +
∑
k �=j

τ̂ ik(z) Ĝ0(z) t̂ j (z) (173)

and the free-electron Green operator Ĝ0(z). In terms of the
single-site Green function for site n, Eq. (170) can be rewritten
as [54]

Ĝ(z) = Ĝn(z) + Ĝn(z) T̂nn(z) Ĝn(z) (174)

with the auxiliary operator

T̂nn(z) =
∑
i �=n

j �=m

τ̂ ij (z). (175)

To get the real-space representation of this expression, one
makes use of the single-site Green function connected with
site n according to Eqs. (122), (62), and (64):

Gn(r,r ′,z) = −ip̄
∑
�

R�(r,z) h+×
� (r ′,z) θ (r ′ − r)

+h+
�(r,z) R×

�(r ′,z) θ (r − r ′) (176)
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that is valid for either r ′ or r being outside the potential well
centered at site n. This leads to

G(r,r ′,z) = Gn(r,r ′,z) + (−ip̄)2
∫

dr ′′
∫

dr ′′′

×
∑
�

R�(r,z) h+×
� (r ′′,z)

∑
i �=n

j �=n

τ ij (r ′′,r ′′′,z)

×
∑
�′

h+
�′(r ′′′,z) R×

�′(r ′,z). (177)

Taking into account that τ ij (r,r ′,z) is zero for r (r ′) being
outside the atomic cell i (j ) and reexpanding the Hankel
functions h+×

� (r ′′,z) and h+
�′(r ′′′,z) around the sites i and

j , respectively, making use of the so-called real-space KKR
structure constants G0 nm

��′ (z) [43–45], one gets finally for the
site-diagonal Green function

G(r,r ′,z) = Gn(r,r ′,z) +
∑
��′

R�(r,z) Gnn
��′(z)R×

�′(r ′,z)

(178)

= Gn(r,r ′,z) +
∑
��′

Z�(r,z)

×[
τnn
��′(z) − tn��′(z)

]
Z×

�′(r ′,z) (179)

with r and r ′ lying both within the cell n. In the first expression
we used the so-called structural Green function matrix Gnm(z)
that is connected to the scattering path operator matrix by the
expression [56]

τnm(z) = tn(z) Gnm(z) tm(z) + tn(z) δnm. (180)

The second term in Eqs. (178) and (179) represents the
so-called backscattering contribution to the Green function,
that is given in terms of the regular RHS and LHS solutions
to the full Hamiltonian Ĥ(z) that may contain a nonlocal
self-energy. This means that in contrast to the single-site
Green function Gn(r,r ′,z), the conventional expression for
the backscattering Green function [54] is not affected by the
presence of a nonlocal but site-diagonal self-energy.

An expression for the so-called site-off-diagonal Green
function G(rn,rm,z) connected with sites n and m is derived
in analogy to the site-diagonal one [54] leading to

G(rn,rm,z) =
∑
��′

Rn
�(rn,z) Gnm

��′(z) R×m
�′ (rm,z) (181)

=
∑
��′

Zn
�(rn,z) τnm

��′(z) Z×m
�′ (rm,z), (182)

where cell-centered coordinates rn and rm have been used.
Again, the Green function is expressed in terms of the regular
RHS and LHS solutions to the full Hamiltonian Ĥ(z) that may
contain a nonlocal self-energy.

For the sake of completeness, we give the equation
of motion for the scattering path operator in its angular
momentum representation used in practice:

τ ij (z) = t i(z) δij + t i(z) G0(z)
∑
k �=i

τ kj (z) (183)

= t i(z) δij +
∑
k �=j

τ ik(z) G0(z) t j (z). (184)

For a finite system, these equations can be solved by a
simple matrix inversion. For a periodic system, a solution is
obtained by Fourier transformation. For other, more complex
geometries, corresponding techniques are available to solve
the multiple scattering problem [12,43–45].

