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Quantum anomalies, breakdown of classical symmetries by quantum effects, provide a sharp definition of
symmetry protected topological phases. In particular, they can diagnose interaction effects on the noninteracting
classification of fermionic symmetry protected topological phases. In this paper, we identify quantum anomalies
in two kinds of (3+1)d fermionic symmetry protected topological phases: (i) topological insulators protected by
CP (charge conjugation × reflection) and electromagnetic U(1) symmetries, and (ii) topological superconductors
protected by reflection symmetry. For the first example, which is related to, by CPT-theorem, time-reversal
symmetric topological insulators, we show that the CP-projected partition function of the surface theory is not
invariant under large U(1) gauge transformations, but picks up an anomalous sign, signaling a Z2 topological
classification. Similarly, for the second example, which is related to, by CPT-theorem, class DIII topological
superconductors, we discuss the invariance/noninvariance of the partition function of the surface theory, defined
on the three-torus and its descendants generated by the orientifold projection, under large diffeomorphisms
(coordinate transformations). The connection to the collapse of the noninteracting classification by an integer
(Z) to Z16, in the presence of interactions, is discussed.

DOI: 10.1103/PhysRevB.93.075135

I. INTRODUCTION

Gapped states of quantum matter can be topologically dis-
tinguished by asking if given ground states can be adiabatically
connected to each other. Topologically equivalent phases can
continuously be connected in the phase diagram (“theory
space” in the language of the renormalization group) with no
gapless phase boundary nor a quantum critical point separating
them. On the other hand, topologically distinct phases are
always separated by intervening gapless phases or quantum
critical points.

Quite often, it is meaningful to discuss theory space in the
presence of a set of symmetries. Symmetries may prohibit the
appearance of some phases distinct topologically from trivial
phases, while they may also create a new topological distinc-
tion among quantum phases. Symmetry-protected topological
(SPT) phases of matter correspond to the latter case—they
are topologically equivalent to trivial states of matter (such
as an ionic insulator) in the absence of symmetries, while
once a certain set of symmetries are imposed, they cannot
be adiabatically connected to topologically trivial phases. For
partial references for recent works on symmetry protected
topological phases, see Refs. [1–11].

As different SPT phases respect the same symmetry,
they cannot be characterized by the Landau-Ginzburg-Wilson
paradigm based on spontaneous symmetry breaking. Hence
one needs to look for an alternative organizing principle.
Quantum anomalies, an intricate form of symmetry breaking
caused by quantum effects, have been proved to be useful in
this context. Already in Laughlin’s gauge argument, a topo-
logical charge pumping process, i.e., the noninvariance of the
system’s ground state under large U(1) gauge transformations,
was used to establish the stability of the quantum Hall states
against interactions and disorder [12]. For SPT phases, see
recent works in Refs. [13–23].

In this paper, basing on our previous works on (2+1)d SPT
phases [24–27], the surface states of (3+1)d fermionic SPT

phases are studied from the perspective of global quantum
anomalies. We will discuss two examples: (i) the Dirac
fermion surface state of (3+1)d bulk CP symmetric topological
insulators (TIs) and (ii) the Majorana fermion surface state
of (3+1)d bulk reflection symmetric crystalline topological
superconductors (TSCs). The bulk phase of the first example
is a fermionic SPT phase protected by electromagnetic U(1)
and CP [product of charge conjugation and mirror reflection
(parity)] symmetries. This example is CPT-conjugate to a
(3+1)d time-reversal symmetric TI (class AII), and character-
ized by a Z2 topological number [28]. The bulk phase of the
second example is a fermionic SPT phase protected by fermion
number parity and reflection (parity) symmetry. It belongs to
symmetry class D + R+ crystalline TSCs1 in Refs. [29–31].
This example is CPT-conjugate to a (3+1)d time-reversal
symmetric TSC (class DIII) [28]. At noninteracting level, class
D + R+ crystalline TSCs in (3+1)d are characterized by an
integer (Z) topological number (the Mirror Chern number),
similar to their CPT partner, class DIII TSCs.2 On the other
hand, a number of recent works showed that the integral

1The subscript “+” in symmetry class D + R+ indicates that the
two symmetry operations, charge-conjugation (or particle-hole) and
reflection symmetries, of the single-particle Hamiltonians in this
symmetry class commute with each other.

2While we are not to be restricted to relativistic systems in
condensed matter physics, some universal physical properties of
general, nonrelativistic systems in the long wavelength limit, such
as the band topology or the electromagnetic responses, are often
encoded in topological field theories. Since topological, these theories
respect the Lorentz symmetry, which guarantees the CPT invariance.
In addition, from the perspective of topological classification of
states of matter, classifying SPT phases of noninteracting fermion
systems, for example, can be done solely in terms of Dirac operators
with symmetry restrictions. Since a Dirac Hamiltonian has a CPT
invariant form, we expect to obtain the same classification for all
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noninteracting classification of class DIII TSCs breaks down to
Z16 once interactions are included [20,32–37]. Such collapses
have been also reported in one and two spatial dimensions
[24,38–44].

Similar to our previous work [26], we enforce CP or
reflection symmetry on the surface theories by taking an
orientifold projection [45–50]. (See also recent discussion in
Refs. [18,51].) In the first example, the resulting projected
theory is then shown to have global U(1) gauge anomaly. That
is, the partition function of the projected theory picks up a
phase under large U(1) gauge transformations. This anomalous
phase is shown to be a minus sign, and hence leads to the Z2

classification. In the second example, by computing the global
gravitational anomaly [52,53] of the Majorana surface states of
class D + R+ TSCs, we study the “collapse” of noninteracting
classification. The resulting projected theories are then shown
to be anomalous under large diffeomorphisms (coordinate
transformations). In a similar vein, in Ref. [54], the (3+1)d
Weyl fermion on the surface of the (4+1)d quantum Hall
system is shown to fail to be modular invariant in the presence
of a background U(1) gauge field.

The rest of the paper is organized as follows. In the
remaining part of this section, we introduce some notations
that will be used in the main text. In Sec. II, we establish
the gauge and diffeomorphism invariance of the (2+1)d Dirac
fermion theory defined on a spacetime three-torus, following
Refs. [55,56]. In Sec. III, we study (3+1)d TIs protected
by electromagnetic U(1) and CP symmetries. The surface
theory projected by symmetries is shown to be anomalous,
as its (projected) partition function is not invariant under
large U(1) gauge transformations, but picks up a minus
sign, characterizing the Z2 classification of the bulk phase.
(3+1)d TSCs protected by reflection symmetry are studied
in Sec. IV, where we discuss the invariance/noninvariance of
the surface partition function, defined on the three-torus and
its descendants generated by the orientifold projection, under
large diffeomorphisms. We then conclude in Sec. V.

Notations

The partition functions of the (2+1)d surface theories
discussed in the text can be represented in terms of parti-
tion functions of (1+1)d theories. Here, we summarize the
properties of these (1+1)d partition functions.

The partition function of a (1+1)d chiral fermion (Weyl
fermion) on the two-torus T 2 with the modular parameter
τ = τ1 + iτ2 ∈ C, in the presence of spatial U(1) flux a and
temporal U(1) flux b, is defined as [26,57]

AR
[a,b](τ ) ≡ 1

η(τ )
ϑ

[
a − 1/2
b − 1/2

]
(0,τ ),

AL
[a,b](τ ) = (

AR
[a,b](τ )

)∗
, (1)

where η(τ ) is the Dedekind eta function and ϑ[
α

β
](v,τ ) is the

theta function with characteristics. AR
[a,b](τ ) has the following

CPT equivalent systems, e.g., CP-protected TIs to class AII TIs, and
classes D + R+ TSCs to class DIII TSCs discussed here.

properties:

AR
[a,b](τ ) = AR

[a+1,b](τ ) = e−2πi(a−1/2)AR
[a,b+1](τ ),

AR
[a,b](τ + 1) = e−πi(a2−1/6)AR

[a,b+a](τ ),

AR
[a,b](−1/τ ) = e−2πi(−a+1/2)(b−1/2)AR

[−b,a](τ ). (2)

The partition function of a (1+1)d massive Dirac fermion
on T 2 with twisted boundary conditions (fluxes a and b) is
given by the “massive theta function” �[a,b](τ ; m) [58,59]:

�[a,b](τ ; m)

≡ e4πτ2	(m;a)
∏

s∈Z+a

∣∣1 − e−2πτ2

√
m2+s2+2πiτ1s+2πib

∣∣2, (3)

where 	(m; a) is the regularized zero-point energy:

	(m; a) ≡1

2

∑
s∈Z+a

√
m2 + s2 − 1

2

∫ ∞

−∞
dk
√

m2 + k2

= − 1

2π2

∞∑
n=1

∫ ∞

0
dte−tn2− π2m2

t cos(2πnax). (4)

The massive theta function �[a,b](τ ; m) has the following
properties:

�[a,b](τ ; m) =�[−a,−b](τ ; m) = �[a+r,b+s](τ ; m),

r,s ∈Z,

�[a,b](τ + 1; m) =�[a,b+a](τ ; m),

�[a,b](−1/τ ; m|τ |) =�[b,−a](τ ; m),

lim
m→0

�[a,b](τ ; m) =∣∣AR
[a,b](τ )

∣∣2 = ∣∣AL
[a,b](τ )

∣∣2. (5)

II. LARGE U(1) GAUGE AND DIFFEOMORPHISM
INVARIANCE OF (2+1)D FERMION THEORY

In this section, we quantize the (2+1)d free Dirac fermion
theory on a flat spacetime three-torus T 3, in the presence of
background U(1) gauge field and metric. The invariance of the
partition function under large U(1) gauge transformations and
3d modular transformations SL(3,Z), the mapping class group
of T 3, will be established. A discussion for the 2d modular
invariance of the Dirac fermion theory on two torus T 2, as a
warm up, is reviewed in Appendix A.

