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Ground-state and spectral signatures of cavity exciton-polariton condensates
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We propose a projector-based renormalization framework to study exciton-polariton Bose-Einstein conden-
sation in a microcavity matter-light system. Treating Coulomb interaction and electron-hole/photon coupling
effects on an equal footing, we analyze the ground-state properties of the exciton-polariton model according to
the detuning and the excitation density. We demonstrate that the condensate by its nature shows a crossover from an
excitonic insulator (of Bose-Einstein, respectively, BCS type) to a polariton and finally photonic condensed state
as the excitation density increases at large detuning. If the detuning is weak, polariton or photonic phases dominate.
While in both cases a notable renormalization of the quasiparticle band structure occurs that strongly affects
the coherent part of the excitonic luminescence, the incoherent wave-vector-resolved luminescence spectrum
develops a flat bottom only for small detuning.
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I. INTRODUCTION

For several decades, there has been a considerable research
effort to find Bose-Einstein condensation (BEC) in a solid-state
system [1,2]. That excitons in semiconductors might condense
into a macroscopic phase-coherent ground state was theoreti-
cally proposed about 50 years ago [3,4]. Experimentally, this
has proved challenging, mainly because excitons are normally
formed by optical excitations, and a cold degenerate Bose gas
of sufficiently high density needs to be prepared on a shorter
time scale than the excitons can decay in Ref. [5]. At high
densities, however, very efficient exciton-exciton annihilation
processes set in whose rates scale with the square of the exciton
density. As a result, to date, all attempts to create a dense gas
of excitons in a bulk crystal, e.g., in Cu2O, or in a potential trap
did not demonstrate conclusively excitonic BEC (for a recent
review, see, e.g. Ref. [6]).

Different from optically created exciton condensates, the
exciton insulator (EI) constitutes a quantum condensed state
in equilibrium [7–9]. In this case, at low temperatures,
electronic correlations can cause an anomaly at the semimetal-
semiconductor transition that triggers an excitonic instability
where the conventional ground state of the crystal becomes
unstable with respect to the spontaneous formation of ex-
citons. Depending on from which side of the semimetal-
semiconductor transition the EI is approached, the EI typifies
either as a BCS condensate of loosely bound electron-hole
pairs or as a Bose-Einstein condensate of preformed tightly
bound excitons [10,11]. Although there are some EI materials
under debate [12–14], again we have no positive experimental
proof of such an excitonic condensate.

In contrast, polaritons in semiconductor microcavities have
been observed to exhibit BEC [15,16]. These experiments
have been performed in the low-density regime; the polaritons
are nonetheless not ideal (noninteracting) bosons. Besides,
the polariton system is neither conservative nor in thermal
equilibrium with the phonon (heat) bath. Even so, semicon-

ductor exciton polaritons constitute a promising system to
explore the physics of Bose gases, but in a stronger interaction
regime [17]. Thereby, the excitonic (bound electron-hole pair)
“matter” component and the strongly confined (photon-field)
“light” component should be preferably treated on an equal
footing. Likewise, the cases of low- and high-excitation
densities should be described in a consistent scheme. Thereby
the relationship between a polariton BEC, polariton, and
photon lasing has to be clarified [18,19]. Here, a natural way is
to analyze the luminescence spectrum of the system [20–22].

In this work, we investigate a many-body Hamiltonian
describing a coupled electron-hole/photon system in a micro-
cavity. In addition to the lattice periodic potential, the electrons
and holes experience a Coulomb interaction and a coupling
to the light field. In the past, mean-field theories have been
used to study the limits of low-excitation densities [23] and
high-excitation densities [24] separately. An extension to the
medium-density regime has been addressed more recently
by use of a variational (mean-field) treatment [18]. Here,
we employ a projector-based renormalization method (PRM)
[25–27] that allows to incorporate fluctuation processes be-
yond mean field in the entire excitation density range and
treats the Coulomb interaction on an equal footing with the
light-matter coupling. Moreover, depending on the bare band
structure (semiconducting or semimetallic) and the detuning,
we can address the formation of (BEC- or BCS-type) exci-
tonic (insulator) phases, polariton and photonic condensates.
Assuming that the polariton lifetime is longer than the
thermalization time, we will first analyze the ground-state
properties of the microcavity polariton system [18,28]. Since
the PRM permits the calculation of spectral properties as well,
in a second step, we will evaluate the excitonic luminescence.
The paper is organized as follows. In Sec. II, we will introduce
the exciton-polariton model and present its mean-field solution
to set the stage for the more elaborate PRM treatment outlined
in Sec. III. Details of the PRM calculation can be found in the
Appendixes. The numerical results are discussed in Sec. IV.

2469-9950/2016/93(7)/075138(17) 075138-1 ©2016 American Physical Society

http://dx.doi.org/10.1103/PhysRevB.93.075138


VAN-NHAM PHAN, KLAUS W. BECKER, AND HOLGER FEHSKE PHYSICAL REVIEW B 93, 075138 (2016)

Here, in particular, the behavior of the excitonic/photonic order
parameters will be diagramed, just as the particle/photon ex-
citation densities. Moreover, the luminescence spectra will be
presented, both wave-vector resolved and integrated. Section V
contains a brief summary and our main conclusions.

II. EXCITON-POLARITON MODEL

In the following, we study a model Hamiltonian for a polari-
ton system in a semiconductor microcavity, which is in thermal
equilibrium. Although experiments are usually performed
away from equilibrium, there are reasons also to study the
stationary state of a closed microcavity polariton system which
appears to be well described by its ground state [18]. On the one
hand, the quality of microcavity fabrication and of mirrors will
improve, so that the experimental situation becomes closer to
thermal equilibrium. On the other hand, thermal equilibrium
may be considered as the limiting case of a nonequilibrium
situation. This is the case when the decay rates for the loss of
cavity photons and of fermions, for instance due to phonons or
impurities, into external bath variables become small [28,29].

A model which is commonly used to describe such a
microcavity polariton system is based on the Hamiltonian [18]

H = Hel + Hph + Hel-ph + Hel-el. (1)

The first term Hel considers spinless free conduction electrons
and valence holes with creation and annihilation operators
e

(†)
k ,h

(†)
k :

Hel =
∑

k

εe
ke

†
kek +

∑
k

εh
kh

†
khk , (2)

εe
k = −2t

D∑
i

cos ki + Eg + 4tD − μ

2
= εh

k , (3)

where symmetric tight-binding dispersions εe
k = εh

k for the
respective excitation energies were assumed. In Eq. (3), t
denotes the particle transfer amplitude, Eg gives the minimum
distance (gap) between the bare electron and hole bands, and
D is the dimension of the hypercubic lattice. Note that a
semimetallic setting occurs when Eg < 0.

The second term Hph is the free-photon Hamiltonian with
photon creation (annihilation) operators ψ

†
q (ψq):

Hph =
∑

q

ωqψ
†
qψq, (4)

ωq =
√

(cq)2 + ω2
c − μ . (5)

Here, ωq is the photonic excitation energy with a zero-point
cavity frequency ωc, and c is the speed of light in the
microcavity.

The last two terms in Hamiltonian (1) are a local (attractive)
Coulomb interaction between electrons and holes and a local
interaction between the electron-hole system and photons with
coupling constant g:

Hel-el = −U

N

∑
k

ρe
kρ

h
−k , (6)

Hel-ph = − g√
N

∑
qk

[e†k+qh
†
−kψq + H.c.], (7)
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FIG. 1. Microcavity exciton-polariton model (1) studied in this
work. Panel (a) represents the light-matter interaction processes
taken into account. Panel (b) gives the band structure and relevant
energy scales for a semiconducting situation. In panels (c) and (d), a
semimetal with Eg < 0 (overlapping bands) is realized which might
exhibit an excitonic instability that transforms the systems into an
excitonic insulator [26].

where densities for electrons and holes have been introduced
ρe

k = ∑
k1

e
†
k+k1

ek1
and ρh

k = ∑
k1

h
†
k+k1

hk1
. In principle, ad-

ditional electron-electron and hole-hole Coulomb interactions
might have been taken into account in Eq. (6). However,
they only lead to mere shifts in the one-particle dispersions
εe

k and εh
k since spinless electrons and holes as well as a

wave-vector-independent Coulomb coupling U are considered
in model (1).

Note that in Eqs. (3) and (5) a chemical potential μ was
included to ensure that the total number of excitations

Nexc =
∑

q

ψ†
qψq + 1

2

∑
k

(e†kek + h
†
khk) (8)

is fixed. Clearly, Nexc is conserved for Hamiltonian H.
Apparently, the influence of Hel-ph becomes most important

when the excitation energy of a particle-hole pair roughly
agrees with a photon excitation. Therefore, for later interpre-
tation of this effect one best introduces the so-called detuning
parameter [18]

d = ωc − Eg . (9)

Figure 1 illustrates the model under consideration.
Let us proceed by separating the mean-field approximation

from model (1). Introducing the normal ordering for the
operator expressions in Hel-el and Hel-ph:

: e
†
k1+kek1h

†
k2−khk2

:

= e
†
k1+kek1h

†
k2−khk2 − δk,0

(
ne

k1
: h

†
k2

hk2 : +nh
k2

: e
†
k1

ek1 :
)

−δk1,−k2

(
dk1+k : h−k1

ek1 : +dk1
: e

†
k1+kh

†
−k1−k :

)
, (10)
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: e
†
q+kh

†
−kψq :

= e
†
q+kh

†
−kψq − δq,0(dk : ψ0 : +〈ψ0〉 : e

†
kh

†
−k :). (11)

Hamiltonian (1) is rewritten as

H = H0 + H1 (12)

with

H0 =
∑

k

ε̂e
ke

†
kek +

∑
k

ε̂h
kh

†
khk +

∑
q

ωqψ
†
qψq

+�
∑

k

(e†kh
†
−k + H.c.) + (

√
N�ψ

†
0 + H.c.), (13)

H1 = − g√
N

∑
kq

(: e
†
q+kh

†
−kψq : +H.c.)