IV. PRACTICAL ASPECTS

A. Computer codes to deal simultaneously
with the RHS and LHS radial equations

From the form of the radial Dirac equations (29) and (35)
for the RHS and LHS, respectively, solutions it is obvious that
the two sets of solutions can be obtained with one and the
same radial differential equation solver. Dealing with the LHS
equation, one has just to do the replacement

V ±
� �′(r) → V ±

�′ �(r), (185)

U� �′(r) → −U�′ �(r), (186)

�±
� �′(r,r ′,z) → �±

�′ �(r ′,r,z). (187)

Dealing with the regular solutions, one has to impose the
proper boundary conditions according to Eqs. (61) and (63),
respectively. To have the same form for these equations for
the RHS and LHS solutions, one may introduce for the sake
of convenience the auxiliary LHS t matrix t×��′(z) by the
definition

t×��′(z) = t�′�(z) (188)

that has no real physical meaning. Using t×��′(z) within
Eq. (63), one gets the same form as Eq. (61). As a consequence,
making the replacement for the potential matrix element
functions one can use one and the same computer routine
dealing with the RHS and LHS solutions including the
normalization of the wave function. In this case, Eq. (188)
can be used to check the consistency of the numerical results.
However, it should be stressed that the LHS t matrix t×��′(z)
has no other meaning and for that reason does not show up
otherwise as it can be clearly seen in particular from Eqs. (71),
(76), (183), and (184).

B. Direct solution of the radial Dirac equations
and calculation of the single-site t matrix

In the following, some schemes to deal with the RHS
and LHS radial Dirac equations given by Eqs. (29) and (35)
are briefly discussed (for alternative schemes and numerical
aspects, see also Refs. [57,58]). In the beginning, we restrict
to the case of a local potential, i.e., �(r,r ′,z) = 0. In this case,
one has to deal with sets of coupled differential equations, that
can be handled by standard techniques.

Starting the direct integration [59] of Eq. (29) or (35)
imposing regular boundary conditions at r = 0 [14,15], one
may get the unnormalized regular wave functions

φ�(r,z) =
∑
�′

φ�′�(r,z).

Using the auxiliary quantities

a�′�(z) = − ip̄r2
crit [h−

�′,φ�′�]r=rcrit ,

b�′�(z) = ip̄r2
crit [h+

�′,φ�′�]r=rcrit ,
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one can express the t matrix as [60]

t(z) = i

2p̄
(a(z) (b(z))−1 − 1). (189)

Using an alternative complete and linearly independent set
of arbitrarily normalized functions ψ� defined by

φ�(r,z) =
∑
�′

ψ�′ (r,z) γ�′�(z),

one can straightforwardly show that

t{φ}(z) = i

2p̄
(a{φ}(z) (b{φ}(z))−1 − 1)

= i

2p̄
(a{ψ}(z) (b{ψ}(z))−1 − 1)

with

a{φ}(z) = a{ψ}(z) γ (z),

b{φ}(z) = b{ψ}(z) γ (z).

This implies that Eq. (189) leads to the proper t matrix as long
as it is derived from a complete set of solutions being regular
at the origin.

C. Solution of the radial Dirac equations
using the variable-phase approach

As an alternative to the direct integration of Eqs. (29) and
(35), one may extend the variable-phase approach of Calogero
[61] in an appropriate way. Starting with the Lippmann-
Schwinger equation (67)

R�(r,z) = j�(r,z) +
∫ rcrit

0
d3r ′ G0(r,r ′,z) V (r ′) R�(r ′,z),

one may introduce a set of auxiliary functions R̃� by the
definition

R�(r,z) =
∑
�′

R̃�′(r,z) A�′�(z).

Setting for the unknown expansion coefficients

A�′�(z) = δ�′� − ip̄

∫ rcrit

0
d3r ′ h+×

�′ (r ′,z) V (r ′)

×
∑
�′′

R̃�′′(r ′,z) A�′′�(z), (190)

one gets a Volterra type of integral equation:

R̃�(r,z) = j�(r,z)

+ p̄
∑
�′

∫ r

0
d3r ′ N�′(r,r ′,z) V (r ′) R̃�(r ′,z)

with the auxiliary functions

N�(r,r ′,z) = n�(r,z) j×
� (r ′,z) − j�(r,z) n×

�(r ′,z),

where n�(r,z) and n×
�(r,z) are relativistic von Neumann

functions defined in analogy to Eqs. (54)–(57). Introducing
in addition the auxiliary functions

C�′�(r,z) = δ�′� − p̄

∫ r

0
d3r ′ n×

�′ (r ′,z) V (r ′) R̃�(r ′,z),

S�′�(r,z) = − p̄

∫ r

0
d3r ′ j×

�′(r ′,z) V (r ′) R̃�(r ′,z),

one finds the relation

R̃�(r,z) =
∑
�′

j�′(r,z) C�′�(r,z) − n�′(r,z) S�′�(r,z).