We closely follow the analysis and notations in Ref. [55].
(See also Refs. [56] for related works.) In Ref. [55], the
partition function of a chiral self-dual two-form gauge field
on a 6d spacetime torus T 6, and its invariance under
SL(6,Z), the mapping class group of the six-torus, was
studied. In Ref. [55], the theory is quantized (regularized)
in a way manifestly symmetric under SL(5,Z). It was then
shown that the partition function has an additional SL(2,Z)
invariance, and together with the SL(5,Z) invariance, the
full SL(6,Z) invariance was proven. By properly adopt-
ing this strategy, we show the SL(3,Z) invariance and
the large gauge invariance of the (2+1)d Dirac fermion
theory.

While our focus in this section is on the complex or
Dirac fermion, the case for real or Majorana fermions can
be studied in a similar way. The modular properties studied
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here are expected to be straightforwardly generalized to
higher dimensions, e.g., SL(n,Z) invariance for the partition
function.

A. The Dirac fermion theory on three torus T 3

1. Background metric

A flat three-torus is parameterized by five “modular
parameters,” R1,2/R0, α, β, and γ , where Rμ are the radii
for the μth directions, and α,β,γ and related to the angles
between directions 0 and 1, 1 and 2, and 0 and 2, respectively.
The dreibein is given by (μ,A = 0,1,2)

eA
μ =

⎛
⎝R0 0 0

0 R1 0
0 0 R2

⎞
⎠
⎛
⎝ 1 0 0

−α 1 0
−γ −β 1

⎞
⎠

=
⎛
⎝ R0 0 0

−αR1 R1 0
−γR2 −βR2 R2

⎞
⎠, (6)

and its inverse is given by

e�
A

μ =

⎛
⎜⎝

1
R0

α
R0

αβ+γ

R0

0 1
R1

β

R1

0 0 1
R2

⎞
⎟⎠, (7)

such that eA
μe�

A
ν = δμ

ν and eA
μe�

B
μ = δA

B . The Euclidean
metric is

gμν = eA
μeB

νδAB

=

⎛
⎜⎝

R2
0 + α2R2

1 + γ 2R2
2 −αR2

1 + βγR2
2 −γR2

2

−αR2
1 + βγR2

2 R2
1 + β2R2

2 −βR2
2

−γR2
2 −βR2

2 R2
2

⎞
⎟⎠,

(8)

and the line element is given by ds2 = gμνdθμdθν , where
0 � θμ � 2π are angular variables.

The group SL(3,Z) is generated by two modular transfor-
mations: [60]

U1 =
⎛
⎝0 0 1

1 0 0
0 1 0

⎞
⎠, U2 =

⎛
⎝1 1 0

0 1 0
0 0 1

⎞
⎠. (9)

The dreiben and metric are transformed as

eA
μ

L−→ (eLT )
A

μ = Lμ
ρeA

ρ,

e�
A

μ L−→ (e�L−1)A
μ = e�

A
ρ(L−1)ρ

μ
, (10)

gμν
L−→ (LgLT )μν = Lμ

ρLν
σ gρσ ,

for any SL(3,Z) elements L = U
n1
1 U

n2
2 U

n3
1 · · · . In particular,

gμν
U2−→ (

U2gUT
2

)
μν

=

⎛
⎜⎝

R2
0 + (α − 1)2R2

1 + (γ + β)2R2
2 −(α − 1)R2

1 + β(γ + β)R2
2 −(γ + β)R2

2

−(α − 1)R2
1 + β(γ + β)R2

2 R2
1 + β2R2

2 −βR2
2

−(γ + β)R2
2 −βR2

2 R2
2

⎞
⎟⎠, (11)

which corresponds to the changes

α → α − 1, γ → γ + β (while R0, R1, R2, and β are unchanged). (12)

The less trivial generator U1 can be further decomposed into two transformations as

U1 = U ′
1M, U ′

1 =
⎛
⎝0 −1 0

1 0 0
0 0 1

⎞
⎠, M =

⎛
⎝1 0 0

0 0 −1
0 1 0

⎞
⎠. (13)

The transformation U ′
1 acts on the metric as

gμν

U ′
1−→ (

U ′
1gU ′T

1

)
μν

=

⎛
⎜⎝

R2
1 + β2R2

2 αR2
1 − βγR2

2 βR2
2

αR2
1 − βγR2

2 R2
0 + α2R2

1 + γ 2R2
2 −γR2

2

βR2
2 −γR2

2 R2
2

⎞
⎟⎠, (14)

which corresponds to the changes

R0 → R0/|τ2d |, R1 → R1|τ2d |, α → −α/|τ2d |2 (or τ2d → −1/τ2d ), γ → −β, β → γ (while R2 is unchanged),
(15)

with

τ2d ≡ α + ir01, rμν ≡ Rμ/Rν, (16)

while M acts on the metric as

gμν
M−→ (MgMT )μν =

⎛
⎜⎝

R2
0 + α2R2

1 + γ 2R2
2 γR2

2 −αR2
1 + βγR2

2

γR2
2 R2

2 βR2
2

−αR2
1 + βγR2

2 βR2
2 R2

1 + β2R2
2

⎞
⎟⎠. (17)
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The Euclidean action for the Dirac fermion on T 3 is then given by

SE = 1

(2π )2

∫
d3θ (det e)ψ̄

(
�Ae�

A
μ ∂

∂θμ

)
ψ

= 1

(2π )2

∫ 2πR0

0
dτ

∫ 2πR1

0
dx

∫ 2πR2

0
dy ψ̄

[
�0∂τ + α

R1

R0
�0∂x + (αβ + γ )

R2

R0
�0∂y + �1∂x + β

R2

R1
�1∂y + �2∂y

]
ψ, (18)

where ψ is the two-component Dirac field, ψ̄ = ψ†�0, τ =
R0θ

0, x = R1θ
1, y = R2θ

2, and the gamma matrices �A

satisfy {�A,�B} = 2δAB .

2. Background flux

In addition to the background metric, we also introduce the
background U(1) gauge field (flux) on T 3 to twist the boundary
conditions of the Dirac fermion theory. More specifically,
in the path integral language, we consider the boundary
conditions

ψ(τ,x + 2πR1,y) = e2πiax ψ(τ,x,y),

ψ(τ,x,y + 2πR2) = e2πiay ψ(τ,x,y),
(19)

ψ(τ + 2πR0,x − 2παR1,y − 2π (αβ + γ )R2)

= e2πiaτ ψ(τ,x,y),

where (aτ ,ax,ay) ≡ a represents the background U(1) gauge
field twisting the boundary conditions.

3. Partition function

We now quantize the (2+1)d theory and compute the
properly regularized partition function, denoted by Z[a](g),
which depends on the background flux a and metric g. The
partition function can be evaluated by the path integral on T 3,
Z[a](g) = ∫

D[ψ†,ψ] exp(−SE), with ψ satisfying the twisted
boundary conditions (19), or alternatively, in the operator
language, by the trace

Z[a](g) = Traxay
[e2πi(aτ −1/2)F e−2πR0H

′
], (20)

where H ′ is the “boosted” Hamiltonian (in the presence of
nonvanishing angles α, β, and γ ) obtained from SE and given
by

H ′ = H − iα
R1

R0
Px − i(αβ + γ )

R2

R0
Py, (21)

with

H = 1

(2π )2

∫
dxdy ψ̄

(
�1∂x + β

R2

R1
�1∂y + �2∂y

)
ψ,

(22)

Pi = 1

(2π )2

∫
dxdy ψ†(−i∂iψ), i = x,y,

being the Hamiltonian and momenta. Trax ,ay
means the trace

is taken over the Fock space of the fermion theory for the
spatial boundary conditions specified by ax and ay . The twisted
boundary condition in the τ direction is implemented by
an operator insertion exp[2πi(aτ − 1/2)F ], where F is the
fermion number operator.

The fermion field operator satisfies the canonical anticom-
mutation relation

{ψα(r),ψ†
β(r′)} = (2π )2δαβ

∑
m1,m2∈Z

δ(x − x ′ + 2πm1R1)

× δ(y − y ′ + 2πm2R2), (23)

where r = (x,y) and α,β are spinor indices. The trace can
be evaluated explicitly by the Fourier mode expansion of the
fermion field operator. With the twisted boundary conditions,
the fermion field operator is expanded as

ψ(r) = 1√
R1R2

∑
sx∈Z+ax

∑
sy∈Z+ay

e
ix sx

R1
+iy

sy

R2 ψ̃(s), (24)

where s = (sx,sy) and

{ψ̃α(s),ψ̃†
β(s′)} = δαβδss′ . (25)

Correspondingly, the Hamiltonian can be expanded as

H =
∑

sx∈Z+ax

∑
sy∈Z+ay

ψ̃†(s)H(s)ψ̃(s),

(26)

H(s) = �0

[
�1 isx

R1
+ β

R2

R1
�1 isy

R2
+ �2 isy

R2

]
.

The single-particle Hamiltonian H(s) can be diagonalized
with eigenvectors 	u±(s) and eigenvalues ±ε(s):

H(s)	u±(s) = ±ε(s)	u±(s),

ε(s) =
√

g
ij

2 sisj =
√(

sx

R1
+ β

sy

R1

)2

+
(

sy

R2

)2

, (27)

where

g
ij

2 ≡
(

g11 g12

g21 g22

)−1

=
( 1

R2
1

β

R2
1

β

R2
1

β2

R2
1

+ 1
R2

2

)
. (28)

The Hamiltonian can be diagonalized by the eigenbasis
χ (s) := [χ+(s),χ−(s)]T , which are related to the original
fermion operators ψ̃(s) as[

ψ̃1(s)
ψ̃2(s)

]
=
[
u1+(s) u1−(s)
u2+(s) u2−(s)

][
χ+(s)
χ−(s)

]
,

(29)[
χ+(s)
χ−(s)

]
=
[
u∗

1+(s) u∗
2+(s)

u∗
1−(s) u∗

2−(s)

][
ψ̃1(s)
ψ̃2(s)

]
.