− U

N

∑
k1k2k

: e
†
k1+kek1

h
†
k2−khk2

: . (14)

Additional constants have been neglected. In H0 the electronic
excitation energies have acquired Hartree shifts

ε̂e
k = εe

k − U

N

∑
q

nh
q, (15)

ε̂h
k = εh

k − U

N

∑
q

ne
q, (16)

with

ne
k = 〈e†kek〉, nh

k = 〈h†
khk〉. (17)

The last two contributions in H0 are additional fields with
prefactors which will act below as order parameters for the
exciton-polariton condensate:

� = − g√
N

〈ψ0〉 − U

N

∑
k

dk, (18)

� = − g

N

∑
k

dk, (19)

dk = 〈e†kh†
−k〉 = 〈h−kek〉 = d∗

k . (20)

Note that Hamiltonian H = H0 + H1, with H0 and H1 given
by Eqs. (13) and (14), is still exact. The mean-field approx-
imation is obtained by completely neglecting the fluctuation
part H1, i.e., HMF = H0. However, in the following we are
mostly interested in the influence of fluctuation contributions
to the physical behavior of an exciton-polariton condensate.
Therefore, Hamiltonian H1 has to be taken into account.

Expression (13) for H0 can be further simplified since
the terms ∝ψ

†
0 and ∝ψ0 can be eliminated by defining new

displaced photon operators

	†
q = ψ†

q +
√

N�

ωq=0
δq,0 . (21)

Then,

H0 =
∑

k

ε̂e
ke

†
kek +

∑
k

ε̂h
kh

†
khk +

∑
q

ωq	
†
q	q

+�
∑

k

(e†kh
†
−k + H.c.) (22)

and

H1 = − g√
N

∑
kq

[: e
†
q+kh

†
−k	q : +H.c.]

− U

N

∑
k1k2k

: e
†
k1+kek1

h
†
k2−khk2

: , (23)

where the shift from Eq. (21) cancels in the first normal order
product term of H1. Moreover, the electronic part of H0 can
be diagonalized by means of a Bogoliubov transformation
(compare Appendix A).

III. INFLUENCE OF FLUCTUATION PROCESSES

In mean-field treatment fluctuation processes from H1 are
completely neglected. In the following, we apply the projective
renormalization method [25] (PRM) in order to evaluate
the order parameters, the electron and photon densities, and
the response functions A(k,ω) and B(q,ω) of the exciton
polarization and the cavity photon mode, respectively, for
the case that H1 is included. The technical details of this
calculation are shifted to Appendix B. The general concept
of the PRM is as follows: the presence of the interaction H1

usually prevents a straightforward solution of the Hamiltonian
H = H0 + H1. However, by integrating out the interaction
H1, the Hamiltonian can be transformed into a diagonal (or at
least quasidiagonal) form by applying a sequence of small
unitary transformations to H. Denoting for a moment the
corresponding generator of the whole sequence by X = −X†,
it is shown in Appendix B how one arrives at an effective
Hamiltonian H̃ = eXHe−X, which has the same operator
structure as Hamiltonian H0 from Eq. (22):

H̃ =
∑

k

ε̃e
ke

†
kek +

∑
k

ε̃h
kh

†
khk +

∑
q

ω̃q	̃
†
q	̃q

+
∑

k

�̃k(e†kh
†
−k + H.c.). (24)

Here, 	̃
†
q is defined by 	̃

†
q = ψ

†
q + (

√
N�̃/ω̃q=0)δq,0 and

ε̃e
k,ε̃

h
k,ω̃q, and �̃k are parameters which are renormalized in

the elimination process. They have to be determined self-
consistently by taking into account contributions to infinite
order in the interactionH1. The PRM ensures a well-controlled
disentanglement of higher-order interaction terms within the
elimination procedure.

We would like to emphasize that the renormalized quantities
�̃k just as �̃ in 	q play the role of exciton-polariton order
parameters for the full system (1). Thereby, both types of
interactions contribute. In particular, both Hel-ph and Hel-el

make contributions to �̃k, where their mutual influence in the
formation of a condensate will be of interest. On the other hand,
the shift ∼�̃ in 	q alone leads to a polarization of the photonic
subsystem. In case the detuning parameter d [Eq. (9)] is small,
the tendency for the formation of a photonic condensate is
expected to be enhanced. In contrast, for large d the photonic
contribution to �̃ should be small, at least for a not too large
excitation density nexc = 1

N
〈Nexc〉.

The PRM also allows to evaluate expectation values 〈A〉,
formed with the full Hamiltonian H. Thereby, one uses the
property of unitary invariance of operator expressions under
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a trace. Employing the same unitary transformation to A as
before to the Hamiltonian, one finds 〈A〉 = 〈Ã〉H̃, where the
expectation value on the right-hand side is now formed with
H̃, and Ã = eXAe−X. Just as H0 before also Hamiltonian
H̃ can be transformed into a diagonal form by a Bogoliubov
transformation. Therefore, any expectation value, formed with
H̃, can be evaluated.

As a first example, let us consider the response function
for the excitonic polarization A(k,ω), which is defined by the
following linear response:

A(k,ω) = 1

2π

∫ ∞

−∞
〈[bk(t),b†k]−〉 eiωtdt, (25)

with respect to an external k- and ω-dependent field. Here, b
†
k

is the excitonic creation operator

b
†
k = 1√

N

∑
q

e
†
k+qh

†
−q. (26)

Applying the unitary invariance of operator expressions under
a trace, A(k,ω) is rewritten as

A(k,ω) = 1

2π

∫ ∞

−∞
〈[b̃k(t),b̃†k]−〉H̃ eiωtdt, (27)

where the expectation value is now formed with H̃ instead of
with H. Correspondingly, b̃

(†)
k are the transformed electron

operators, b̃
(†)
k = eXb

(†)
k e−X, and the time dependence in

Eq. (27) is governed by H̃ as well. Explicit expressions for both
coherent and incoherent contributions to A(k,ω) are derived
in Appendix B.

We note that A(k,ω) is not a positive-definite spectral
function. However, A(k,ω) divided by ω has a positive sign
for all ω, i.e., A(k,ω)/ω � 0. The quantity A(k,ω) has the
advantage that it fulfills a simple sum rule∫ ∞

−∞
A(k,ω)dω = 1

N

∑
k′

[
1 − (

ne
k′ + nh

k′
)]

(28)

(independent of k), which will be used in the following to
check the outcome of the numerics.

As a second example, we will evaluate the response function
of the cavity photon mode, which is sometimes called just
luminescence function

B(q,ω) = 1

2π

∫ ∞

−∞
〈[ψq(t),ψ†

q]−〉 eiωtdt. (29)

Applying the unitary transformation it can be written as

B(q,ω) = 1

2π

∫ ∞

−∞
〈[ψ̃q(t),ψ̃†

q]−〉H̃ eiωtdt, (30)

where ψ̃
†
q is the fully transformed photon mode. B(q,ω) will

be evaluated in Appendix B as well. Note that B(q,ω) obeys
the sum rule

∫ ∞
−∞ B(q,ω)dω = 1.

IV. NUMERICAL RESULTS

In the numerical evaluation of the various physical quanti-
ties from Sec. III one has to solve the set of renormalization
equations (B12)–(B17) self-consistently together with the
expressions (B50)–(B52) and (B59) for the expectation values.
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FIG. 2. Chemical potential μ (a), density of excitons nX (b), and
density of photons nph (c), as a function of the total excitation density
for various detunings d . Model parameters are U = 2, g = 0.2, and
ωc = 0.5.

Starting with some chosen initial values for ne
k,n

h
k,n

ψ
q , and

�k = � = 0+, the renormalization equations are integrated in
small steps �λ until at λ = 0 the Hamiltonian is completely
renormalized. Then, the expectation values can be recalculated
and the renormalization process is restarted again. Conver-
gence is achieved if all quantities are determined within some
relative error of, for instance, less than 10−5. To simplify the
numerics, we consider a one-dimensional setting hereafter, and
limit the number of lattice sites to N = 160. Nevertheless, the
results presented in the framework of the PRM approximation
should also give a qualitative account of what happens in a
higher-dimensional microcavity polariton system.