With the definition of A given by Eq. (190), one has

A−1
�′�(z) = δ�′� + ip̄

∫ rcrit

0
d3r ′ h+×

�′ (r ′,z)

×V (r ′)
∑
�′′

R̃�′′(r ′,z)

= C�′�(r,z) − i S�′�(r,z) for r � rcrit

or in matrix notation

A(z) = [C(rcrit,z) − i S(rcrit,z)]−1.

From the asymptotic form of the Lippmann-Schwinger equa-
tion, one finally finds for the t matrix

t(z) = − 1

p̄
S(rcrit,z) [C(rcrit,z) − i S(rcrit,z)]−1 .

It can be shown straightforwardly that this expression is
completely equivalent to that given by Eq. (189).

Here, it should be noted that Calogero extended the
variable-phase approach to deal with nonlocal potentials [61].
However, he considered only the nonrelativistic case with
no coupling of angular momentum channels. In fact, the
treatment of a nonspherical nonlocal potential by using the
variable-phase approach is not straightforward.

D. Solution of the radial Dirac equations
via Born series expansion

The Lippmann-Schwinger equation for the RHS and LHS
solutions can be solved alternatively by means of a Born
series as was demonstrated for the nonrelativistic [62,63] as
well as relativistic [22] case. Here, we give the extension
of this approach to the case of a finite self-energy. To
make use of this scheme, it is convenient to define the
intermediate reference (r) system by restricting to a local
spherical symmetric scalar potential and rotational symmetric
vector fields [see Eqs. (193)–(195)]. This means that the
remaining local potential functions �V (r) and the self-energy
are seen as an additional potential for the single-site problem.
Having solved the radial equations for the regular and irregular
solutions Rr

�(r,z) and Hr
�(r,z) for the reference system, its

single-site Green function is given by

Gr (r,r ′,z) = −ip̄
∑
�

Rr
�(r,z) Hr×

� (r ′,z) θ (r ′ − r)

+Hr
�(r,z) Rr×

� (r ′,z) θ (r − r ′),

where one does not have to distinguish the radial func-
tions for the RHS and LHS solutions, i.e., gr

�′�(r,z) ≡
gr×

�′�(r,z), etc. (see following). Using the auxiliary radial func-
tions P r

�′�(r,z) = rgr
�′�(r,z) and Qr

�′�(r,z) = crf r
�′�(r,z),

one finds for the regular RHS solution the following radial
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Lippmann-Schwinger equation:(
P�′�(r,z)

Q�′�(r,z)

)
=

(
P r

�′�(r,z)

Qr
�′�(r,z)

)
+

∑
�′′

{(
P r

�′�′′ (r,z)

Qr
�′�′′ (r,z)

)
A�′′�(r,z) +

(
P̃ r

�′�′′(r,z)

Q̃r
�′�′′(r,z)

)
B�′′�(r,z)

}
,

where P̃ r
�′�(r,z) and Q̃r

�′�(r,z) denote the radial functions connected with the large and small components of the irregular
solution Hr×

� (r,z) and the phase functional matrices:

A�′�(r,z) = −ip̄

∫ rcrit

r

dr ′∑
�′′�′′′

{
P̃ r

�′′�(r ′,z)�V +
�′′�′′′ (r ′)P�′′′�(r ′,z) + 1

c2
Q̃r

�′′�(r ′,z)�V −
�′′�′′′(r ′)Q�′′′�(r ′,z)

+ P̃ r
�′′�G

(r ′)
∫

dr ′′ �+
�′′�′′′(r ′,r ′′) P�′′′�(r ′′) + 1

c2
Q̃r

�′′�G
(r ′)

∫
dr ′′ �−

−�′′−�′′′ (r ′,r ′′) Q�′′′�(r ′′)
}
,

B�′�(r,z) = −ip̄

∫ r

0
dr ′∑

�′′�′′′

{
P r

�′′�′(r ′,z)�V +
�′′�′′′ (r ′)P�′′′�(r ′,z) + 1

c2
Qr

�′′�′(r ′,z)�V −
�′′�′′′ (r ′)Q�′′′�(r ′,z)

+P r
�′′�G

(r ′)
∫

dr ′′ �+
�′′�′′′(r ′,r ′′) P�′′′�(r ′′) + 1

c2
Qr

�′′�G
(r ′)

∫
dr ′′ �−

−�′′−�′′′ (r ′,r ′′) Q�′′′�(r ′′)
}

have been introduced.
Comparing the asymptotic behavior of the regular solutions

Rr
� for the reference system to that for the system including

�V and �, one is led to the simple expression for the t matrix

t��′(z) = t r��′(z) + �t��′(z) (191)

with

− ip̄ �t��′(z) = B��′(rcrit,z), (192)

where t r��′ is the t matrix of the reference system.