The Hamiltonian in the eigenbasis is given by

H =
∑

s

ε(s)[χ †
+(s)χ+(s) − χ

†
−(s)χ−(s)]

=
∑

s

ε(s)[χ †
+(s)χ+(s) + χ−(x)χ †

−(s)] −
∑

s

ε(s)

=: H : +EGS, (30)
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where : · · · : is the normal ordering with respect to the Fock
vacuum and EGS = −∑

s ε(s) is the ground-state energy.
The ground-state energy needs to be properly regularized.

As shown in Appendix B, we have

EGS[a](g) = −
∑

s

√
g

ij

2 sisj

= 1

4π2

√
det(g2ij )

∑
n 
=0∈Z2

cos(2πiaini)(
g

ij

2 ninj

) 3
2

, (31)

where sx,y are separated into their integral and fractional parts
as

si = ni + ai, ni ∈ Z, i = x,y. (32)

Similarly, the ground-state momentum and the fermion num-
ber can be regularized as

(Pi)GS =
∑
si

si =
∑
si>0

si +
∑
si<0

si

= ζ (−1,ai) − ζ (−1,1 − ai) = 0, (33)

FGS =
∑

s

1 −
∑

s

1 = 0,

where ζ (s,x) = ∑∞
n=0(n + x)−s is the Hurwitz zeta function

defined by analytic continuation from the region Re(s) > 1
and we have used ζ (−1,x) = 1

24 − 1
2 (x − 1

2 )
2
.

With the regularization, the partition function (with bound-
ary conditions twisted by ax and ay), given by the trace in (20),
is evaluated as

Z[a](g) = e−2πR0EGS
∏

sy∈Z+ay

∏
sx∈Z+ax

× |1 − e−2πR0ε(s)+2πiαsx+2πi(αβ+γ )sy+2πiaτ |2, (34)

which can also be expressed as the infinite product of massive
theta functions defined in (3):

Z[a](g) =
∏

sy∈Z+ay

�[ax+βsy ,aτ +γ sy ](τ2d ; r12sy). (35)

We now demonstrate the invariance of the partition function
under large U(1) gauge transformations and modular transfor-
mations.

4. Large U(1) gauge invariance of the partition function

We first check the invariance of the partition function under
large U(1) gauge transformations ax,y,τ → ax,y,τ + 1. The
invariance under ax,τ → ax,τ + 1 is obvious from Eq. (35),
using the properties of the massive theta function listed in (5).
To check the invariance of the partition function under ay →
ay + 1, we note that this amounts to a simple shift sy → sy + 1
in the infinite product in Eq. (35). To sum up, we conclude the
large U(1) gauge invariance of the partition function.

5. Modular invariance of the partition function

By using the expressions (34) and (35) of the partition
function, we can show that Z[a](g) has the following property:

Z[La](LgLT ) = Z[a](g),

or Z[a](LgLT ) = Z[L−1a](g), (36)

where L ∈ SL(3,Z). This means the Dirac fermion, when
coupled to both background U(1) gauge field and metric,
is anomaly-free under any large diffeomorphisms (together
with the induced gauge transformations) on T 3. The claim
(36) can be shown by checking how Z[a](g) transforms under
U1 = U ′

1M and U2, defined in Eqs. (9) and (13). Here we leave
the detail of the derivation to Appendix C.

We now show that the partition function, once projected
by the fermion number parity only [i.e., in the absence of
U(1) gauge field], is modular invariant. We consider the sum
over all periodic/antiperiodic boundary conditions, which are
specified by boundary conditions a = (0,0,0), ( 1

2 ,0,0), . . .,
( 1

2 , 1
2 , 1

2 ), corresponding to the 23 = 8 spin structures when
defining fermions (spinors) on T 3. The resulting total partition
function is given by

Z tot(g) =
∑

ax,y,τ =0,1/2

εaZ[a](g), (37)

where εa are weights (“discrete torsion”) assigned to different
sectors with partition functions twisted by a. From Eq. (36),
we see that by choosing εa = 1 for all a, the total partition
function is modular invariant:

Z tot(LgLT ) = Z tot(g), L ∈ SL(3,Z). (38)

III. SURFACE THEORY OF (3+1)D CP SYMMETRIC
TOPOLOGICAL INSULATORS

Based on the result from the previous section, now we can
compute quantum anomalies of an anomalous surface theory
and interpret them as a signal of the existence of the nontrivial
bulk SPT phases. In this section, we identify a global U(1)
gauge anomaly of the surface theory of (3+1)d CP (charge
conjugation × reflection) symmetric TIs, which are related to,
by CPT-theorem, (3+1)d time-reversal symmetric TIs.

A. Surface theory

Let us consider the following surface Dirac Hamiltonian of
(3+1)d TIs:

H = 1

(2π )2

∫
dxdy ψ†(r)(−iσ2∂x − iσ1∂y)ψ(r), (39)

where σ1,2,3 are the Pauli matrices, the spatial coordinate
r = (x,y) ∈ [0,2πR1) × [0,2πR2) parameterizes the 2d sur-
face, and ψ(r) = [ψ1(r),ψ2(r)]T and ψ†(r) = [ψ†

1(r),ψ†
2(r)] are

two-component fermion annihilation and creation operators,
respectively. The Hamiltonian is invariant under the following
time-reversal symmetry:

T ψ(r)T −1 = iσ2ψ(r), T 2 = (−1)F , (40)

where F is the fermion number operator. This time-
reversal symmetry prohibits the mass term ψ†σ3ψ since
T ψ†σ3ψT −1 = −ψ†σ3ψ .

Alternatively, in the following, we will take the Dirac
Hamiltonian (39) as a surface theory of bulk CP symmetric TIs.
By CPT-theorem, the classification of CP symmetric TIs are
expected to be the same as the classification of time-reversal
symmetric TIs. That is, CP symmetric insulators in (3+1)d
are also classified by a Z2 topological number [28]. Within the
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surface theory, the action of CP symmetry is given by

(C P)ψ(x,y)(C P)−1 = σ3[ψ†(x,2πR2 − y)]T ,

(C P)ψ†(x,y)(C P)−1 = ψ(x,2πR2 − y)T σ3, (41)

(C P)2 = 1.

[This is the only CP symmetry of the Dirac kinetic
term H(kx,ky) = kxσ2 + kyσ1 since σ3HT (−kx,ky)σ−1

3 =
−H(kx,ky).] Fermion bilinears in the surface theory are trans-
formed as ψ†Mψ → ψT U †MU (ψ†)T = −ψ†UT MT U ∗ψ.

In particular, the mass is odd under CP; the surface theory,
at least at quadratic level, cannot be gapped without breaking
symmetries, U(1) � CP. On the other hand, a CP preserving
mass exists if we double this theory (or more generally if the
number of the Dirac fermions is even), and the corresponding
surface theory can be gapped. Since massive fermions can
always be regularized to construct a well-defined quantum
theory, an even number of the surface fermions (39) is always
anomaly-free (while preserving the symmetries). However,
an odd number of the surface fermions may suffer from
anomalies. In the following, we will identify a quantum
anomaly of the surface theory (39) under large U(1) gauge
transformation when CP symmetry is strictly enforced.

B. Projected partition function by CP symmetry

We now consider CP projection of the surface theory (39)
and ask if the projected theory is still invariant under large
gauge transformations (as we have seen in the theory without
symmetry projection). This leads to formulating the fermion
theory on unorientable spacetime manifolds such as S1 × K ,
where K is the Klein bottle. As our main focus here is on large
gauge transformations but not on modular transformations,
the parameters α, β, and γ are set to zero in the following
discussion. Also, the twisted boundary conditions by U(1) are
consistent with CP symmetry only when aτ,x = 0,1/2, while
ay is not constrained by CP symmetry. We will thus study the
large gauge transformation ay → ay + 1.

The partition function of the surface theory projected by
CP is given by the trace

Trax ,ay

[
1
2 (1 + C P)e2πi(aτ −1/2)F e−2πR0H

]
. (42)

Upon projection by CP, we will focus on the CP symmetric
boundary conditions aτ,x = 0,1/2 and ay ∈ [0,1). The first
term in the projected trace, which is invariant under ay →
ay + 1, is already discussed in Sec. II A 4. Our focus below
will be the second term in the projected trace, which we call
the CP twisted partition function:

ZCP
[a] = Trax,ay

C Pe2πi(aτ −1/2)F e−2πR0H . (43)

Because of CP symmetry, from the eigenvectors 	u± at s,
we can construct eigenvectors at s̄ = (−sx,sy):

H(s̄)σ3 	u∗
±(s) = ∓ε(s)σ3 	u∗

±(s). (44)

The CP operator acts on the Fourier components of the original
fermion operators as

(C P)ψ̃(s)(C P)−1 = σ3[ψ̃†(s̄)]T . (45)

On the other hand, the CP action on the eigenbasis χ
†
±,χ± is

deduced as

(C P)χ (s)(C P)−1

=
[〈u+(s)|σ3K|u+(s̄)〉 〈u+(s)|σ3K|u−(s̄)〉
〈u−(s)|σ3K|u+(s̄)〉 〈u−(s)|σ3K|u−(s̄)〉

]
[χ †(s̄)]T ,

(46)

where K is the complex conjugation operator, and
〈u±(s)|σ3K|u±(s̄)〉 = 	u∗

±(s) · σ3 	u∗
±(s̄), etc. Since 	u±(s) and

σ3 	u∗
±(s̄) are both eigenvectors of H(s) but with different

energies, their overlap should be zero. Therefore

(C P)χ+(s)(C P)−1 = 〈u+(s)|σ3K|u−(s̄)〉χ †
−(s̄),

(47)
(C P)χ−(s)(C P)−1 = 〈u−(s)|σ3K|u+(s̄)〉χ †

+(s̄).