A. Ground-state properties

Assuming a quasiequilibrium situation, the ground state of
the system can be determined for a fixed excitation density nexc

at zero temperature in dependence on the model parameters,
i.e., according to the detuning d, the electron-hole Coulomb
attraction U , and the light-matter coupling strength g. Here and
in what follows, all energies are given in units of the particle
transfer amplitude t and the wave vectors in units of the lattice
constant a. For the explicit evaluation one best introduces a
dimensionless speed of light c̄ using �ωq/t = [c̄2(q/π )2 +
(�ωc/t)2](1/2) − (�μ/t) where c̄ = (�π/at)c. Taking c̄ = 80
and typical values for a 
 5 Å and t 
 2 eV one is led to a
value of c 
 0.4 c0 for the speed of light of the microcavity,
which is about half the speed of light c0 in vacuum. However, as
we have noticed, most of the physical properties only slightly
depend on the actual value of c.

Figure 2 shows how the chemical potential, the partial
densities of carriers and photons vary as the total number
(density) of excitations changes at ωc = 0.5, for detunings
ranging from d = 3.5 (Eg = −3) to d = −0.5 (Eg = 1).
Recall negative (positive) values of Eg lead to a semimetallic
(semiconducting) bare band structure. As a matter of course,
the chemical potential increases as the number of excitations
increases [see Fig. 2(a)]. The weak variation at small nexc is
an effect of the van Hove singularity of the one-dimensional
(1D) density of states, while the almost constant μ at large nexc
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0 0.5 1 1.5
nexc

-4

-2

0

2

4

μ

Eg=-3

Eg= 1

ωc=4.5 ωc=0.5

FIG. 3. Chemical potential μ as a function of the excitation
density nexc at fixed values of Eg = 1 and −3. Dashed lines mark the
results for ωc = 0.5 [cf. Fig. 2(a)]; solid lines with symbols give the
new data for ωc = 4.5, where d = 3.5 and 7.5 result for Eg = 1 and
−3, respectively. The interaction parameters are U = 2 and g = 0.2.

can be traced back to conduction electron phase-space filling:
If μ reaches ωc, any further excitation (that minimizes the
ground-state energy) will be photonic. The partial excitation
densities of carriers and photons shown in Figs. 2(b) and 2(c),
respectively, corroborate this scenario. We see that for large
detuning the excitations in the low-density regime are basically
electron-hole excitations. Thereby, the electrons and holes
form an electron-hole plasma at weak-to-moderate values
of U , or might bound into excitons in the strong-coupling
regime. Increasing nexc, above a certain threshold value
a sharp onset of photon excitations takes place, signaling
laserlike behavior [18]. The electron-hole plasma, respectively,
excitonic domain appearing at low density shrinks as the
detuning becomes smaller and finally a very gradual (but
still opposing) variation of ncar and nph is observed as nexc

increases. Obviously, now the quasiparticle excitations are a
mixture of excitons and photons, i.e., they can be viewed as
polaritons.

This scenario is corroborated by Fig. 3, which compares
the variation of μ with nexc for small (ωc = 0.5) and large
(ωc = 4.5) values of the cavity frequency when the gap
parameter Eg is kept fixed. For Eg = −3, yielding a large
detuning in both low-ωc and high-ωc cases, the (continuous)
μ(nexc) dependence is almost the same until μ intersects the
photon energy. As becomes clear from Fig. 2(a) for ωc = 0.5
no photon excitations are involved in the small nexc regime
below this intersection, which is also true for ωc = 4.5. Due
to the same Eg and thus the same dispersion εe

k = εh
k for both

cases the curves μ as a function nexc should be the same as
long as μ is smaller than ωc = 0.5. If the cavity frequency is
(much) larger than the width of the bare band structure, we
observe a jump at nexc = 1. Here, all available electrons and
holes are bound into excitons, i.e., any further excitation is
purely photonic by their nature.

In order to analyze how Coulomb and light-matter inter-
actions operate together establishing a quantum condensed
state, we have separately determined the two (excitonic and
photonic) contributions to the order parameter � on the right-
hand side of Eq. (18): �X = −U

N

∑
k dk and �ph = − g√

N
〈ψ0〉.

FIG. 4. Excitonic (�X) and photonic (�ph) order parameters as a
function of the excitation density nexc at large (upper panel) and small
(lower panel) detuning d . Different phases refer to the predominant
nature of the condensate. Parameters are U = 2, g = 0.2, and ωc =
0.5. The dashed lines give the corresponding results in the mean-field
approximation (see Appendix A), which naturally overestimates the
tendency towards the formation of condensed phases.

The results are shown in Fig. 4. For large detuning (upper
panel), an excitonic condensate is formed at low densities (note
that the photonic order parameter vanishes). For the U value
U = 2 considered here it typifies a BEC of preformed electron-
hole pairs. As the excitation density increases, phase-space
(Pauli-blocking) effects become more and more important (see
following) and the condensate becomes BCS type, but still the
light component is negligible. Increasing the density further
photonic effects came into play. As a result, the condensate
turns from excitonic to polaritonic. At even higher excitation
densities, the excitonic component saturates, whereas the
photonic order parameter continues its increase. This classifies
a photonic condensate. For smaller detuning but fixed ωc,
both excitonic and photonic order parameters are intimately
connected in the whole low-to-intermediate excitation density
regime, indicating a polariton BEC, which again gives way to
photonic BEC at very large nexc. Of course, by their nature, all
these transitions are crossovers.

Figures 5 and 6 give the wave-vector-resolved intensity of
the electron-hole pair order-parameter function dk [Eq. (B49)]
and the photon density 〈ψ†

qψq〉 [Eq. (B54)], respectively. For
large detuning d = 3.5, Fig. 5 indicates how the maximum
of the pairing amplitude dk is continuously shifted from
k = 0 at nexc � 1 to larger values of k as nexc is raised,
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FIG. 5. Intensity plot of the electron-hole-pairing amplitude dk in
the momentum-density plane at different detuning d , for U = 2, g =
0.2, and ωc = 0.5.

which reveals finite density (Pauli-blocking) effects. Above a
“critical” density nexc 
 0.66 (cf. also Fig. 3), where μ 
 ωc,
the photon field comes into play (cf. Fig. 6 left upper panel).
Simultaneously, the renormalization of the band structure
due to the Coulomb interaction (see following) leads to
a high intensity of dk at large momenta (|k| > π/2). For
small detuning d = −0.5, the light-matter coupling affects the
behavior of dk from the very beginning (nexc → 0), yielding
a strong polariton signature around k = 0 which broadens at
higher excitation densities. Clearly, the intensity of the photon
field is always peaked around q = 0 and comes up at larger
excitation density the larger the detuning is (see Fig. 6).

FIG. 6. Intensity plot of the photon density 〈ψ †
qψq〉 in the

momentum-density plane at different detuning d , for U = 2, g =
0.2, ωc = 0.5, and T = 0.01.
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FIG. 7. Quasiparticle energies (B30) for large (upper panel) and
small (lower panel) detuning at nexc = 0.2, where, U = 2, g = 0.2,
and ωc = 0.5. Filled (open) symbols mark the valence (conduction)
band with chemical potentials μv = −μ/2 (μc = μ/2).

Starting from the bare band structure (3), it will be interest-
ing to look how the quasiparticle bands (B30) evolve, which
are renormalized on account of Coulomb and light-matter
interaction effects. Figure 7 gives Ẽ

1,2
k for nexc = 0.2. For large

detuning (d = 3.5, Eg = −3), the bare bands interpenetrate
[cf. Fig. 1(c)]. Here, basically all excitations are excitons
(formed by the electrons and holes in the central part of
the Brillouin zone). For small detuning (d = −0.5, Eg = 1),
the (bare) semiconductor band structure [cf. Fig. 1(b)] is
preserved. Again, excitonic bound states occur but not as many
as for d = 3.5; instead, more photonic states contribute to nexc.

Figure 8 shows the renormalized “band structure” for
different excitation densities; here valence and conduction
bands were shifted by −μv , respectively, −μc. Of course, at
nexc = 0.001 the dispersions are barely changed from those of
the bare bands. However, in order to realize such a very small
excitation densities at d = 3.5, Eg = −3, i.e., for strongly
overlapping bare bands, a large negative value of μ arises
[cf. Fig. 2(a)]. Increasing nexc, the location of the gap is
shifted from k = 0 (as was the case for nexc = 0.001) to a
finite k value. We find a band structure as for a BCS-type
exciton insulator state [26] [cf. Fig. 1(d)]. For nexc = 0.5, a
complete backfolding of the bands (doubling of the Brillouin
zone) takes place. For this effect, the attractive Coulomb
interaction between electrons and holes is responsible. The
situation significantly changes at small detuning. Here, always
a semiconductor band structure is observed, although the
particle-photon coupling leads to a flattening of the top of
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FIG. 8. Renormalized band structure (B30) for large (upper
panel) and small (lower panel) detuning at various nexc. Note that now
the energies of the valence bands (filled symbols) and conduction
bands (open symbols) are measured from μv and μc, respectively.
Again, U = 2, g = 0.2, and ωc = 0.5.

the valence band, respectively, bottom of the conduction band.
As a result, the bandwidth of both bands shrinks and the gap
broadens. This clearly can be attributed to the hybridization
between electronic and photonic degrees of freedom in the
course of polariton formation.