E. Wave-function coupling scheme
and full-potential picking rules

Making use of a muffin-tin or ASA geometry implies a
spherical symmetric spin-independent potential and rotational
symmetric vector fields according to

V̄ (r) = V̄ (r), (193)

B(r) = B̂ B(r), (194)

A(r) = Â A(r). (195)

Having the vectors B̂ and Â along ẑ or x̂, the potential
matrix functions are symmetric implying that one has not
to distinguish between RHS and LHS radial solutions. This
favorable situation can always be achieved by working in a
local frame with B̂||Â||ẑ′ or ||x̂ ′. Choosing ẑ′ has the great
advantage that one has the most simple coupling scheme for
the wave functions

φ�(r,z) =
∑
�′

φ�′�(r,z), φ = R,H,Z, or J.

Allowing only coupling with � l = 0, one has at most two
terms in the summation

∑
�′ [14,15] [see also Eq. (29)].

In case of a full-potential type calculation, the nonvanishing
terms V̄L(r), Bλ

L(r), and Aλ
L(r) occurring in Eqs. (44)–(46)

reflect the local symmetry of an atomic site. Accordingly, the
corresponding sets can be determined by application of the
so-called picking rules that depend on the various symmetry
operations being present in the local point group [64]. Table I
gives for the various possible symmetry elements the resulting

restriction for the nonvanishing expansion terms with angular
character L = (l,m). From this table, one can see that for the
presence of a mirror plane perpendicular to ŷ all expansion
terms with m(L) < 0 have to vanish. Thus, if there is a local
mirror plane σ one can work with a local frame of reference for
which σ ⊥ ŷ ′. As a consequence of this choice, one has again
the situation that all potential matrix elements are symmetric
and for that reason one has not to distinguish between RHS
and LHS solutions. This is illustrated by Fig. 1, that gives
the unit cell of a hcp solid for two different choices of the
coordinate system. According to the picking rules given in
Table I there will be only positive m values if the xz plane
is a mirror plane (left), while there will be positive, even
and negative, odd m values if the yz plane is a mirror plane
(right). This is confirmed by Table II that gives the allowed
(l,m) values for an expansion of the potential according to
Eq. (44) for these two equivalent descriptions of the system.
Obviously, the nonvanishing potential terms VL(r) determine
which potential matrix element functions V ±

� �′(r) are nonzero.
These in turn determine which � channels are coupled in the

TABLE I. Picking rule for L = (lm) for the expansion of a scalar
function in terms of real spherical harmonics Ylm(r̂) imposed by a
symmetry element. The parameters λ and μ specifying the allowed
quantum numbers (lm) in column 2 are integer numbers � 0 with μ

taking all values for which |m(μ)| � l holds [64].

Symmetry element Picking rule for L = (lm)

Inversion center (2λ,±μ)
n-fold rotation ‖ ẑ (l,±nμ)
n-fold rotation-inversion ‖ ẑ

n:even (2λ,±nμ);
[2λ + 1,±n(μ + 1

2 )]
n:odd (2λ,±nμ)
Twofold axis ‖ ŷ (2λ,+μ); (2λ + 1,−μ)
Twofold axis ‖ x̂ (l,l − 2μ); [l, − (l − 2μ + 1)]
Symmetry plane
⊥ ẑ [l,±(l − 2μ)]
⊥ ŷ (l,+μ)
⊥ x̂ (l,+2μ); (l,−2μ − 1)
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FIG. 1. Unit cell of a hcp solid with two different choices of the
coordinate system. In both cases, the z axis points out of the plane.

radial Dirac equations (29) and (35), i.e., which � channels
contribute to the expansion of the RHS and LHS solutions
in Eqs. (25) and (33). This information is given by the
wave-function coupling scheme shown in Fig. 2. Each letter
within a column (�) indicates a contribution φ�′�(r,z) to the
wave-function expansion. Columns with the same letter have
the same coupling sequence. In case of regular functions, these
solutions contribute to a common subblock of the t matrix.