The transformation law of χ± under CP depends on the choice
of eigenfunctions 	u±. A choice for the eigenvectors is

|u±(s)〉 = 1√
2

[±	∗/|	|
1

]
, 	 = sy + isx. (48)

For this choice of eigenfunctions,

〈u+(s)|σ3K|u−(s̄)〉 = 〈u−(s)|σ3K|u+(s̄)〉 = −1. (49)

As we can choose the phase of the eigenvectors freely,

|u±(s)〉 = 1√
2

[
1

±	/|	|
]

(50)

is also an eigenfunction. In this gauge,

〈u+(s)|σ3K|u−(s̄)〉 = 〈u−(s)|σ3K|u+(s̄)〉 = 1. (51)

In either choice, the result can be summarized as

(C P)χ+(s)(C P)−1 = η+χ
†
−(s̄),

(52)
(C P)χ−(s)(C P)−1 = η−χ

†
+(s̄),

where η± is s-independent. The product η := η+η− = 1 is
gauge invariant.

The CP twisted partition function ZCP
[a] can then be computed

explicitly as

ZCP
[a] = e−2πR0EGSP[ax ,ay ]

∏
sx∈Z+ax

∏
sy∈Z+ay

[1 − e−4πR0ε(s)],

(53)

where the prefactor P[ax ,ay ] is the CP eigenvalue of the ground
state (the Fock vacuum). Note that the partition function does
not depend on aτ , which is projected out by CP.3 In the
following, we denote ZCP

[a] = ZCP
[ax ,ay ] and consider the two cases

ax = 0,1/2 separately.
a. Periodic boundary condition in the x direction, ax = 0.

In this case, we can factor the twisted partition function into the

3When evaluating the CP twisted partition function (43), only the
simultaneous eigenstates of H , C P , and F contribute to the trace.
Since the eigenstates of C P are charge neutral, it means e2πi(aτ −1/2)F

acts as the identity operator inside the trace, and therefore aτ does
not show up in ZCP.
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product of 2d massless (sz = 0) and massive (sx 
= 0) modes

ZCP
[ax=0,ay ] =P[ax=0,ay ]e

2πR0
∑

sy
ε(sx=0,sy )

∏
sy∈Z+ay

[1−e−4πR0ε(sx=0,sy )]

×
∏

sx∈Z+

⎡
⎣e

4πR0
∑

sy
ε(s)

∏
sy∈Z+ay

|1 − e−4πR0ε(s)|2
⎤
⎦,

(54)

which can be expressed (as the sum
∑

sy
ε(s) is regularized)

in terms of (1+1)d partition functions defined in Sec. I A:

ZCP
[ax=0,ay ] =P[ax=0,ay ]e

−πi(ay−1/2)

× AR
[ay ,0](2ir02)

∏
sx∈Z+

�[ay ,0](2ir02; r21sx), (55)

where rμν ≡ Rμ/Rν . When imposing CP symmetry, it is
reasonable to assume the CP-eigenvalue does not change under
ay → ay + 1 [26], i.e., P[ax=0,ay+1] = P[ax=0,ay ]. Under this
assumption, we have

ZCP
[ax=0,ay+1] = −ZCP

[ax=0,ay ], (56)

where we note both AR
[ay ,0] and �[ay ,0] are invariant under

ax → ax + 1. The anomalous minus sign under the large
gauge transformation, which comes from the 2d massless
modes (sx = 0) but not the massive modes (sx 
= 0), signals
a Z2 topological classification: the CP projected theory can
only be realized as the surface theory of a (3+1)d bulk CP
symmetric TI, which is CPT-conjugate to a (3+1)d time-
reversal symmetric TI [28].

b. Antiperiodic boundary condition in the x direction, ax =
1/2. In this case, the twisted partition function is given by

ZCP
[ax=1/2,ay ] = P[ax=1/2,ay ]

∏
sx∈Z+−1/2

�[ay,0](2ir02; r21sx).

(57)

Observe that there are no 2d massless modes arising in the
expression of ZCP

[ax=1/2,ay ] (while the product of all massive
modes changes from

∏
sy∈Z+ to

∏
sy∈Z+−1/2). This partition

function is anomaly-free under the large gauge transformation,
i.e.,

ZCP
[ax=1/2,ay+1] = ZCP

[ax=1/2,ay ]. (58)

For arbitrary number N of the Dirac fermion flavors, the
result is summarized as(

ZCP
[ax ,ay+1]

)N = (−1)2N(ax−1/2)
(
ZCP

[ax=0,ay ]

)N
. (59)

The surface theory, as projected (or twisted) by CP, is anomaly-
free if and only if N = 0 mod 2. This characterizes the Z2

classification of the bulk SPT phase.

IV. SURFACE THEORY OF (3+1)D REFLECTION
SYMMETRIC CRYSTALLINE TOPOLOGICAL

SUPERCONDUCTORS

In this section, we identify a global gravitational anomaly of
the surface theory of (3+1)d reflection symmetric crystalline
TSCs, which are related to, by CPT-theorem, (3+1)d time-
reversal symmetric TSCs. While the Z2-type (gauge) anomaly

in the surface of CP TIs agrees with the noninteracting
classification of the bulk phase, the (gravitational) anomaly in
the surface of reflection symmetric TSCs, as we will discuss
later, sees only the reduction of noninteracting classification,
and hence can detect the effect of interactions (in the case that
the bulk gap is not destroyed by the interactions).

A. Surface theory

At the quadratic level, time-reversal symmetric supercon-
ductors in symmetry class DIII are classified by an integer
topological invariant, the 3d winding number ν [4]. The
topological invariant counts the number of gapless surface
Majorana cones. For example, the B-phase of 3He is a TSC
(superfluid) with ν = 1, and hosts, when terminated by a
surface, a surface Majorana cone, which can be modeled, at
low energies, by the Hamiltonian

H = 1

(2π )2

∫
d2r λT (−iσ3∂x − iσ1∂y)λ, (60)

where σ1,2,3 are the Pauli matrices, the spatial coordinate
r = (x,y) ∈ [0,2πR1) × [0,2πR2) parameterizes the 2d
surface, and λ(r) is a two-component real fermionic field
satisfying λ†(r) = λ(r). The surface Hamiltonian is invariant
under time-reversal T defined by T λ(r)T −1 = iσ2λ(r),
where T 2 is equal to the fermion number parity
Gf = (−1)F = 1

(2π)2

∫
d2r λT σ2λ. For TSCs with ν = Nf ,

the surface modes can be modeled by Nf copies of the above
surface Hamiltonian.

While, at the quadratic level, one can verify that, for
an arbitrary integer ν = Nf , surface Majorana cones are
stable against perturbations the surface Majorana cones may
be destabilized once interactions are included. A number
of arguments, such as the “vortex condensation approach,”
“symmetry-preserving surface topological order,” “cobordism
approach,” and so on [20,32–35], show that the surface Majo-
rana cones are unstable against interactions when ν = 0 mod
16, reducing the noninteracting integer classification to Z16.

Here, instead of time-reversal symmetry, we consider its
CPT-conjugate, reflection or parity symmetry, which acts on
the Majorana field as

Pλ(x,y)P−1 = σ3λ(x,2πR2 − y), P2 = 1. (61)

Upon demanding the invariance under parity (61), the Majo-
rana Hamiltonian (60) describes the surface of symmetry class
D + R+ crystalline TSCs, which are, at the quadratic level,
classified by the integral mirror Chern number [29–31]. Based
on CPT-theorem, we expect, upon the inclusion of interactions,
the integer classification collapses down to Z16.

To see the stability of the gapless Majorana mode at
the quadratic level, note that the mass λT σ2λ is odd under
parity (61) and prohibited. It is also interesting to note
that while the uniform mass is not allowed, one could
consider

∫
d2r m(r)λT σ2λ with m(x,2πR2 − y) = −m(x,y).

This perturbation gaps out the most part of the surface, but
not completely. At the fixed points of P symmetry, y = 0
and y = πR2, it leaves gapless modes localized at the domain
walls. Note that this is similar to the chiral mode localized at
a mass domain wall on the surface of time-reversal symmetric
TIs. The difference, however, is that in the present case,
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the mass domain wall, as a whole, preserves the reflection
symmetry, while the domain wall on the surface of TIs
breaks time-reversal symmetry, except at the domain wall. The
gapless mode at the domain wall consists of the Nf copies of
Majorana fermions propagating in either +x or −x directions,
depending on the overall sign of the mass domain wall for each
flavor. For even Nf , we can always choose (technically) a set
of mass parameters such that the gapless modes at the domain
wall are made nonchiral (e.g., by choosing different signs of the
masses for different flavors of Majorana fermions). In this case,
reflection symmetry acts on the (1+1)d gapless domain-wall
fermions as an unitary on-site Z2 symmetry. Using the result in
Ref. [24], it can be shown that such gapless domain-wall states
can be gapped without breaking the symmetry if the number
of the nonchiral states is 0 mod 8. This means, when Nf = 0
mod 16, we can gapped out the surface of the crystalline TSCs
while preserving the reflection symmetry at the same time.
This gives the Z16 classification, as expected to the same as
the case of class DIII TCSs, of the class D + R+ crystalline
TSCs, upon the inclusion of interactions. A similar argument
for the Z8 classification of interacting crystalline TIs protected
by reflection symmetry can be found in Ref. [61].