Let us now discuss the ground-state properties in depen-
dence on the Coulomb and light-matter interaction strengths.
Figure 9 gives the variation of �X and �ph with U . For large
detuning and small excitation density, electron-hole pairing
starts above a certain Coulomb interaction threshold with
states involved that are close to the Fermi momenta. We
find almost no photonic contribution in this case. Hence, the
coherent state classifies as an excitonic condensate. At larger
excitation density polaritons are formed for small values of U

(note that for U = 0 the condensate is completely triggered
by the photons). Increasing U , the ground state becomes
dominated by Coulomb correlations again, and we obtain an
ordered state of tightly bound excitons (reminiscent of the
excitonic insulator phase). At small detuning, the polariton
BEC features finite excitonic and photonic order parameters,
where the former (latter) is enhanced (suppressed) as U

rises at fixed g, indicating a crossover from an excitonic
to a photonic dominated ground-state wave function. The
g dependence of the order parameters displayed in Fig. 10
demonstrates that both pairings �X and �ph are always
strengthened by increasing the light-matter coupling for both
large and small detunings. In contrast, for decreasing g → 0
only �ph vanishes, whereas �X stays finite for large detuning

FIG. 9. Excitonic (blue lines) and photonic (red lines) order
parameters as a function of U for the case of large detuning, d = 3.5
(left), and small detuning d = −0.5 (right), where g = 0.2 and
ωc = 0.5.

but approaches zero for small detuning because we are in the
polariton regime and U = 2 � Uc. Moreover, a slow saturation
of �X at large values of g is observed.

B. Spectral properties

The luminescence of the microcavity exciton-polariton
system is first characterized by the intensity plots of A(k,ω);
see Figs. 11 and 12 at ωc = 0.5, for the cases of large and small
detuning, respectively. Here, ω and k denote the energy and
momentum transfer. The left panels display the (dominant)
coherent contributions (C4), resulting from electron-hole pair
annihilation and creation processes inside and in-between the
fully renormalized quasiparticle bands Ẽ

1,2
k [cf. Eq. (B30)

and Figs. 7 and 8] without any additional photons involved.
The less intense incoherent parts (C5) include higher-order
exciton and photon contributions. Special attention deserves

FIG. 10. Excitonic (blue lines) and photonic (red lines) order
parameters as functions of g for the cases of large detuning d = 3.5
(left) and small detuning d = −0.5 (right), where U = 2 and ωc =
0.5 (note that U = 2 roughly equates the critical value for exciton
formation at g = 0).
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FIG. 11. Intensity plot of the excitonic polarization A(k,ω) for
nexc = 0.2 (upper panels) and nexc = 0.5 (lower panels) at large
detuning d = 3.5. Again, U = 2, g = 0.2, and ωc = 0.5. Here, the
left panels refer to the coherent part Acoh(k,ω), the right panels give
the incoherent contribution Ainc(k,ω).

the significant flattening of the excitonic response at small
momentum transfer for small detuning, which is caused by a
strong light-matter interaction and indicates the formation of
an exciton-polariton condensate [6].

If the cavity frequency and the detuning are very large, a
coherent signal for the excitonic polarization is obtained for
negative ω only. Figure 13 displays A(k,ω) for ωc = 4.5 and
d = 7.5 at large excitation density nexc = 1.5. We see that
all available electrons and holes are paired into excitons, and
the photonic excitations [not directly probed by A(k,ω)] are
energetically separated (cf. Fig. 3).

FIG. 12. Intensity plot of the excitonic polarization A(k,ω) for
nexc = 0.2 (upper panels) and nexc = 0.5 (lower panels) at small
detuning d = −0.5. Other parameters and notations as in Fig. 11.

FIG. 13. Intensity plot of the excitonic polarization A(k,ω) for
nexc = 1.5, where U = 2 and g = 0.2. Now, ωc = 4.5 and Eg = −3,
resulting in a detuning d = 7.5.

The total intensity of the excitonic polarization is given by

I (ω) = 1

N

∑
k

|S(k)|2A(k,ω), (31)

where the prefactor |S(k)|2 is proportional to the exciton-
photon interaction strength. For convenience will be set
|S(k)|2 = g2. The quantity I (ω) is shown in Figs. 14 and 15
for ωc = 0.5 and 4.5, respectively for different excitation
densities. Starting in Fig. 14 with small nexc, we observe a
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FIG. 14. Total excitonic intensity I (ω) for large detuning (d =
3.5, upper panel) and small detuning (d = −0.5, lower panel) at
various nexc, where U = 2, g = 0.2, and ωc = 0.5.
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FIG. 15. Total excitonic intensity I (ω) for nexc = 0.5 and 1.5
at ωc = 4.5. Model parameters are U = 2, g = 0.2, and Eg = −3
(d = 7.5).

distinctly asymmetric line shape (with respect to ω → −ω).
The gap around ω = 0 is an evidence for the formation of an
exciton-polariton condensate, particularly for small detuning
(see Fig. 14). For ωc = 4.5 (Fig. 15), excitonic and photonic
excitations are well separated and the excitonic polarization
intensity acquires a symmetric line shape. Note that I (ω)
fulfills the sum rule (28).

Finally, we also consider the luminescence spectral function
B(q,ω). The results for small and large detunings are shown
in Figs. 16 and 17. In both cases, the coherent parts of the
spectrum are dominant and follow the renormalized photon
excitation ωq, whereas the incoherent excitations are of minor
importance. Note that because of the steep increase with q
of the photonic dispersion ωq [Eq. (5)], Figs. 16 and 17
focus on the small-q interval around q = 0. As anticipated
from Appendix B, the onsets of the incoherent excitations of

FIG. 16. Intensity plot of the luminescence spectral function
B(q,ω) for nexc = 0.2 (upper panels) and nexc = 0.5 (lower panels)
at small detuning d = −0.5. Other parameters and notations as in
Fig. 12.

FIG. 17. Intensity plot of the luminescence function B(q,ω) for
the same parameters as in Fig. 13.

B(q,ω) correspond to those of the coherent parts of A(k,ω).
However, due to the restricted q range in Figs. 16 and 17, this
equivalence is hardly seen except in the dark blue horizontal
regions of low intensities in the right panels of Fig. 16 and the
left panels of Fig. 10. Moreover, the spectral weights of the
coherent excitations of B(q,ω) in Figs. 16 and 17 are almost
independent of q. However, there seems to be a contradiction
to the outcome in Fig. 6. There, for a small ωc = 0.5, an
intensity plot of the photon density 〈ψ†

qψq〉 in momentum
space is shown, revealing a strongly peaked intensity around
q = 0 only. This apparent contradiction can easily be resolved
by help of the dissipation-fluctuation theorem:

〈ψ†
qψq〉 =

∫ ∞

−∞
dω

B(q,ω)

eβω − 1
. (32)

Exploiting the fact that the coherent part of B(q,ω) is dominant
B(q,ω) ≈ |z̃q|2 δ(ω − ω̃q) (|z̃q|2 ≈ 1), one finds

〈ψ†
qψq〉 ≈ |z̃q|2 1

eβω̃q − 1
. (33)

Obviously, for small temperatures (large β) wave vectors
around q = 0 contribute most since ω̃q is smallest there: This
is particularly true for the case of Fig. 6, where a small
zero-point cavity frequency ωc = 0.5 was used. When we
calculate the expectation value 〈ψ†

qψq〉 for a large photon
frequency ωc = 4.5 (and d = 7.5), the intensity of the photon
density is smeared out, of course, in momentum space (not
shown).

V. CONCLUSIONS

To summarize, we have adapted the PRM (projective
renormalization method) to investigate an exciton-polarition
microcavity model with regard to the formation of Bose-
Einstein condensates. Thereby, correlation and fluctuation
effects were included. The PRM allows to derive analytical
expressions for the excitonic and photonic (BEC) order
parameters, the partial excitation densities of excitons and
photons, the fully renormalized quasiparticle band structure,
and the luminescence spectrum in the whole parameter regime
of detuning, excitation density, Coulomb interaction, and
light-matter coupling. The nature of the condensate changes
from an exciton to a polariton and finally to a photon dominated
ground state when the density of excitations grows. For large
detuning, the exciton condensate shows a crossover from a
BEC- to a BCS-type pairing, mainly because of Fermi-surface
and Pauli-blocking effects. In this regime, also a clear onset
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density is observed for the photonic fraction, when the total
excitation is increased. At the same time, the carrier density
saturates. For small detuning, a strong mixture of electron and
photon degrees of freedom takes place, right from starting
to increase the excitation density. In this regime, pronounced
polariton signatures can be found. The photonic (laserlike)
behavior shows a smooth onset and dominates the physics
at very large excitation densities. In this way, our more
elaborated PRM approach confirms the exciton-polariton-
photon crossover scenario obtained in the framework of a
variational (mean-field) treatment [18]. The luminescence
and excitonic polarization spectra presented for the different
parameter regimes support this behavior of the microcavity
system as well. To analyze the influence of a trap potential [6]
on the excitonic luminescence would be a worthwhile goal of
forthcoming studies. Equally interesting would be to extend
the PRM scheme to the study of exciton-polariton systems in
nonequilibrium, e.g., with a focus on the description of lasing.