V. SUMMARY

The full-potential version of relativistic multiple scattering
theory has been reviewed in detail and an extension to the case
of a nonlocal but site-diagonal complex self-energy �(r,r ′,z)
has been discussed. The properties of the right- (RHS) and
left-hand-side (LHS) solutions to the corresponding single-site
problem have been worked out. It was demonstrated that
the presence of a nonlocal self-energy has far-reaching
consequences for the construction of the associated single-site
Green function. In particular, it turned out that a simple
product representation of the single-site Green function in
terms of the RHS and LHS solutions can be given only if the
self-energy �(r,r ′,z) can be written as a product of suitable
basis functions w.r.t. its dependence on the spatial variables
r and r ′. Expressions for the single site Green function
could nevertheless be given in this work that are suitable for
numerical work even for that complex situation. Furthermore,
it was shown that in contrast to the single-site Green function,
the backscattering Green function representing the effect
of the environment can still be expressed as a product of
RHS and LHS solutions as in the case of a local potential.
Finally, some practical aspects of relativistic calculations for
a general potential have been discussed. In particular, the use

TABLE II. Nonvanishing elements VL(r) for the expansion of
the potential according to Eq. (44) for the atom shown in Fig. 1 at
the origin with the magnetization along the ẑ direction given for a
maximum angular momentum lmax = 8. The first and second rows
give the allowed values for m for the xz and yz planes, respectively,
being a mirror plane (σy and σx , respectively).

l 0 2 3 4 5 6 7 8

σy m 0 0 +3 0 +3 0 +3 0
(xz) +6 +6
σx m 0 0 −3 0 −3 0 −3 0
(yz) +6 +6

s1/2 p1/2 p3/2 d3/2 d5/2

s1/2 A A A
B B B

p1/2 C C C
D D D

E E E
p3/2 C C C

D D D
F F F

F F F
d3/2 A A A

B B B
E E E

D D D
F F F

d5/2 A A A
B B B

E E E
C C C

FIG. 2. Wave-function coupling scheme for the atom shown in
Fig. 1 at the origin with the magnetization along the ẑ direction
in the spin-angular representation, i.e., the rows and columns are
indexed with � = (κ,μ) given for a maximum angular momentum
lmax = 2. The subblocks denoted by s1/2 and so on correspond to
κ = +1, −1, +2, −2, and +3. Within each subblock, the magnetic
quantum number μ runs from −j to +j with j = |κ| − 1

2 . For each
column, the occurring letter indicates the nonvanishing contributions
φ�′�(r,z) to the sum

∑
�′ φ�′�(r,z). All columns having the same

letter contribute to a corresponding subblock of the t matrix.

of symmetry when dealing with the coupled radial equations
for the RHS and LHS solutions has been demonstrated.
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APPENDIX: PRODUCT REPRESENTATION OF THE
SINGLE-SITE GREEN FUNCTION

In the following, we consider first the single-site Green
function G(r,r ′,z) for the case of a general but local potential
V (r), i.e., �(r,r ′,z) = 0 will be assumed. Butler et al. [55]
showed for the corresponding nonrelativistic case that the
product representation for G(r,r ′,z) as given by Eq. (122)
is indeed a proper solution for the corresponding defining
Eq. (15) for any r and r ′. For the relativistic case, this proof
can be given in an analogous way, as it is shown in the
following. To simplify notation, the energy argument z will
be omitted throughout and the frequent factor −ip̄ will be
combined with the Hankel function [i.e., −ip̄h�(r) → h�(r)]

075145-17
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and correspondingly with all other irregular functions [H�(r)
and F�(r)] used in the following. In contrast to the nonrela-
tivistic case, the RHS and LHS solutions to the Dirac equations
have to be distinguished properly, with all quantities referring
to the LHS solution indicated by “×.”

Following the scheme of Butler et al. [55], we introduce an
alternative RHS solution φ�(r) to the Dirac equation (24) by
imposing the boundary condition

φ�(r) → j�(r) for r → 0.