B. Projected partition function by reflection/parity symmetry

We now study the presence/absence of (global) gravita-
tional anomalies of the surface theory (60), which signals the
existence of the nontrivial bulk SPT phases. For convenience,
we double the degrees of freedom and consider Dirac instead
of Majorana fermion fields. (This is purely a matter of
convenience. The analysis below can be repeated without
referring to the Dirac fermion, and can be done solely in terms
of the Majorana fermion.) The number of Dirac fermion flavors
will be denoted by N , which corresponds to Nf = 2N in term
of the original Majorana fermions.

Our starting point is the partition function Z[a](g) =
Trax ,ay

e2πi(aτ −1/2)F e−2πR0H
′

with H ′ given by Eq. (21). Let
us now include the effects of parity symmetry by including
twisted boundary conditions by parity. First, note that the
modular parameters β and γ are odd under parity. Hence
they will be set to zero henceforth, β = γ = 0, to consider
the parity twisted partition function. While SL(3,Z) acts on
the metric g = g(Ri,α,β,γ ), there is an SL(2,Z) subgroup
generated by U ′

1 and U2, acting on the “reduced” set of the
modular parameters, gP = gP(Ri,α) ≡ g(Ri,α,β = γ = 0).4

With the reduced set of modular parameters by parity, the total
partition function, which is generated by projection by parity
and the fermion number parity, is given by

Z tot(gP) =
∑

G∈SG3

εG [ZG(gP)]N,

(62)
ZG(gP) = TrGx,Gy

[Gτ (−1)F e−2πR0H
′
],

4For Dirac fermions, parity also restricts the possible values of the
background flux to be aP ≡ (aτ ,ax,ay = 0,1/2). However, since our
theory here is considered as a double theory for Majorana fermions,
aμ takes only 0 or 1/2.

where SG = {1,Gf ,P,PGf } is the symmetry group of the
surface fermion theory, and εG are weights assigned to different
sectors with partition functions twisted by G = (Gτ ,Gx,Gy),
where for each direction, the boundary condition is twisted by
Gμ = 1,Gf ,P,PGf .

Not all sectors of the total partition function are mixed by
SL(2,Z). We can then divide different sectors into groups,
and study the action of SL(2,Z) on each group separately.
In the following, we will focus on the sectors generated by
twisting y-boundary condition by 1,Gf , and by twisting τ -
and x-boundary conditions by 1,Gf ,P,Gf P . For a given
y-boundary condition, there are 42 = 16 sectors in total, and
the corresponding partition function is

Z tot
[ay ](gP) =

∑
G∈SG2

εG,ay

[
Z

(G,G
2ay

f )
(gP)

]N
, (63)

where G = (Gτ ,Gx), and ay = 0,1/2 represents the y-
boundary condition. We will consider the cases of ay = 0 and
ay = 1/2 separately, as they are not mixed by SL(2,Z). The
remaining sectors can be generated by twisting y-boundary
condition by P and PGf . Twisting by these group elements
gives rise to what can be interpreted as “open sectors” (partition
functions on orbifolds) as noted by Horava [47]. In this
paper, however, we will focus on the 32 “closed” sectors
generated by twisting with Gy = 1,Gf . The resulting closed
orientable/unorientable three-manifolds, where the (twisted)
partition functions are evaluated, are shown in Fig. 1.

In the following, we present the analysis of the twisted
partition functions for the case of ay = 0. The detail of the
calculations is left to Appendix D. The analysis for the case of
ay = 1/2 is similar and in fact simpler. In short, for ay = 1/2,
the total partition function (63) can be made modular invariant
for any number of Dirac fermion flavors, N . See Appendix F.

x

y

x

y

x x

y

(i) (ii)

(iii) (iv)

y

FIG. 1. The three-torus and its (unorientable) descendants gen-
erated by the orientifold projection. While the y-boundary con-
dition is twisted by Gy = 1 or Gf , the τ - and x-boundary
conditions are twisted by (Gτ ,Gx) = (G 2aτ

f ,G 2ax

f ), (PG 2aτ

f ,G 2ax

f ),

(G 2aτ

f ,PG 2ax

f ), (PG 2aτ

f ,PG 2ax

f ), as shown in figures (i)–(iv),
respectively. (Un)twisted boundary conditions are represented by
arrows with the same color.
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On the other hand, the total partition function for ay = 0
can or cannot be made modular invariant, depending on
N . For ay = 0, there are 16 sectors in total, generated

by twisting by P and G
2aμ

f in the τ or/and x direc-
tions. We divide these 16 sectors into four sets (i–iv)
by (Gτ ,Gx) = (G 2aτ

f ,G 2ax

f ), (PG 2aτ

f ,G 2ax

f ), (G 2aτ

f ,PG 2ax

f ),

(PG 2aτ

f ,PG 2ax

f ), respectively. (We have four sectors in
each set.) Then the symmetry-twisted partition functions
Z

(Gτ ,Gx,G
2ay

f )
for each set are given by (see Appendix D)

χi
[aτ ,ax ](gP) = AR

[ax ,aτ ](τ2d )AL
[ax,aτ ](τ2d )�i

[ax ,aτ ],

χii
[aτ ,ax ](gP) = AR

[ax ,aτ ](τ2d )AL

[ax,aτ − 1
2 ](τ2d )�ii

[ax,2aτ ],
(64)

χiii
[aτ ,ax ](gP) = AR

[ax ,aτ ](τ2d )AL

[ax− 1
2 ,aτ ](τ2d )�iii

[2ax ,aτ ],

χiv
[aτ ,ax ](gP) = AR

[ax ,aτ ](τ2d )AL

[ax− 1
2 ,aτ − 1

2 ](τ2d )�iv
[2ax ,aτ −ax ],

where aτ,x = 0,1/2 and we have introduced the functions
�i−iv

[ax ,aτ ](τ2d ; r12) by

�i
[ax ,aτ ] =

∏
sy∈Z+

[
�[ax,aτ ](τ2d ; r12sy)

]2
,

�ii
[ax ,aτ ] =

∏
sy∈Z+

�[ax ,aτ ](2τ2d ; r12sy),

(65)
�iii

[ax ,aτ ] =
∏

sy∈Z+
�[ax ,aτ ](τ2d/2; 2r12sy),

�iv
[ax ,aτ ] =

∏
sy∈Z+

�[ax ,aτ ](τ2d/2 + 1/2; 2r12sy).

When evaluating the partition sum (63), constant prefactors
may show up, but are not displayed in the expressions (64).
These prefactors correspond to parity eigenvalues of the
ground states in different sectors [which might depend on the
modular parameters and fluxes but are assumed to be SL(2,Z)
invariant], and can be absorbed to the (redefined) weights εG,ay

in Eq. (63).
We now ask, for a specific choice of N , by summing

these partition functions with some set of weights, if we can
construct a modular invariant. The transformation properties
of the twisted partition functions χi−iv

[aτ ,ax ] under SL(2,Z)
(generated by U ′

1 and U2) can be deduced from the properties
of the functions AR,L and �; see Sec. I and Appendix E. It
can be shown that if and only if N = 4n (n = 1,2,3, . . .), i.e.,
Nf = 8n, a modular invariant can be constructed. In addition,
while SL(2,Z) invariance can be achieved for N = 4n, there is
a distinction between n = 2k − 1 and n = 2k(k = 1,2,3, . . .),
i.e., N = 8k − 4 (Nf = 16k − 8) and N = 8k (Nf = 16k). To
be explicit, the twisted partition functions in set (i) are closed
under SL(2,Z) and a modular invariant can be constructed for
any N . For the twisted partition functions in set (ii − iv), we
consider a weighted sum

∑
A=ii,iii,iv

∑4
i=1 εA

i (χA
i )N , where

χA
1 = χA

[0,0], χA
2 = χA

[ 1
2 ,0]

, χA
3 = χA

[0, 1
2 ]
, χA

4 = χA

[ 1
2 , 1

2 ]
. When

N = 8k − 4, the SL(2,Z) invariance is achieved when(
εii

1 ,εii
2 ,εii

3 ,εii
4 ,εiii

1 ,εiii
2 ,εiii

3 ,εiii
4 ,εiv

1 ,εiv
2 ,εiv

3 ,εiv
4

)
= (a1,a2,a3,a3,a1,a3,a2,a3,−a1,−a3,−a3,−a2), (66)

where ai=1,2,3 are arbitrary phases (signs). Thus, when N =
8k − 4, the trivial choice, εA

i = 1 for all (A,i), is not allowed.
When N = 8k, on the other hand, the SL(2,Z) invariance is
achieved when(

εii
1 ,εii

2 ,εii
3 ,εii

4 ,εiii
1 ,εiii

2 ,εiii
3 ,εiii

4 ,εiv
1 ,εiv

2 ,εiv
3 ,εiv

4

)
= (a1,a2,a3,a3,a1,a3,a2,a3,a1,a3,a3,a2). (67)

The SL(2,Z) invariance for N = 4n (Nf = 8n) may be
understood by taking the limit R2 → 0 (r12 → ∞). In this
limit, all massive theta functions become 1 and the total parti-
tion function constructed here reduces to the form of (1+1)d
partition function projected by Z2 × Z2 symmetry discussed
in Ref. [24]. In the latter case, the SL(2,Z) invariance of
the Nf = 8n symmetry-projected partition function indicates
that 8n helical Majorana modes [in (1+1) dimensions] can be
gapped without breaking the Z2 × Z2 symmetry.

V. DISCUSSION

We have studied global anomalies on surface theories
of (3+1)d topological insulators and superconductors. For
CP symmetric TIs, which are related to, by CPT-theorem,
time-reversal symmetric TIs, there is a global U(1) gauge
anomaly if the number of the surface Dirac fermion is odd,
characterizing the Z2 classification of the bulk phase. For
reflection symmetric TSCs, which are related to, by CPT
theorem, class DIII TSCs, a global gravitational anomaly
is present in the surface theory when Nf 
= 0 mod 8. The
corresponding bulk state is topologically distinct from trivial
states of matter even in the presence of interactions, as far as
the bulk gap is not destroyed by the interactions. On the other
hand, the weights εG, determining the relative weights among
partition functions in different sectors, have 16-periodicity as
a function of Nf . Our analysis thus presents an alternative
approach to the collapse of the noninteracting classification.