Note that this study for the luminescence spectrum differs
from those in literature on microcavity polaritons since there
the exciton degrees of freedom are often described by local
two-level systems (see for instance Refs. [29,30]). Instead, in
this study a coherent set of conduction electrons and valence
holes for the exciton degrees of freedom is considered which
has strong influence on the excitonic polarization A(k,ω),
though rather little influence on the luminescence function
B(q,ω). On the other hand, in this study, the contributions of
Goldstone modes to the spectra were neglected. In principle,
they should show up since the continuous gauge symmetry
U (α)HU−1(α) = H with U (α) = exp(−iαNexc) is violated
in the condensed phase. Then, in a linearized equation of
motion method, a coupled set of equations for the pho-
tonic variables ψ

†
q,ψ−q and for the particle-hole excitations

{e†k+qh
†
−k}, {h−kek−q}, {e†k+qe−k}, and {h†

k+qh−k} (for all k)
would have to be solved. Such a study is left for the future.
For now, one might speculate that the influence of Goldstone
modes on the spectra is of minor importance since their
respective coupling strengths in A(k,ω) and B(q,ω) are of
higher order in the interaction parameter g.
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APPENDIX A: MEAN-FIELD APPROXIMATION

The mean-field approximation is obtained by neglecting the
fluctuation part H1 in Eq. (12), i.e., the Hamiltonian reduces
to

HMF =
∑

k

ε̂e
ke

†
kek +

∑
k

ε̂h
kh

†
khk +

∑
q

ωq	
†
q	q

+ �
∑

k

(e†kh
†
−k + H.c.). (A1)

Here, ε̂e
k, ε̂h

k,�, and 	
†
q are given by Eqs. (15), (17), (19),

and (22). The electronic part of HMF is easily diagonalized.
By introducing

C
†
1k = ξke

†
k + ηkh−k, (A2)

C
†
2k = −ηke

†
k + ξkh−k, (A3)

with (ξk,ηk real)

ξ 2
k = 1

2

[
1 + sgn

(
ε̂e

k + ε̂h
k

) ε̂e
k + ε̂h

k

Wk

]
, (A4)

η2
k = 1

2

[
1 − sgn

(
ε̂e

k + ε̂h
k

) ε̂e
k + ε̂h

k

Wk

]
, (A5)

Wk =
√(

ε̂e
k + ε̂h

k

)2 + 4|�|2, (A6)

one arrives at

HMF =
∑

k

E1
kC

†
1kC1k +

∑
k

E2
kC

†
2kC2k +

∑
q

ωq	
†
q	q,

(A7)

with

E
1,2
k = ε̂e

k − ε̂h
k

2
± sgn

(
ε̂e

k + ε̂h
k

)Wk

2
. (A8)

The diagonal form (A7) allows to evaluate all physical
quantities in mean-field approximation. For instance,

〈
ne

k

〉 = |ξk|2f
(
E1

k

) + |ηk|2f
(
E2

k

)
, (A9)

〈
nh

k

〉 = 1 − |ηk|2f
(
E1

k

) − |ξk|2f
(
E2

k

)
, (A10)

dk = sgn
(
E1

k − E2
k

)(
f

(
E1

k

) − f
(
E2

k

)) �

Wk
, (A11)

〈ψq=0〉 = −
√

N�

ωq=0
, (A12)

〈ψ†
qψq〉 = p(ωq) + N�2

ω2
q=0

, (A13)

where p(ωq) is the bosonic distribution function. Note that the
phase factor sgn(E1

k − E2
k) in Eq. (A11) is found by comparing

the exact expression for dk = 〈e†kh†
−k〉 with the perturbative

result of dk to lowest order in the coupling term �
∑

k(e†kh
†
−k +

H.c.) of (A1). Equations (A9)–(A13) lead to the mean-field
expressions for the order parameters � = −(g/

√
N )〈ψ0〉 −

(U/N )
∑

k dk and � = −(g/N )
∑

k dk, whereas the total
density nexc is given by

nexc = 1

N

∑
q

p(ωq) + �2

ω2
q=0

+ 1

2N

∑
k

[
1 − sgn

(
ε̂e

k + ε̂h
k

)

× ε̂e
k + ε̂h

k

Wk

[
f

(
E1

k

) − f
(
E2

k

)]]
. (A14)

It describes a mean-field condensate of coupled photons and
exciton polarization, where the term �2/ω2

q=0 = 〈ψ0〉2/N is
the density of photons in the condensate. The luminescence
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functions, defined in Eqs. (25) and (29), become

A(k,ω) = 1

N

∑
p

× (|ξk+pηp|2
[
f

(
E1

p

) − f
(
E1

k+p

)]
δ
(
ω − E1

k+p + E1
p

)
+ |ηk+pηp|2

[
f

(
E1

p

) − f
(
E2

k+p

)]
δ
(
ω − E2

k+p + E1
p

)
+ |ξk+pξp|2

[
f

(
E2

p

) − f
(
E1

k+p

)]
δ
(
ω − E1

k+p + E2
p

)
+ |ηk+pξp|2

[
f

(
E2

p

) − f
(
E2

k+p

)]
δ
(
ω − E2

k+p + E2
p

))
(A15)

and

B(q,ω) = δ(ω − ωq). (A16)

Note the formal similarity of result (A15) to the coherent
part Acoh(k,ω) of the PRM expression (C4) for A(k,ω) in
Appendix C. For the cavity photon spectral function B(q,ω),
the mean-field result reduces to a sole δ function, whereas all
contributions from fluctuations in the PRM result (C19) are of
course missing.

APPENDIX B: PROJECTOR-BASED RENORMALIZATION
METHOD: GENERAL CONCEPTS

In this Appendix, we show how the complete Hamiltonian
H can be solved by means of the PRM. So far, the PRM was
successfully applied to a number of different models. Promi-
nent examples are the one-dimensional Holstein model [31],
the Edwards model [32], or the extended Falicov-Kimball
model [26]. The starting point is always a decomposition of the
many-particle Hamiltonian H into an “unperturbed” part H0

and into a “perturbation” H1, where the unperturbed part H0 is
solvable [compare Eqs. (22) and (23)]. The perturbation H1 is
responsible for transitions between the eigenstates of H0 with
nonvanishing transition energies |En

0 − Em
0 |. Here, En

0 and Em
0

denote the energies of H0 between which the transitions take
place. The basic idea of the PRM method is to integrate
out the interaction H1 by a sequence of discrete unitary
transformations [25]. Thereby, the PRM procedure starts from
the largest transition energy of the original Hamiltonian H0,
which will be called �, and proceeds in small steps �λ to lower
values of the transition energy λ. Every step is performed by
means of a small unitary transformation, where all excitations
between λ and λ − �λ are eliminated:

Hλ−�λ = eXλ,�λ Hλ e−Xλ,�λ . (B1)

Here, the operator Xλ,�λ = −X
†
λ,�λ is the generator of the

unitary transformation. Note that for sufficiently small �λ,
the evaluation of transformation (B1) can be restricted to low
orders in H1 which usually limits the validity of the approach
to values of H1 of the same magnitude as those of H0. After
each step, the unperturbed part as well as the perturbation part
of the Hamiltonian become renormalized and thus depend on
the cutoff λ. One arrives at a renormalized Hamiltonian Hλ =
H0,λ + H1,λ, where H1,λ now only accounts for transitions
with energies smaller than λ. Proceeding the renormalization
stepwise up to zero transition energy λ = 0 all transitions with
energies different from zero have been integrated out. Thus,
one finally arrives at a renormalized Hamiltonian Hλ=0, which

is diagonal (or at least quasidiagonal) since all transitions from
H1 with nonzero energies have been used up.

1. Hamiltonian Hλ

Let us assume that all transitions with energies larger than
λ have already been integrated out. An appropriate ansatz for
the transformed Hamiltonian Hλ reads as Hλ = H0,λ + H1,λ

with

H0,λ =
∑

k

εe
k,λe

†
kek +

∑
k

εh
k,λh

†
khk

+
∑

k

�k,λ(e†kh
†
−k + H.c.) +

∑
p

ωq,λ	
†
q,λ	q,λ, (B2)

H1,λ = − g√
N

∑
kq

Pλ[: e
†
k+qh

†
−k	q,λ : +H.c.]

− U

N

∑
k1k2k3

Pλ

[
: e

†
k1

ek2h
†
k3

hk1+k3−k2 :
]
. (B3)

Clearly, all parameters of H0,λ now depend on the cutoff λ,
and �k,λ has acquired an additional momentum dependence.
Moreover, we have introduced a λ-dependent photon operator

	
†
q,λ = ψ†

q +
√

N�λ

ωq=0,λ

δq,0,, (B4)

which is a slight generalization of the former definition (21).
Finally, the quantity Pλ in Eq. (B3) is a generalized projector,
which projects on all transitions with energies smaller than λ

(with respect to H0,λ). Note that the coupling strength g of
H1,λ remains λ independent, which is a consequence of the
present restriction to renormalization contributions up to order
g2 and U 2.