Setting up the Lippmann-Schwinger equation for φ�(r) that
accounts for that asymptotic behavior one may express it in
terms of the Bessel and Hankel functions j�(r) and h�(r),
respectively, as

φ�(r) =
∑
�′

j�′(r) C�′�(r) + h�′(r) S�′�(r) (A1)

with the expansion coefficients

C�′�(r) = δ�′� −
∫ r

0
d3r ′h×

�′(r ′) V (r ′) φ�(r ′)

= C�′�(rcrit) +
∫ rcrit

r

d3r ′h×
�′(r ′) V (r ′) φ�(r ′),

S�′�(r) =
∫ r

0
d3r ′j×

�′(r ′) V (r ′) φ�(r ′)

and a corresponding expansion for the LHS regular solution
φ×

�(r):

φ×
�(r) =

∑
�′

C×
��′(r) j×

�′(r) + S×
��′(r) h×

�′(r) (A2)

with

C×
��′(r) = δ��′ −

∫ r

0
d3r ′φ×

�(r ′) V (r ′) h�′(r ′)

= C×
�′�(rcrit) +

∫ rcrit

r

d3r ′φ×
�(r ′) V (r ′) h�′(r ′),

S×
��′(r) =

∫ r

0
d3r ′φ×

�(r ′) V (r ′) j�′(r ′).

It should be mentioned that the expansion used here is
completely equivalent to that in terms of the Bessel and
von Neumann functions used in context of the variable-phase
approach of Calogero with the expansion coefficients C�′�(r)
and S�′�(r) redefined (see Sec. IV C).

Considering the behavior of these functions for r > rcrit one
finds the connection to the regular functions R�(r) and R×

�(r)
introduced in Eqs. (61) and (63), respectively:

R�(r) =
∑
�′

φ�′(r) C−1
��′(r), (A3)

R×
�(r) =

∑
�′

C×−1
��′ (r) φ×

�′(r) (A4)

as well as an expression for the t matrix in terms of the
expansion coefficients for r > rcrit:

t�′�′′ =
∑
�

S�′�(rcrit) C−1
��′′(rcrit), (A5)

t�′′�′ =
∑
�

C×−1
�′′� (rcrit) S×

��′(rcrit). (A6)

Replacing the regular function R�(r) [R×
�(r)] in Eq. (122) for

the Green function by φ�(r) [φ×
�(r)] via Eqs. (A3) and (A4)

implies a corresponding replacement of the irregular function
H×

� (r) [H�(r)] by its counterpart F×
� (r) [F�(r)] defined by

F�′(r) =
∑
�

H�(r) C×−1
��′ (r), (A7)

F×
�′(r) =

∑
�

C−1
�′�(r) H×

� (r). (A8)

Again, an expansion of these functions in terms of j�(r) and
h�(r) can be given starting from the corresponding Lippmann-
Schwinger equation and imposing the appropriate boundary
conditions

F�(r) =
∑
�′

j�′(r) C̄�′�(r) + h�′(r) S̄�′�(r) (A9)

with

C̄�′�(r) =
∫ rcrit

r

d3r ′h×
�′(r ′) V (r ′) F�(r ′),

S̄�′�(r) = C×−1
�′� (rcrit) −

∫ rcrit

r

d3r ′j×
�′(r ′) V (r ′) F�(r ′),

F×
� (r) =

∑
�′

C̄×
��′(r) j×

�′(r) + S̄×
��′(r) h×

�′(r) (A10)

with

C̄×
��′(r) =

∫ rcrit

r

d3r ′F×
� (r ′) V (r ′) h�′(r ′),

S̄×
��′(r) = C−1

��′(rcrit) −
∫ rcrit

r

d3r ′F×
� (r ′) V (r ′) j�′(r ′).

Inserting now the expansion given in Eqs. (A1), (A2), (A9),
and (A10) into the expression for the Green function

G(r,r ′) =
∑
�

φ�(r) F×
� (r ′) θ (r ′ − r)

+F�(r)φ×
�(r ′) θ (r − r ′), (A11)

one is led to a corresponding expansion for the Green function
in terms of j�(r) and h�(r):

G(r,r ′) =
∑

�′′�′′′

{
j�′′(r)

[∑
�

C�′′�(r)C̄×
��′′′(r ′)

]
j×
�′′′ (r ′) + j�′′(r)

[∑
�

C�′′�(r)S̄×
��′′′(r ′)

]
h×

�′′′(r ′)

+ h�′′(r)

[∑
�

S�′′�(r)C̄×
��′′′(r ′)