For the cases where we do not find any inconsistency
(anomaly), i.e., the case of TSCs with Nf = 8, the situation
may be more subtle. First of all, the theory may suffer from
other forms of inconsistency, which have not been studied
here, and hence particular calculations presented in this work
does not immediately conclude that the corresponding (3+1)d
bulk theories are topologically trivial. Recall that we have not
included the partition functions twisted in the y direction by
P and PGf [see comments below Eq. (63)].

Moreover, we studied the problem of global anomalies
by considering surface theories on T 3 (and its descendants
generated by the orientifold projection). Even when the theory
is shown to be consistent on T 3, it may be anomalous once
put on a different three-manifold. The situation is better under-
stood for 2d conformal field theories (CFTs), where once the
consistency of the theories at genus one (torus) is established,
they can be consistently defined on any (oriented) Riemann
surfaces. For 3d CFTs, there is no such known fact. For this rea-
son, our quest for anomalies in the surface theories may not be
complete. Nevertheless, our study on anomalies of 3d massless
fermions has shown some interesting and nontrivial results.5

5The questions addressed here, after the completion of this work,
was answered in a recent paper by E. Witten [63]. The Nf = 8 surface
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Finally, it is interesting whether our approach can be related
to the gapped surface states of (3+1)d SPT phases that develop
symmetry-respecting topological orders. Such connection is
recently investigated in Ref. [23] in the case of the SU(2)
global anomaly [62]. Extending such connection to a generic
set of interacting SPT phases is left for future studies.
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APPENDIX A: THE DIRAC FERMION THEORY ON
TWO-TORUS T 2

In this Appendix, we review the modular invariance, the
SL(2,Z) invariance, of the Dirac fermion theory on two-torus
T 2. For a flat T 2, the zweibein can be factorized as

eA
μ =

(
R0 0
0 R1

)(
1 0

−α 1

)
=
(

R0 0
−αR1 R1

)
, (A1)

and its inverse is given by

e�
A

μ =
(

1
R0

α
R0

0 1
R1

)
, (A2)

such that eA
μe�

A
ν = δμ

ν and eA
μe�

B
μ = δA

B . Here, R0 and R1

are the radii for the directions 0 and 1, and α is related to the
angle between the directions 0 and 1. The Euclidean metric is
then given by

gμν = eA
μeB

νδAB =
(

R2
0 + α2R2

1 −αR2
1

−αR2
1 R2

1

)
, (A3)

and the corresponding line element is

ds2 = gμνdθμdθν = R2
0(dθ0)2 + R2

1(dθ1 − αdθ0)2, (A4)

where 0 � θμ � 2π are angular variables.
The group SL(2,Z) is generated by two transformations:

U1 =
(

0 −1
1 0

)
, U2 =

(
1 1
1 0

)
. (A5)

SL(2,Z) transformations on the zweibein and metric are
induced by

eA
μ

L−→ (eLT )
A

μ = Lμ
ρeA

ρ,

e�
A

μ L−→ (e�L−1)A
μ = e�

A
ρ(L−1)ρ

μ
, (A6)

gμν
L−→ (LgLT )μν = Lμ

ρLν
σ gρσ ,

theory of a TSC is actually anomaly-free—in the traditional sense—
on any three-manifolds, either orientable or unorientable. However,
such surface state indeed suffers from some other inconsistencies.
When one considers the problem of anomalies in a more subtle way
(than the situation considered in this paper), the anomaly is of order
16 rather than 8. See the discussion in Ref. [63].

for any SL(2,Z) element L = U
n1
1 U

n2
2 U

n3
1 · · · . In particular,

gμν
U1−→ (

U1gUT
1

)
μν

=
(

R2
1 αR2

1
αR2

1 R2
0 + α2R2

1

)
, (A7)

which corresponds to the changes

R0 → R0/|τ2d |, R1 → R1|τ2d |, α → −α/|τ2d |2, (A8)

or, in terms of the modular parameter (the Teichmüller
parameter) τ2d ≡ α + i R0

R1
,

τ2d → −1/τ2d . (A9)

On the other hand,

gμν
U2−→ (

U2gUT
2

)
μν

=
(

R2
0 + (α − 1)2R2

1 −(α − 1)R2
1

−(α − 1)R2
1 R2

1

)
, (A10)

which corresponds to the change

α → α − 1 (while R0 and R1 are unchanged). (A11)

The two transformations U1 and U2 are exactly S and T −1

transformations that generate SL(2,Z) (usually used in the 2d
conformal field theory literatures), respectively.

The Euclidean action for the Dirac fermion on this two
torus is given by

SE = 1

2π

∫
d2θ (det e)ψ̄

(
�Ae�

A
μ
∂θμ

)
ψ, (A12)

where det e = √
g = R0R1, ∂θμ ≡ ∂

∂θμ , and the gamma matri-
ces �A satisfy {�A,�B} = 2δAB . In terms of the space-time
coordinates τ = R0θ

0 and x = R1θ
1:

2πSE =
∫ 2π

0
dθ0

∫ 2π

0
dθ1

× ψ̄(R1�
0∂θ0 + αR1�

0∂θ1 + R0�
1∂θ1 )ψ

=
∫ 2πR0

0
dτ

∫ 2πR1

0
dx

× ψ̄

(
�0∂τ + α

R1

R0
�0∂x + �1∂x

)
ψ. (A13)

The partition function can be evaluated by the path integral
on the (general) two torus Z(g) = ∫

D[ψ†,ψ]e−SE , or by the
operator formalism

Z(g) = Tr[e−2πR0H
′
], (A14)

where H ′ is the “boosted” Hamiltonian (in the presence of
nonvanishing α) corresponding to SE :

H ′ = H − iα
R1

R0
Px, (A15)

with

H = 1

2π

∫ 2πR1

0
dx ψ̄�1∂xψ,

(A16)

Px = 1

2π

∫ 2πR1

0
dx ψ†(−i∂xψ)
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being the Hamiltonian and momentum on a “flat two torus”
(α = 0).

The modular invariance for the partition function of
nonchiral fermions is achieved by summing twisted partition
functions over the spin structures. We thus consider the
partition function

Z tot(g) =
∑

(Gτ ,Gx )∈SG2

TrGx
[Gτ (−1)F e−2πR0H

′
], (A17)

where SG = {1,(−1)F } is the symmetry group of the free
fermion theory. Then, the total partition function satisfies
Z tot(LgLT ) = Z tot(g) for L ∈ SL(2,Z).

APPENDIX B: REGULARIZATION OF THE
GROUND-STATE ENERGY

In this Appendix, we regularize the ground-state energy,
which is given by the divergent sum

EGS[a](g) = −
∑

s∈Z2+(ax ,ay )

|s|, (B1)

where |s| ≡
√

g
ij

2 sisj .
Following Appendix C in Ref. [56], for arbitrary positive

integer d, we have

∑
s∈Zd+α

|s|eis·x = cd+1

(2π )d
√

gd

∫
ddy

1

|y|d+1

∑
s

eis·(x−y),

(B2)

where s,α ∈ Rd , |s| ≡
√

g
ij

d sisj , gd ≡ det(gdij ), and cd+1 ≡
π

d
2 2d+1�( d+1

2 )

�( 1
2 )

. Now we use the equality

∑
m∈Zd

eim·(x−y) = (2π )d
∑
n∈Zd

δd (x − y + 2πn). (B3)

Substituting the above equality, with removing the n = 0 term
in the sum, into (B2), we obtain the regularized sum

∑
s∈Zd+α

|s|eis·x = cd+1
√

gd

∫
ddy

1

|y|d+1

∑
n 
=0∈Zd

× δd (x − y + 2πn)eiα·(x−y)

= cd+1
√

gd

∑
n 
=0∈Zd

e−2πiα·n

|x + 2πn|d+1
. (B4)

Then our regularized ground-state energy is given by

EGS[α](g) = −
∑

s∈Z2+(ax ,ay )

|s|eis·x|x=0

= −c3
√

g2

∑
n 
=0∈Z2

e−2πiaini

|2πn|3

= 1

4π2

√
det(g2ij )

∑
n 
=0∈Z2

cos(2πiaini)(
g

ij

2 ninj

) 3
2

. (B5)

APPENDIX C: DERIVATION OF THE CLAIM (36)

In this Appendix, we confirm the claim (36) by explicitly
checking how Z[a](g) transforms under the two generators
U1 = U ′

1M and U2 of SL(3,Z), defined in Eqs. (9) and (13).
The behavior of Z[a](g) under U2 and U ′

1 can be directly
deduced by the properties of the massive theta function listed
in (5).

c. Transformation under U2. Under U2, the metric is
transformed as in (12), while the fluxes are transformed as
(aτ ,ax,ay) → (aτ + ax,ax,ay). From (35), we have

Z[U2a]
(
U2gU2

T
)= ∏

sy∈Z+ay

�[ax+βsy ,aτ +ax+(γ+β)sy ](τ2d−1; r12sy)

=
∏

sy∈Z+ay

�[ax+βsy ,aτ +γ sy ](τ2d ; r12sy)

= Z[a](g). (C1)

d. Transformation under U ′
1. Under U ′

1, the metric is
transformed as in (15), while the fluxes are transformed as
(aτ ,ax,ay) → (−ax,aτ ,ay). From (35), we have

Z[U ′
1a]
(
U ′

1gU ′
1
T ) =

∏
sy∈Z+ay

�[aτ +γ sy ,−ax−βsy ](−1/τ2d ; r12sy |τ2d |)