Next, Pλ has to be applied to the operators in H1,λ, which
requires the decomposition of the operators in the squared
brackets into dynamical eigenmodes of H0,λ. As long as one is
only interested in renormalization equations up to linear order
in the order parameters, one finds

H1,λ = − g√
N

∑
kq

�kq,λ[: e
†
k+qh

†
−k	q,λ : +H.c.]

− U

N

∑
k1k2k3

�k1k2k3,λ : e
†
k1

ek2h
†
k3

hk1+k3−k2 : , (B5)

where we have introduced two � functions

�kq,λ = �
(
λ − ∣∣εe

k+q,λ + εh
−k,λ − ωq,λ

∣∣), (B6)

�k1k2k3,λ = �
(
λ − ∣∣εe

k1,λ
− εe

k2,λ
+ εh

k3,λ
− εh

k1+k3−k2,λ

∣∣).
(B7)

They restrict transitions to excitation energies smaller than
λ. Next, one constructs the generator Xλ,�λ of the unitary
transformation (B1). According to Ref. [25], the lowest order
for Xλ,�λ is given by

Xλ,�λ = 1

L0,λ

Qλ−�λH1,λ, (B8)
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where L0,λ is the Liouville operator of the unperturbed
Hamiltonian H0,λ. It is defined by L0,λA = [H0,λ,A] for
any operator quantity A, and Qλ−�λ = 1 − Pλ−�λ is the
complement projector to Pλ−�λ, i.e., Qλ−�λ projects on all
transitions with energies larger than λ − �λ. With Eqs. (B5)
and (B2) one finds

Xλ,�λ = − g√
N

∑
kq

Akq(λ,�λ)[: e
†
k+qh

†
−k	q,λ : −H.c.]

− U

N

∑
k1k2k3

Bk1k2k3 (λ,�λ) : e
†
k1

ek2h
†
k3

hk1+k3−k2 :

(B9)

with the definitions

Akq(λ,�λ) = �kq,λ(1 − �kq,λ−�λ)

εe
k+q,λ + εh

−k,λ − ωq,λ

, (B10)

Bk1k2k3 (λ,�λ) = �k1k2k3,λ

(
1 − �k1k2k3,λ−�λ

)
εe

k1,λ
− εe

k2,λ
+ εh

k3,λ
− εh

k1+k3−k2,λ

. (B11)

Here, the products of the two � functions in Akq(λ,�λ) and
Bk1k2k3 (λ,�λ) assure that only excitations between λ and
λ − �λ are eliminated by the unitary transformation (B1).
In principle, the Liouville operator L0,λ in Xλ,�λ (and the

projector Pλ in H1,λ) should have been defined with the full
unperturbed Hamiltonian H0,λ of Eq. (B2) and not by leaving
out the term ∝�k,λ. However, its inclusion would only give
rise to smaller higher-order corrections to �k,λ and is not
important.

2. Renormalization equations

The λ dependence of the parameters of Hλ is found from
transformation (B1). For small enough width �λ of the
transformation steps, an expansion of (B1) in g and U can
be limited to O(g2) and O(U 2) terms. One obtains

Hλ−�λ = H0,λ + Pλ−�λH1,λ + [Xλ,�λ,H1,λ]

− 1
2 [Xλ,�λ,Qλ−�λH1,λ] + · · · , (B12)

where Eq. (B8) has been used. Renormalization contributions
to Hλ−�λ arise from the last two commutators which have to
be evaluated explicitly. The result must be compared with
the generic forms (B2) and (B5) of Hλ (with λ replaced
by λ − �λ) when it is written in terms of the original
λ-independent variables e

†
k, h

†
k, and ψ

†
q. This leads to the

following renormalization equations for the parameters of
H0,λ:

εe
k,λ−�λ = εe

k,λ + 2g2

N

∑
q

Aq,k−q(λ,�λ)
(
n	

q + nh
q−k

) + U 2

N2

∑
k1k2

Bk1kk2 (λ,�λ)
(
1 − 2ne

k1

)(
nh

k2
− nh

k1+k2−k

)

+ U 2

N2

∑
k1k2

Bk,k+k1−k2,k1 (λ,�λ)
[
nh

k2

(
1 − nh

k1

) + nh
k1

(
1 − nh

k2

)]
, (B13)

εh
k,λ−�λ = εh

k,λ + 2g2

N

∑
q

Aq,−k(λ,�λ)
(
n	

q + ne
q−k

) + U 2

N2

∑
k1k2

Bk1,k1+k2−k,k2 (λ,�λ)
(
1 − 2nh

k2

)(
ne

k1
− ne

k1+k2−k

)

+ U 2

N2

∑
k1k2

Bk1k2k(λ,�λ)
[
ne

k2

(
1 − ne

k1

) + ne
k1

(
1 − ne

k2

]
, (B14)

and

ωk,λ−�λ = ωk,λ + 2g2

N

∑
q

Ak,q(λ,�λ)
(
ne

q+k + nh
−q − 1

)
, (B15)

�λ−�λ = �λ − 2g2

N
√

N

∑
q

A0,q(λ,�λ)〈ψ0〉
(
ne

q + nh
−q − 1

)
, (B16)

�k,λ−�λ = �k,λ − U 2

N2

∑
k1k2

[
�

k1k,−k2
k1k2,−k(λ,�λ) + �

k1k,−k1
k1k2,−k1

(λ,�λ)
](

2ne
k1

− 1
)
dk2 − U 2

N2

∑
k1k2

[
�

k2,k1+k2+k,k1
k,k1+k2+k,k1

(λ,�λ)

+�
k2,−k1,−k2
k,−k1,−k (λ,�λ)

](
2nh

k1
− 1

)
dk2 + 2U 2

N2

∑
k1k2

�
k1k2,−k1
k1k,−k1

(λ,�λ)
(
1 − ne

k1
− nh

−k1

)
dk2

− U

N

∑
k1

Bkk1,−k(λ,�λ)�k1,λ

(
1 − nh

−k1
− ne

k1

)
. (B17)

The quantities ne
k and nh

k are the occupation numbers for electrons and holes from Eq. (17), and dk was defined in Eq. (20).
Following, we shall also use the photonic occupation number n	

q,λ,

n	
q,λ = 〈δ	†

q,λδ	q,λ〉 = 〈	†
q,λ	q,λ〉 − 〈	†

q,λ〉〈	q,λ〉 = 〈δψ†
qδψq〉 = nψ

q , (B18)
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which is independent of λ. In Eq. (B17), we have also defined

�
k1k2k3

k′
1k′

2k′
3
(λ,�λ) = 1

2

[
Bk′

1k′
2k′

3
(λ,�λ) �k1k2k3,λ

+Bk1k2k3 (λ,�λ) �k′
1k′

2k′
3,λ

]
. (B19)

For the numerical solution of the renormalization equations,
the initial parameter values are those of the original model H
(λ = �):

εe
k,� = ε̂e

k, εh
k,� = ε̂h

k, ωk,� = ωk (B20)

and

�k,� = � = − g√
N

〈ψ0〉 − U

N

∑
k

dk, (B21)

�� = � = − g

N

∑
k

dk, (B22)

with 〈ψ0〉 = 0+, dk = 〈e†kh†
−k〉 = 0+. Suppose the expectation

values in Eqs. (B13)–(B17) would already be known, the renor-
malization equations can be integrated between λ = � and 0.
In this way, we obtain the fully renormalized Hamiltonian
H̃ := Hλ=0 = H0,λ=0, as was already stated in Eq. (24):

H̃ =
∑

k

ε̃e
ke

†
kek +

∑
k

ε̃h
kh

†
khk +

∑
k

�̃k(e†kh
†
−k + H.c.)

+
∑

q

ω̃q	̃
†
q	̃q. (B23)

The tilde symbols denote the fully renormalized quantities
at λ = 0 as before. All excitations from H1,λ with nonzero
energies have been eliminated. They give rise to the
renormalization of H0,λ.

Finally, the electronic part of H̃ will be diagonalized by a
Bogoliubov transformation in close analogy to Appendix A.
Defining again new linear combinations

C
†
1k = ξke

†
k + ηkh−k, (B24)

C
†
2k = −ηke

†
k + ξkh−k (B25)

(with ηk,ξk assumed to be real), where now the renormalized
one-particles energies ε̃e

k and ε̃h
k enter the prefactors ξk and ηk,

ξ 2
k = 1

2

[
1 + sgn

(
ε̃e

k + ε̃h
k

) ε̃e
k + ε̃h

k

Wk

]
, (B26)

η2
k = 1

2

[
1 − sgn

(
ε̃e

k + ε̃h
k

) ε̃e
k + ε̃h

k

Wk

]
, (B27)

Wk =
√(

ε̃e
k + ε̃h

k

)2 + 4|�̃k|2, (B28)

one finds

H̃ =
∑

k

Ẽ1
kC

†
1kC1k +

∑
k

Ẽ2
kC

†
2kC2k +

∑
q

ω̃q	̃
†
q	̃q,

(B29)

with

Ẽ
1,2
k = ε̃e

k − ε̃h
k

2
± sgn

(
ε̃e

k + ε̃h
k

)Wk

2
. (B30)

Here, the electronic quasiparticle energies Ẽ
(1,2)
k and the

quasiparticle modes C
(†)
1k ,C

(†)
2k are renormalized quantities as

well. The quadratic form of Eq. (B29) allows to compute any
expectation value formed with H̃. Finally, we note that the
diagonalization (B24) runs along the same lines as the former
Bogoliubov transformation of expression (22) for H0, except
that the renormalized quantities have to be replaced by the
unrenormalized ones.