]
j×
�′′′ (r ′) + h�′′(r)

[∑
�

S�′′�(r)S̄×
��′′′(r ′)

]
h×

�′′′(r ′)

}
θ (r ′−r)
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+
∑

�′′�′′′

{
j�′′ (r)

[∑
�

C̄�′′�(r) C×
��′′′(r ′)

]
j×
�′′′ (r ′) + j�′′(r)

[∑
�

C̄�′′�(r) S×
��′′′(r ′)

]
h×

�′′′(r ′)

+,h�′′ (r)

[∑
�

S̄�′′�(r) C×
��′′′(r ′)

]
j×
�′′′(r ′) + h�′′(r)

[∑
�

S̄�′′�(r) S×
��′′′(r ′)

]
h×

�′′′(r ′)

}
θ (r−r ′). (A12)

To evaluate these expressions it is helpful to use in addition the following Lippmann-Schwinger equations:

R�(r) = j�(r) +
∫ rcrit

0
d3r ′ G(r,r ′) V (r ′) j�(r ′),

F�(r) = h�(r) +
∫ rcrit

0
d3r ′ G(r ′,r) V (r ′) h�(r ′)

as well as their counterparts for the LHS solutions R×
�(r) and F×

� (r) together with the relation for the t-matrix operator

t̂ = V̂ + V̂ Ĝ V̂ . (A13)

The sums [...] in Eq. (A12) can now be reformulated more or less the same way as sketched in the Appendix of Ref. [55] for the
nonrelativistic case, however, taking the difference between RHS and LHS solutions into account. This way one can express the
various sums [...] in Eq. (A12) in terms of the real-space representation of the t-matrix operator∑

�′′
C��′′(r) C̄×

�′′�′(r ′) =
∑
�′′

C̄��′′(r) C×
�′′�′(r ′) =

∫ rcrit

r

d3r1

∫ rcrit

r ′
d3r2 h×

�(r1) t(r1,r2) h�′(r2) = G
jj

��′(r,r ′), (A14)

∑
�′′

C��′′(r) S̄×
�′′�′(r ′) =

∑
�′′

C̄��′′(r) S×
�′′�′(r ′) =

∫ rcrit

r

d3r1

∫ r ′

0
d3r2 h×

�(r1) t(r1,r2) j�′(r2) + δ��′ θ (r ′ − r)

= G
jh

��′(r,r ′), (A15)∑
�′′

S��′′(r) C̄×
�′′�′(r ′) =

∑
�′′

S̄��′′ (r) C×
�′′�′(r ′) =

∫ r

0
d3r1

∫ rcrit

r ′
d3r2 j×

� (r1) t(r1,r2) h�′(r2) + δ��′ θ (r − r ′)

= G
hj

��′(r,r ′), (A16)

∑
�′′

S��′′ (r) S̄×
�′′�′(r ′) =

∑
�′′

S̄��′′ (r) S×
�′′�′(r ′) =

∫ r

0
d3r1

∫ r ′

0
d3r2 j×

� (r1) t(r1,r2) j�′(r2) = Ghh
��′(r,r ′). (A17)

This result is exactly what has to be expected on the basis of
the representation of the Green function G(r,r ′) in terms of
the t matrix and the free-electron Green function G0(r,r ′)
as given in Eq. (58). Inserting the explicit expression for
G0(r,r ′) in terms of the Bessel and Hankel functions [see
Eq. (51)] into Eq. (58) one is led to the expression for the
Green function G(r,r ′) in terms of j�(r) and h�(r) with
the expansion coefficients given by the integrals as listed in
Eqs. (A14)–(A17). This direct derivation of the integral form
of the expansion coefficients G

αβ

��′(r,r ′) (α, β = j, h) does
obviously not depend on the specific form of the potential. For
that reason, these expressions have to hold also for the more
general situation of a nonlocal potential (see following).