=
∏

sy∈Z+ay

�[−ax−βsy ,−aτ −γ sy ](τ2d ; r12sy)

=
∏

sy∈Z+ay

�[ax+βsy ,aτ +γ sy ](τ2d ; r12sy)

= Z[a](g). (C2)

e. Transformation under M . Transformation for the param-
eters {Ri,α,β,γ } under M is not as obvious as the cases of
U2 and U ′

1. We observe that, since the transformation M only
involves the change in the x-y plane, under M the x and y

components of the dreibein eA
μ and the metric gμν (and their

inverses) transform as

eA
i →Mi

keA
k, e�

A
i → e�

A
k(M−1)k

i
,

(C3)
gij →Mi

kMj
lgkl, (g2)ij → (M−1)k

i
(M−1)l

j
(g2)kl,

where i,j,k,l = 1,2, and (g2)ij is defined in Eq. (28). To see
the behavior of Eq. (34) under M , we first note the regu-
larized ground-state energy (31) satisfies EGS[Ma](MgMT ) =
EGS[a](g). On the other hand, the second line in Eq. (34) can
be expressed as (i,j = 1,2)

e−2πR0ε(s)+2πiαsx+2πi(αβ+γ )sy+2πiaτ

= e−2πR0

√
g

ij

2 si sj +2πiR0e
�
0
i si+2πiaτ , (C4)

where e�
0
i = (α/R0,(αβ + γ )/R0)T . From this expression, we

can see that the mode-product term in Eq. (34) is also invariant
under {g,a} → {MgMT ,Ma}. Therefore we have shown

Z[Ma](MgMT ) = Z[a](g). (C5)

From the above discussion, we thus confirm our claim (36).
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APPENDIX D: PARITY TWISTED PARTITION
FUNCTIONS OF THE SURFACE THEORY OF

CRYSTALLINE TOPOLOGICAL SUPERCONDUCTORS

In this Appendix, we explicitly calculate the partition
functions twisted by parity, which is defined by

Pψ(x,y)P−1 = σ3ψ(x, − y), P2 = 1, (D1)

where ψ is the two-component Dirac fermion. (Remember
that we have doubled the degree of freedom of the original
theory of Majorana fermions.) Here we define y → −y instead
y → 2πR2 − y (defined in the main text) by parity is just
for convenience (the result does not depend on the choice).
As mentioned in the text, the parity invariance PH ′P−1 =
H ′ forces strictly β = γ = 0. Then, P acts on the Fourier
components of the original fermion operators as

Pψ̃(s)P−1 = σ3ψ̃(s̄), (D2)

where s̄ = (sx, − sy). On the other hand, the P action on the
eigenbasis χ±, defined in Eq. (29), is deduced as

Pχ (s)P−1 =
[〈u+(s)|σ3|u+(s̄)〉 〈u+(s)|σ3|u−(s̄)〉
〈u−(s)|σ3|u+(s̄)〉 〈u−(s)|σ3|u−(s̄)〉

]
χ (s̄).

(D3)

where |u±(s)〉 are eigenvectors of

H′(s) = sx

R1
σ3 + sy

R2
σ1 + α

sx

R0
(D4)

with eigenvalues ±ε(s) + αsx/R0, where ε(s) =√
(sx/R1)2 + (sy/R2)2. Because of P symmetry,

σ3H′(s)Uσ−1
3 = H′(s̄), σ3|u±(s̄)〉 are also eigenvectors

of H′(s) with eigenvalues ±ε(s) + αsx/R0, and
therefore the off-diagonal matrix elements are zero,
〈u+(s)|σ3|u−(s̄)〉 = 〈u−(s)|σ3|u+(s̄)〉 = 0.

The diagonal elements, and hence, the transformation
properties of χ±(s) under parity, depend on a choice of
eigenfunctions 	u±(s). For sy 
= 0, the following choice for
the eigenvectors

|u±(s)〉 = 1√
2ε(s)[ε(s) ± sx/R1]

[
sx/R1 ± ε(s)

sy/R2

]
(D5)

leads to

〈u+(s)|σ3|u+(s̄)〉 = 〈u−(s)|σ3|u−(s̄)〉 = 1. (D6)

Alternatively, a different gauge choice

|u±(s)〉 = 1√
2ε(s)[ε(s) ± sx/R1]

[
sy/R2

−sx/R1 ± ε(s)

]
(D7)

leads to

〈u+(s)|σ3|u+(s̄)〉 = 〈u−(s)|σ3|u−(s̄)〉 = −1. (D8)

In either choice, the result can be summarized as

P

[
χ+(s)
χ−(s)

]
P−1 =

[
η+χ+(s̄)
η−χ−(s̄)

]
, sy 
= 0, (D9)

where η± is an s-independent sign factor. Note that the
condition P2 = 1 forces η2

± = 1. While η± depends on
the choice of eigenfunctions, the final results (such as the
evaluation of the partition functions) do not depend on such
ambiguity.

On the parity-invariant line sy = 0, which exists if ay ∈ Z,
the Hamiltonian H′(sx,sy = 0) = sx

R1
σ3 + α sx

R0
has a “chiral

decomposition:”

|uR(sx)〉 =
[
eiαR

0

]
, |uL(sx)〉 =

[
0

eiαL

]
, αR,L ∈ R,

(D10)

which corresponds to the “chiral eigenbasis” χR,L.
Since 〈uR(sx)|σ3|uR(sx)〉 = −〈uL(sx)|σ3|uL(sx)〉 = 1 and
〈uR(sx)|σ3|uL(sx)〉 = 〈uL(sx)|σ3|uR(sx)〉 = 0 (independent of
the choice of the phases αR/L), we have

P

[
χR(sx)
χL(sx)

]
P−1 = σ3

[
χR(sx)
χL(sx)

]
, sy = 0, (D11)

which does not depend on the normalizations of |uR/L(sx)〉.
We observe, on the P-invariant line sy = 0, parity acts like
the “spin parity” (−1)FL , where FL can be thought as the
total number of χL(sx) (at sy = 0). Thus we expect that the
modular properties of this surface theory, as determined solely
by the 2d massless modes (sx,sy = 0), will be similar to the
modular properties of the edge theory of (2+1)d topological
superconductors protected by Z2 × Z2 symmetries [24].

f. P-twisted partition functions in the τ direction. First we
evaluate the partition function twisted by P in the τ direction,
which can be written as

ZPG 2aτ
f ,G 2ax

f ,ay
= TrG 2ax

f ,ay
[Pe2πi(aτ −1/2)F e−2πR0H

′
]

= e−2πR0EGS
∏
sx

W P
[a](sx), (D12)

where ay = 0,1/2, EGS = −∑
s ε(s), and W P

[a](sx) can be
written in a pairwise fashion (with respect to P symmetry):

W P
[a](sx) = XP

[a](sx) × Y P+
[a] (sx) × Y P−

[a] (sx), (D13)

where

XP
[a](sx) =Traxay

P exp

{
+ 2πi

(
aτ − 1

2

)
[χ †

R(sx)χR(sx) + χ
†
L(sx)χL(sx)] − 2πsx

R0

R1
[χ †

R(sx)χR(sx) − χ
†
L(sx)χL(sx)]

+ 2πiαsx[χ †
R(sx)χR(sx) + χ

†
L(sx)χL(sx)]

}
(D14)
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and

Y P±
[a] (sx) =

∏
sy>0

Traxay
P exp

{
± 2πi

(
aτ − 1

2

)
[χ †

±(s)χ±(s) + χ
†
±(s̄)χ±(s̄)] − 2πε(s)

R0

R1
[χ †

±(s)χ±(s) + χ
†
±(s̄)χ±(s̄)]

± 2πiαsx[χ †
±(s)χ±(s) + χ

†
±(s̄)χ±(s̄)]

}
. (D15)

Note that the 2d massless modes (sy = 0) XP
[a](sx) would be present if ay = 0. With such pairwise decomposition, the 2d massive

part for fixed sy 
= 0 in Eq. (D12) is evaluated as

e2πR0
∑

sx∈Z+ax
ε(s)

∏
sx∈Z+ax

|1 − e−2πR0ε(s)+2πiαsx+2πiaτ |2 = �[ax ,2aτ ](τ2d ; r12sy), (D16)

while the 2d massless part is evaluated as

AR
[ax ,aτ ](τ2d )AL

[ax,aτ − 1
2 ](τ2d ). (D17)

In summary,

ZPG 2aτ
f ,G 2ax

f ,ay
=

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

const × AR
[ax ,aτ ](τ2d )AL

[ax ,aτ − 1
2 ]

(τ2d )

×∏
sy∈Z+ �[ax,2aτ ](2τ2d ; r12sy)

for ay = 0 (PBC in the y direction),
const ×∏

sy∈Z+− 1
2
�[ax,2aτ ](2τ2d ; r12sy)

for ay = 1/2 (APBC in the y direction).

Here the constant prefactors are related to the P eigenvalues of the ground states.
g. P-twisted partition functions in the x direction. Now let us consider the partition function twisted by P in the x direction.

We start with the twisted boundary conditions in the x and y directions:

ψ(x + 2πR1,y) = (
PG 2ax

f

)
ψ(x,y)

(
PG 2ax

f

)−1 = e2πiax UPψ(x,−y),
(D18)

ψ(x,y + 2πR2) = (
G 2ax

f

)
ψ(x,y)

(
G 2ax

f

)−1 = e2πiay ψ(x,y).