3. Expectation values

Also, expectation values 〈A〉, formed with the fullH, can be
evaluated in the framework of the PRM. As already stated in
Sec. III, they are found by exploiting the unitary invariance
of operator expressions below a trace, 〈A〉 = 〈A(λ)〉Hλ

=
〈Ã〉H̃, where A(λ) = eXλAe−Xλ and Ã = A(λ = 0). Xλ is the
generator for the unitary transformation between cutoff � and
λ. To find the expectation values of Eqs. (B13)–(B17), one
best starts from an appropriate ansatz for the single-fermion
operators

e
†
k(λ) = xk,λe

†
k + 1√

N

∑
q

tk−q,q,λh−q : 	
†
k−q,λ :

+ 1

N

∑
k1k2

αk1kk2,λ : e
†
k1

h
†
k2

hk1+k2−k : , (B31)

h
†
k(λ) = yk,λh

†
k + 1√

N

∑
q

uq,−k,λeq−k : 	
†
q,λ :

+ 1

N

∑
k1k2

βk1k2,k−k1+k2,λ : e
†
k1

ek2h
†
k−k1+k2

: (B32)

(where : 	
†
k,λ :=: ψ

†
k :), and for the photon operator

ψ†
q(λ) = zq,λψ

†
q + 1√

N

∑
k

vqk,λ : e
†
k+qh

†
−k : , (B33)

where again the operator structures of (B31)–(B33) were
taken over from a small-Xλ expansion. In analogy to the
renormalization equations for the parameters of Hλ, one
derives the following set of renormalization equations for the
λ-dependent coefficients tk−q,q,λ, uq,−k,λ, vk,q,λ,αk1k2k3,λ, and
βk1k2k3,λ:

tk−q,q,λ−�λ = tk−q,q,λ + gxk,λAk−q,q(λ,�λ), (B34)

uq,−k,λ−�λ = uq,−k,λ − gyk,λAq,−k(λ,�λ), (B35)

vkq,λ−�λ = vkq,λ − gzk,λAkq(λ,�λ), (B36)

αk1kk2,λ−�λ = αk1kk2,λ − Uxk,λBk1kk2
(λ,�λ), (B37)

βk1k2,k−k1+k2,λ−�λ

= βk1k2,k−k1+k2,λ − Uyk,λBk1k2,k−k1+k2 (λ,�λ). (B38)

Using the anticommutation relations for fermion operators and
the commutation relations for boson operators (as for instance
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[e†k(λ),ek(λ)]+ = 1, valid for any λ), one arrives at

|xk,λ|2 = 1 − 1

N

∑
q

|tk−q,q,λ|2
(
n	

k−q,λ + nh
−q

)

− 1

N2

∑
k1k2

∣∣αk1kk2,λ

∣∣2[
nh

k1+k2−k

(
1 − nh

k2

)

− ne
k1

(
nh

k1+k2−k − nh
k2

)]
, (B39)

|yk,λ|2 = 1 − 1

N

∑
q

|uq,−k,λ|2
(
n	

q,λ + ne
q−k

)

− 1

N2

∑
k1k2

∣∣βk1k2,k−k1+k2,λ

∣∣2[
ne

k1

(
1 − ne

k2

)

+ (
1 − nh

k−k1+k2

(
ne

k2
− ne

k1

)]
, (B40)

|zk,λ|2 = 1 − 1

N

∑
q

|vqk,λ|2
(
1 − nh

−k − ne
k+q

)
. (B41)

Equations (B34)–(B38) together with the new set (B39)–
(B41), taken at λ → λ − �λ, represent a complete set of
renormalization equations for all λ-dependent coefficients in
Eqs. (B31)–(B33). They combine the parameter values at λ

with those at λ − �λ. Their initial values at λ = � are

{xk,�,yk,�,zk,�} = 1, (B42)

{
tkq,�,ukq,�,vkq,�,αk1kk2,λ,βk1kk2,λ

} = 0. (B43)

By integrating the full set of renormalization equations
between � and λ = 0, one is led to the fully renormalized
one-particle operators

ẽ
†
k = x̃ke

†
k + 1√

N

∑
q

t̃k−q,qh−q : ψ
†
k−q :

+ 1

N

∑
k1k2

α̃k1kk2 : e
†
k1

h
†
k2

hk1+k2−k : , (B44)

h̃
†
k = ỹkh

†
k + 1√

N

∑
q

ũq,−keq−k : ψ†
q :

+ 1

N

∑
k1k2

β̃k1k2,k−k1+k2 : e
†
k1

ek2h
†
k−k1+k2

: , (B45)

ψ̃
†
k = z̃kψ

†
k + 1√

N

∑
q

ṽkq : e
†
q+kh

†
−q : . (B46)

Again, tilde symbols denote the fully renormalized quantities.
With Eqs. (B44)–(B46) the expectation values ne

k, nh
k, dk, and

n
ψ

k can be evaluated. Thus, for the fermionic quantities one
obtains up to order O(g2

k) and O(U 2
k )

ne
k = |x̃k|2ñe

k + 1

N

∑
q

|t̃k−q,q|2
(
1 − ñh

−q

)
ñ

ψ

k−q

+ 1

N2

∑
k1k2

∣∣α̃k1kk2

∣∣2
ñe

k1
ñh

k2

(
1 − ñh

k1+k2−k

)
, (B47)

nh
k =|ỹk|2ñh

k + 1

N

∑
q

|ũq,−k|2
(
1 − ñe

q−k

)
ñψ

q

+ 1

N2

∑
k1k2

∣∣β̃k1k2,k−k1+k2

∣∣2
ñh

k1−k1+k2
ñc

k1

(
1−ñc

k2

)
, (B48)

dk = xkyk〈e†kh†
−k〉H̃ − 1

N2

∑
k1k2

α̃k1k,k−k1+k2 β̃k1k2,k−k1+k2 ñ
e
k1

×(
1 − ñh

k−k1+k2

)〈e†k2
h
†
−k2

〉H̃. (B49)

On the right-hand sides the expectation values, formed with
H̃, can easily be evaluated:

ñe
k = ξ 2

kf
(
Ẽ1

k

) + η2
kf

(
Ẽ2

k

)
, (B50)

ñh
k = 1 − η2

kf
(
Ẽ1

k

) − ξ 2
kf

(
Ẽ2

k

)
, (B51)

〈e†kh†
−k〉H̃ = sgn

(
Ẽ1

k − Ẽ2
k

) [
f

(
Ẽ1

k

) − f
(
Ẽ2

k

)] �̃k

Wk
, (B52)

where f (E) is the Fermi function. The prefactors ξk and ηk are
the coefficients from the Bogoliubov transformation (B24).

Finally, the bosonic expectation value n
ψ
q is given by

nψ
q = 〈δψ†

qδψq〉 = 〈ψ†
qψq〉 − 〈ψ†

q〉〈ψq〉δq=0, (B53)

where from (B46)

〈ψ†
qψq〉 = |z̃q|2〈ψ†

qψq〉H̃ + 1

N

∑
k

|ṽqk|2ñh
−kñ

e
k+q , (B54)

〈ψ†
q〉 
 z̃q〈ψ†

q〉H̃. (B55)

Note that in 〈ψ†
q〉 a smaller contribution from (B46) has been

neglected. Thus,

nψ
q = |z̃q|2(〈ψ†

qψq〉H̃ − 〈ψ†
q〉H̃〈ψq〉H̃)

+ 1

N

∑
k

|ṽqk|2ñh
−kñ

e
k+q, (B56)

where the expectation values on the right-hand side are formed
with H̃. With Eq. (B4) they become

〈ψ†
qψq〉H̃ = 〈	†

q	q〉H̃ −
√

N�̃

ω̃q
〈	†

q + 	q〉H̃δq,0 + N�̃2

ω̃2
k

δk,0

= p(ω̃q) + N�̃2

ω̃2
q

δq,0 (B57)

and

〈ψ†
q〉H̃ =

[
〈	†

q〉H̃ −
√

N �̃

ω̃q

]
δq,0 = −

√
N �̃

ω̃q
δq,0, (B58)

where we have used 〈	†
q〉H̃ = 0, and p(ω̃q) is the bosonic dis-

tribution function. Inserting Eqs. (B57) and (B58) into (B56),
one finally arrives at

nψ
q = |z̃q|2p(ω̃q) + 1

N

∑
k

|ṽqk|2ñh
−kñ

e
k+q, (B59)

and similarly

ñψ
q = 〈δψ†

qδψq〉H̃ ≈ p(ω̃q). (B60)
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Obviously, the electronic order parameter dk and the photonic
order parameter �̃k are intimately related. Due to (B49)
and (B52), dk is proportional to �̃k, so that both order
parameters are mutually dependent.