The expansion of the Green function given by Eq. (A12)
allows now straightforwardly to demonstrate that Eq. (15)
is solved for any r and r ′. For r �= r ′ this is ensured by
constructing G(r,r ′) in terms of RHS and LHS solutions to
the corresponding Dirac equations. For r = r ′ the inhomo-
geneity represented by the δ function has to be recovered in
addition. To demonstrate this, one integrates Eq. (15) w.r.t.
r over the interval [r ′ − ε,r ′ + ε] and takes the limit ε → 0
afterwards. For this purpose, it is advantageous to split the
Dirac Hamiltonian in Eq. (24) into the term involving the

radial derivative Ĥrad(r) = −ic αr
∂
∂r

and the remaining rest
Ĥrest(r) = Ĥ(r) − Ĥrad(r). Here, we combined γs σr used in
Eq. (6) to −αr = −α · r/r [23]. With this one has

−
∫ r ′+ε

r ′−ε

dr Ĥrad(r) G(r,r ′) +
∫ r ′+ε

r ′−ε

dr (z − Ĥrest(r))G(r,r ′)

=
∫ r ′+ε

r ′−ε

dr δ(r − r ′)14.

As G(r,r ′) is continuous at r = r ′ w.r.t. r the second integral
will vanish for ε → 0. Using the relation δ(r − r ′) = 1

r2 δ(r −
r ′) δ(r̂ ,r̂ ′) for the δ function, one gets

−
∫ r ′+ε

r ′−ε

dr
(

− ic αr

∂

∂r

)
G(r,r ′)

=
∫ r ′+ε

r ′−ε

dr
1

r2
δ(r − r ′)δ(r̂ ,r̂ ′)14

−ic αr [G(r ′ + ε,r ′) − G(r ′ − ε,r ′)] = 1

r ′2 δ(r̂ ,r̂ ′)14.

Inserting now the expansion of G(r,r ′) in terms of j� and h�

as given by Eq. (A12) and making use of Eqs. (A14)–(A17),
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one is led in the limit ε → 0 to

− ic αr

∑
�

(j�(r)h×
�(r ′) − h�(r)j×

� (r ′)) = 1

r ′2 δ(r̂ ,r̂ ′)14.

(A18)

The expression on the left-hand side can be evaluated straight-
forwardly using the definition of αr together with Eq. (27).
Finally, making use of the Wronskian of the Bessel and Hankel
functions (with the latter ones including in this section the
factor −ip̄) given by Eq. (99) together with the relations∑

�

χ�(r̂) χ
†
�(r̂ ′) =

∑
�

χ−�(r̂) χ
†
−�(r̂ ′) = δ(r̂ ,r̂ ′)12,

the equivalency of the left- and right-hand sides of Eq. (A18)
can be demonstrated completing the proof this way.

To investigate whether the product representation of
G(r,r ′) given by Eq. (122) is also a proper solution for
the defining Eq. (15) for a nonlocal potential V(r,r ′) =
V (r) δ(r − r ′) + �(r,r ′), one may generalize the expansion
of the various wave functions in terms of j�(r) and h�(r) in
an appropriate way. For example, for the expansion coefficient
C�′�(r) of φ�(r) in Eq. (A1) one gets

C�′�(r) = δ��′ −
∫ r

0
d3r ′h×

�′(r ′)
∫ rcrit

0
d3r ′′V(r ′,r ′′) φ�(r ′′).

Considering now, for example, the case r ′ > r , this together
with a corresponding expression for C̄×

�′�(r) leads to∑
�′′

C��′′(r) C̄×
�′′�′(r ′)

=
∑
�′′

[
δ�′′� −

∫ r

0
d3r1 h×

�(r1)
∫ rcrit

0
d3r2V(r1,r2)φ�′′(r2)

]

×
[ ∫ rcrit

r ′
d3r3,F

×
�′′(r3)

∫ rcrit

0
d3r4V(r3,r4)h�′(r4)

]
.

In contrast to the case of a local potential V (r), the restriction
r3 � r ′ > r � r2 does not hold anymore. As a consequence,
the combined term

∑
�′′

φ�′′(r2)F×
�′′(r3) cannot be identified

with the Green function G(r2,r3) anymore. Due to this,
the sum

∑
�′′

C��′′(r) C̄×
�′′�′(r ′) is not identical to the integral∫ rcrit

r
d3r1

∫ rcrit

r ′ d3r2 h×
�(r1) t(r1,r2) h�′(r2). As this is required

also for the case of a nonlocal potential (see above), the product
representation for the Green function given in Eq. (A11) cannot
be valid in case of a nonlocal potential. This obviously also
applies if an expansion of the self-energy in terms of basis
functions as given by Eq. (11) is assumed. In this case, the
double integral over r1 and r2 and also that over r3 and
r4 factorize, but the above-mentioned necessary restriction
concerning r2 and r3 still does not hold.
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