With the above twisted boundary condition, the Fourier expansion of the fermion fields can be expressed as

ψ(r) =
∑

sx∈Z/2+ax

∑
sy∈Z+ay

e
ix sx

R1
+iy

sy

R2 [	u+(s)χ+(s) + 	u−(s)χ−(s)] + {2d massless modes}, (D19)

with

e2πisx χ±(s) = η±e2πiax χ±(s̄), sx ∈ Z

2
+ ax, η2

± = 1, (D20)

where χ±(s) are eigenbasis of H′(s), 	u±(s) are the corresponding eigenvectors [take the form of (D5) or (D7), up to normalization
factors], and the term “2d massless modes” is present if ay ∈ Z. The 2d massless modes are given by the sum of the two terms

∑
sR
x ∈Z+ax

e
ix

sRx
R1 	uR

(
sR
x

)
χR

(
sR
x

)
,

∑
sL
x ∈Z+ax− 1

2

e
ix

sLx
R1 	uL

(
sL
x

)
χL

(
sL
x

)
, (D21)

where χR,L(s) are eigenbasis of H′(sx,sy = 0) and 	uR,L(s) are the corresponding eigenvectors in Eq. (D10).
From the condition (D20), which relates eigenmodes with s and s̄, we only need to take “half” of the degree of freedoms, either

modes with sy > 0 or with sy < 0, when we calculate the trace for the partition functions. The result does not depend on which
region for sy we choose. From the above discussion, the 2d massive part for fixed sy 
= 0 in the trace TrPG 2ax

f ,ay
[G 2(aτ −1/2)

f e−2πR0H
′
]

is evaluated as

e2πR0
∑

sx∈Z/2+ax
ε(s)

∏
sx∈Z/2+ax

|1 − e−2πR0ε(s)+2πiαsx+2πiaτ |2 = �[2ax ,aτ ](τ2d/2; r12sy), (D22)

while the 2d massless part (if present) is evaluated as

AR
[ax ,aτ ](τ2d )AL

[ax− 1
2 ,aτ ](τ2d ). (D23)
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In summary,

ZG 2aτ
f ,PG 2ax

f ,ay
=

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

const × AR
[ax ,aτ ](τ2d )AL

[ax− 1
2 ,aτ ]

(τ2d )

×∏
sy∈Z+ �[2ax ,aτ ](τ2d/2; 2r12sy),

for ay = 0 (PBC in the y direction)
const ×∏

sy∈Z+− 1
2
�[2ax ,aτ ](τ2d/2; 2r12sy)

for ay = 1/2 (APBC in the y direction).

(D24)

h. P-twisted partition functions in the τ and x directions. Finally, we calculate the partition function twisted by P both in the
τ and x directions, ZPG 2aτ

f ,PG 2ax
f ,ay

. Using the result from the last section, we now just need to include the additional insertion
of the parity operator inside the trace. This can be done by observing that

Pχ±(s)P−1 = η±χ±(s̄) = e2πisx e−2πiax χ±(s) (D25)

for the massive modes (sy 
= 0) and

P

[
χR(sx)
χL(sx)

]
P−1 = σ3

[
χR(sx)
χL(sx)

]
for the massless modes (where sy = 0 as usual). Then, the 2d massive part for fixed sy 
= 0 in the trace is evaluated as

e2πR0
∑

sx∈Z/2+ax
ε(s)

∏
sx∈Z/2+ax

|1 − e−2πR0ε(s)+2πi(α+1)sx+2πi(aτ −ax )|2 = �[2ax ,aτ −ax ](τ2d/2 + 1/2; 2r12sy), (D26)

while the 2d massless part is evaluated as

AR
[ax ,aτ ](τ2d )AL

[ax− 1
2 ,aτ − 1

2 ](τ2d ). (D27)

In summary,

ZPG 2aτ
f ,PG 2ax

f ,ay
=

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

const × AR
[ax ,aτ ](τ2d )AL

[ax− 1
2 ,aτ − 1

2 ]
(τ2d )

×∏
sy∈Z+ �[2ax ,aτ −ax ](τ2d/2 + 1/2; 2r12sy)

for ay = 0 (PBC in the y direction),
const ×∏

sy∈Z+− 1
2
�[2ax ,aτ −ax ]

(
τ2d/2 + 1/2; 2r12sy

)
for ay = 1/2 (APBC in the y direction).

APPENDIX E: MASSIVE MODES �i−iv
[ax ,aτ ](τ2d; r12) UNDER SL(2,Z) TRANSFORMATIONS

In this Appendix, we discuss how the (products of) massive modes �i−iv
[ax ,aτ ](τ2d ; r12), defined in Eq. (65), transform under

SL(2,Z) generated by U ′
1 and U2. This can be deduced from the modular properties (5) of the massive theta functions with

modular parameters τ2d , 2τ2d , τ2d/2, and τ2d/2 + 1/2 (we denote the mass parameter m = r12sy in the following equations).
(i) For �[ax ,aτ ](τ2d ; m),

�[ax,aτ ](τ2d ; m)
U ′

1−→ �[ax ,aτ ](−1/τ2d ; m|τ2d |) = �[−aτ ,ax ](τ2d ; m),
(E1)

�[ax,aτ ](τ2d ; m)
U−1

2−→ �[ax ,aτ ](τ2d + 1; m) = �[ax ,ax+aτ ](τ2d ; m).

(ii) For �[ax,aτ ](2τ2d ; m),

�[ax ,aτ ](2τ2d ; m)
U ′

1−→ �[ax ,aτ ](−2/τ2d ; m|τ2d |) = �[−aτ ,ax ](τ2d/2; 2m),
(E2)

�[ax ,aτ ](2τ2d ; m)
U−1

2−→ �[ax ,aτ ](2τ2d + 2; m) = �[ax,2ax+aτ ](2τ2d ; m).

(iii) For �[ax,aτ ](τ2d/2; 2m),

�[ax,aτ ](τ2d/2; 2m)
U ′

1−→ �[ax ,aτ ](−1/2τ2d ; 2m|τ2d |) = �[−aτ ,ax ](2τ2d ; m),
(E3)

�[ax,aτ ](τ2d/2; 2m)
U−1

2−→ �[ax ,aτ ](τ2d/2 + 1/2; 2m).

(iv) For �[ax ,aτ ](τ2d/2 + 1/2; 2m),

�[ax ,aτ ](τ2d/2 + 1/2; 2m)
U ′

1−→ �[ax ,aτ ](−1/2τ2d + 1/2; 2m|τ2d |) = �[−ax−2aτ ,ax+aτ ](τ2d/2 + 1/2; 2m),

�[ax ,aτ ](τ2d/2 + 1/2; 2m)
U−1

2−→ �[ax ,aτ ](τ2d/2 + 1; 2m) = �[ax,ax+aτ ](τ2d/2; 2m). (E4)
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Therefore

�i
[ax ,aτ ]

U ′
1−→ �i

[−aτ ,ax ], �i
[ax ,aτ ]

U−1
2−→ �i

[ax,ax+aτ ],

�ii
[ax ,aτ ]

U ′
1−→ �iii

[−aτ ,ax ], �ii
[ax ,aτ ]

U−1
2−→ �ii

[ax,2ax+aτ ],
(E5)

�iii
[ax ,aτ ]

U ′
1−→ �ii

[−aτ ,ax ], �iii
[ax ,aτ ]

U−1
2−→ �iv

[ax,aτ ],

�iv
[ax ,aτ ]

U ′
1−→ �iv

[−ax−2aτ ,ax+aτ ], �iv
[ax,aτ ]

U−1
2−→ �iii

[ax,ax+aτ ].

APPENDIX F: SL(2,Z) INVARIANCE OF THE TOTAL PARTITION FUNCTION FOR ay = 1/2

The parity-twisted partition functions for ay = 1/2, as computed in Appendix D, are summarized as follows:

ZG 2aτ
f ,G 2ax

f ,ay= 1
2

= �̃i
[ax ,aτ ](τ2d ; r12),

ZPG 2aτ
f ,G 2ax

f ,ay= 1
2

= const. × �̃ii
[ax,2aτ ](τ2d ; r12),

(F1)
ZG 2aτ

f ,PG 2ax
f ,ay= 1

2
= const. × �̃iii

[2ax ,aτ ](τ2d ; r12),

ZPG 2aτ
f ,PG 2ax

f ,ay= 1
2

= const. × �̃iv
[2ax ,aτ −ax ](τ2d ; r12),

where we have introduced �̃i−iv
[ax ,aτ ](τ2d ; r12) as

�̃i
[ax ,aτ ] =

∏
sy∈Z+−1/2

[�[ax,aτ ](τ2d ; r12sy)]2,

�̃ii
[ax ,aτ ] =

∏
sy∈Z+−1/2

�[ax ,aτ ](2τ2d ; r12sy),

(F2)
�̃iii

[ax ,aτ ] =
∏

sy∈Z+−1/2

�[ax ,aτ ](τ2d/2; 2r12sy),

�̃iv
[ax ,aτ ] =

∏
sy∈Z+−1/2

�[ax ,aτ ](τ2d/2 + 1/2; 2r12sy).

The constant prefactors are again related to the P eigenvalues of the ground states, which can be absorbed to the (redefined)
weights as we consider the partition sum.

The total partition function is then given by

Z tot
[ay= 1

2 ]
(gP) = ε1�̃

i
[0,0] + ε2�̃

i

[0, 1
2 ]

+ ε3�̃
i

[ 1
2 ,0]

+ ε4�̃
i

[ 1
2 , 1

2 ]
+ 2

(
ε5�̃

ii
[0,0] + ε6�̃

ii

[ 1
2 ,0]

+ ε7�̃
iii
[0,0] + ε8�̃

iii

[0, 1
2 ]

+ ε9�̃
iv
[0,0] + ε10�̃

iv

[0, 1
2 ]

)
.

(F3)

From the modular properties of � (and thus of �̃i−iv) discussed in Appendix E, we can see that Z tot
[ay= 1

2 ]
(gP) can be made SL(2,Z)

(generated by U ′
1 and U2) invariant for any number of Dirac fermion flavors, N , if we choose εi = 1 for all i (more precisely, we

just need ε2 = ε3 = ε4 and ε5 = ... = ε10).
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