Note that in Sec. IV the numerical outcome of ne
k and

nh
k will turn out to be the same. The reason for this is the

assumed symmetric dispersions for the electron and hole
bands in Eq. (2), εe

k = εh
k . As a consequence, also the original

Hamiltonian (1) shows a certain symmetry: Replacing all
electron operators e

(†)
k by hole operators h

(†)
k and vice versa,

Hamiltonian (1) remains the same, except of the sign of the

prefactor g, i.e.,

H({e(†)
k },{h(†)

k },g,U ) = H({h(†)
k },{e(†)

k }, − g,U ). (B61)

A closer inspection shows that the former ansatz (B31) for
e
†
k(λ) can be transformed to the ansatz (B32) for h

†
k(λ). The

same is true for the corresponding renormalization equations of
the prefactors in Eqs. (B44) and (B45). Note that the property
ne

k = nh
k would no longer be valid in case different dispersions

εe
k �= εh

k are used. However, also for the latter case the above
renormalization equations remain valid.

APPENDIX C: LUMINESCENCE FUNCTIONS

Let us first evaluate the response function for the excitonic polarization (25) which reads as after the unitary invariance has
been employed

A(k,ω) = 1

2π

∫ ∞

−∞
〈[b̃k(t),b̃†k]−〉H̃ eiωtdt. (C1)

The expectation value is formed with the fully renormalized Hamiltonian H̃. The quantity b̃
†
k is the transformed exciton creation

operator

b̃
†
k = 1√

N

∑
p

ẽ
†
k+ph̃

†
−p, (C2)

where the unitary transformation has been applied separately to the two one-particle operators ẽ
†
k and h̃

†
k. Inserting Eqs. (B44)

and (B45) into expressions (C1) and (C2), one obtains for A(k,ω)

A(k,ω) = Acoh(k,ω) + Ainc(k,ω), (C3)

where the two parts will henceforth be denoted as coherent and incoherent. The coherent part is given by

Acoh(k,ω) = 1

N

∑
p

|x̃k+pỹ−p|2
{|ξk+pηp|2

[
f

(
Ẽ1

p

) − f
(
Ẽ1

k+p

)]
δ
(
ω − Ẽ1

k+p + Ẽ1
p

)

+ |ηk+pηp|2
[
f

(
Ẽ1

p

) − f
(
Ẽ2

k+p

)]
δ
(
ω − Ẽ2

k+p + Ẽ1
p

) + |ξk+pξp|2
[
f

(
Ẽ2

p

) − f
(
Ẽ1

k+p

)]
δ
(
ω − Ẽ1

k+p + Ẽ2
p

)
+ |ηk+pξp|2

[
f

(
Ẽ2

p

) − f
(
Ẽ2

k+p

)]
δ
(
ω − Ẽ2

k+p + Ẽ2
p

)}
. (C4)

It follows from the dominant contributions ∝x̃ke
†
k and ∝ỹkh

†
k in Eqs. (B44) and (B45). In addition, the one-particle operators e

(†)
k

and h
(†)
k have to be expressed by the dynamical eigenvectors C

1,2
k , which lead to the appearance of the Bogoliubov coefficients

ξk and ηk in Eq. (C4).
The incoherent part Ainc(k,ω) of the response function (C1) reads as to order O(g2) and O(U 2)

Ainc(k,ω) = �0
kδ[ω − ω̃(k)] − 1

N

∑
p

�1
pkδ

[
ω − E1

p(k)
] + 1

N2

∑
i,pk1

�
2,i
pk1,kδ

[
ω − E

2,i
pk1

(k)
]

+ 1

N3

∑
i,pk1k2

�
3,i
pk1k2,kδ

[
ω − E

3,i
pk1k2

(k)
]
, (C5)

with

E1
p(k) = ε̃e

k+p + ε̃h
−p, (C6)

E
2,1
pk1

(k) = ε̃h
−p − ε̃h

−k1
+ ω̃k+p−k1 , (C7)

E
2,2
pk1

(k) = ε̃e
k+p − ε̃e

p+k1
+ ω̃p, (C8)

E
3,1
pk1k2

(k) = ε̃h
−p − ε̃h

k1−k2−k−p + ε̃h
k2

+ ε̃e
k1

, (C9)

E
3,2
pk1k2

(k) = ε̃h
−p−k1+k2

− ε̃e
k2

+ ε̃e
k1

+ ε̃e
k+p, (C10)
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and

�0
k = 2

N2

∑
pk1

x̃k+pỹ−k1 ũkp t̃kk1 ñ
e
p+k

(
1 − ñh

−k1

)
, (C11)

�1
p(k) = 2x̃k+pỹ−k

1

N

∑
k1

[
x̃k1+kβ̃k+p,k1+k,−pñ

e
k1+k − ỹ−k1αk+p,k1+k,−p

(
1 − ñh

−k1

)](
1 − ñe

k1
− ñh

−p

)

+ 1

N2

∑
k1k2

{
2x̃k+pỹ−pαk2,k1+k,−pβk+p,k2,−k−p+k2−k1 ñ

e
k2

(
1 − ñh

−k−p+k2−k1

)

+ 2x̃k1+kỹ−k1 α̃k+p,k1+k,−pβ̃k+p,k2+k,−p
(
1 − ñh

−p

)
ñe

k2+k

− ỹ−k1 ỹ−k2 α̃k+p,k1+p,−pα̃k+p,k2+k,−pb
(
1 − ñh

−p

)(
1 − ñh

−k2

)
− x̃k+px̃k2+kβ̃k1,k+p,−k1+kβ̃k1,k2+k,−k2+kn

e
k2+kñ

e
k+p

}(
1 − ñe

k+p − ñh
−p

)
, (C12)

�
2,1
pk1,k = ∣∣ỹ−p t̃k+p−k1,k1

∣∣2[
ñh

−k1

(
1 − ñh

−p

) − ñ
ψ

k+p−k1

(
ñh

−k1
− ñh

−p

)]
, (C13)

�
2,2
pk1,k = ∣∣x̃k+pũk1p

∣∣2[
ñe

k+p

(
1 − ñe

p+k1

) − ñ
ψ

k1

(
ñe

p+k1
− ñe

k+p

)]
, (C14)

�
3,1
pk1k2,k = (∣∣ỹ−pα̃k1,k+p,k2

∣∣2 − ỹ−pỹk2αk1,k+p,k2 α̃k1,−k2+k,−p
)

×[(
1 − ñe

k1

)(
1 − ñh

−p

)(
ñh

k1+k2−k−p − ñh
−k1

) + ñh
k2

(
1 − ñh

k1+k2−k−p

)(
1 − ñe

k1
− ñh

−p

)]
, (C15)

�
3,2
pk1k2,k = (∣∣x̃k+pβ̃k1k2,−p−k1+k2

∣∣2 − x̃k+px̃k1βk1k2,−p−k1+k2 β̃k+p,k2,−p−k1+k2

)
×[

ñe
k+pñ

h
−p−k1+k2

(
ñe

k+p − ñe
k2

) + ñe
k2

(
1 − ñe

k1

)(
1 − ñe

k+p − ñh
−p−k1+k2

)]
. (C16)

Again, all expectation values on the right-hand sides are formed with the renormalized Hamiltonian H̃. Note that for simplicity
Ainc(p,ω) was calculated without use of the Bogoliubov transformation (B24). The reason for this approximation results from
the fact that Ainc(p,ω) turns out to be quite small compared to the coherent part of A(k,ω). Moreover, the additional sums in
Eq. (C11) tend to cover the influence of �̃k in Wk [compare Eq. (B28)].

Finally, we consider the response function for the cavity photon mode

B(q,ω) = 1

2π

∫ ∞

−∞
〈[ψ̃q(t),ψ̃†

q]−〉H̃ eiωtdt, (C17)

where ψ̃
†
q is again the fully renormalized quantity. According to (B46) we have

ψ̃
†
q = z̃qψ

†
q + 1√

N

∑
k ṽqk : e

†
q+kh

†
−k : . (C18)

Using Eqs. (24) and (B29), one easily finds

B(q,ω) = |z̃q|2δ(ω − ω̃q) + 1

N

∑
k

|ṽqk|2
{|ξk+qηk|2

[
f

(
Ẽ1

k

) − f
(
Ẽ1

k+q

)]
δ
(
ω − Ẽ1

k+q + Ẽ1
k

)

+ |ηk+qηk|2
[
f

(
Ẽ1

k

) − f
(
Ẽ2

k+q

)]
δ
(
ω − Ẽ2

k+q + Ẽ1
k

) + |ξk+qξk|2
[
f

(
Ẽ2

k

) − f
(
Ẽ1

k+q

)]
δ
(
ω − Ẽ1

k+q + Ẽ2
k

)
+ |ηk+qξk|2

[
f

(
Ẽ2

k

) − f
(
Ẽ2

k+q

)]
δ
(
ω − Ẽ2

k+q + Ẽ2
k

)}
. (C19)

Note that, apart from the first δ function and the prefactor under the sum, the result for B(q,ω) resembles that of the coherent
contribution Acoh(k,ω) of the excitonic polarization.
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