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Quantum cluster approach to the spinful Haldane-Hubbard model
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We study the spinful fermionic Haldane-Hubbard model at half-filling using a combination of quantum cluster
methods: cluster perturbation theory, the variational cluster approximation, and cluster dynamical mean-field
theory. We explore possible zero-temperature phases of the model as a function of onsite repulsive interaction
strength and next-nearest-neighbor hopping amplitude and phase. Our approach allows us to access the regime of
intermediate interaction strength, where charge fluctuations are significant and effective spin model descriptions
may not be justified. Our approach also improves upon mean-field solutions of the Haldane-Hubbard model by
retaining local quantum fluctuations and treating them nonperturbatively. We find a correlated topological Chern
insulator for weak interactions and a topologically trivial Néel antiferromagnetic insulator for strong interactions.
For intermediate interactions, we find that topologically nontrivial Néel antiferromagnetic insulating phases
and/or a topologically nontrivial nonmagnetic insulating phase may be stabilized.
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I. INTRODUCTION

A recent paper [1] has reported the realization of Haldane’s
model of the quantum anomalous Hall effect [2] or quantum
Hall effect without Landau levels, in a system of ultracold
fermionic *°K atoms loaded into a honeycomb optical lattice.
While other recent realizations of the quantum anomalous
Hall effect in Cr-doped (Bi,Sb),Te; topological insulator thin
films [3-5] are equally impressive, Jotzu et al.’s optical-lattice
setup [1] opens up unique possibilities for the simulation of
quantum models of correlated particles with topological band
structures, i.e., topological versions of the Bose-Hubbard [6]
or Fermi-Hubbard [7] models. Although topological band
insulators are inherently stable against sufficiently weak
symmetry-preserving interactions, their fate in the presence
of strong interactions remains a largely unsolved but actively
investigated problem [8].

Motivated by Ref. [1], in this paper we aim to determine the
ground-state phase diagram of the half-filled spinful Haldane-
Hubbard (HH) model [9-19]. This model can be seen as a
hybrid of the standard Haldane and Hubbard models, in which
spin-% fermions hop on a two-dimensional (2D) honeycomb
lattice according to Haldane’s original tight-binding model, but
also repel each other when on the same site with energy cost
U (Fig. 1). Unlike its time-reversal invariant counterpart, the
Kane-Mele-Hubbard model, which has been studied success-
fully by quantum Monte Carlo (QMC) methods in recent years
[20-33], the HH model breaks time-reversal symmetry, which
leads to the notorious fermion sign problem and precludes the
use of QMC methods. Previous studies of the HH model have
thus investigated two limiting cases. The first is the large-U
limit, in which the HH model at half-filling is mapped to an
effective SU(2)-invariant spin model involving only the spin
degree of freedom of the original fermions. The resulting spin
model has been studied using classical variational approaches
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[15] as well as exact diagonalization (ED) on small clusters
[18]. Although the large-U limit is expected to give a good
description of the physics deep in the Mott insulating phase
where charge degrees of freedom are frozen, it cannot describe
the Mott/symmetry-breaking transitions out of the weakly
interacting Chern insulating phase. It may even fail in the
weak Mott regime, i.e., on the Mott side but close enough to
the transition, where charge fluctuations are pronounced and
the usual procedure of keeping only a few terms in the /U
expansion (¢ is a characteristic hopping amplitude) may not
be justified. Another line of attack has been to treat the full
fermionic HH model with both charge and spin degrees of
freedom, but to neglect quantum fluctuations entirely and use
a mean-field approach so that the problem remains tractable.
This approach has been used either in the context of conven-
tional Hartree-Fock theory [9-12,14,16,17] or slave-particle
mean-field theory [9,10,13,15,17]. Here, one has the advantage
over the large-U limit of being able to describe transitions out
of the Chern insulating phase and the intermediate U regime,
but at the expense of neglecting quantum fluctuations which
can quantitatively and qualitatively influence the ground-state
phase diagram of the model.

Here, we use a combination of quantum cluster methods
[34] [cluster perturbation theory [35,36] (CPT), the variational
cluster approximation [37] (VCA), and cluster dynamical
mean-field theory [38,39] (CDMFT)] to study the half-filled
spinful HH model. Quantum cluster methods are one of
the few methods that allow us to study the full interacting
fermionic problem for all values of U, while taking quan-
tum fluctuations into account nonperturbatively. Furthermore,
these methods are formulated directly in the thermodynamic
limit. While they do not present an exact solution to the
problem, quantum cluster methods capture the full dynamical
(i.e., frequency-dependent) effect of short-range correlations
and thus constitute a significant improvement over mean-field
approaches. In these methods, one views the lattice of the
original problem as a superlattice of small clusters connected
by hopping. The size of the clusters is chosen such that the
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problem of decoupled clusters can be solved by numerical
exact diagonalization (ED). An approximate solution to the
original problem of coupled clusters is then obtained by
treating hopping between clusters in perturbation theory to
infinite order, in the spirit of strong-coupling perturbation
theory [40]. Tendencies towards symmetry-breaking long-
range order can then be studied by means of a dynamical
variational principle for correlated systems, Potthoff’s self-
energy-functional theory [41]. Quantum cluster methods have
been used successfully in the study of correlated topological
phases of matter, including correlated Chern insulators [42,43],
quantum spin Hall insulators [44-56], topological Kondo
insulators [57], and Weyl semimetals [58].

Our main findings can be summarized as follows: (1) the
ground-state phase diagram contains a topologically trivial
Néel antiferromagnetic (AF) insulator at large U and a
correlated topological Chern insulator (CI) at small U, in
agreement with previous Hartree-Fock findings; (2) in both
VCA and CDMFT, topologically nontrivial Néel AF phases
appear at intermediate U; (3) in VCA, a topologically non-
trivial nonmagnetic insulator (NMI) appears for intermediate
U, sandwiched between the CI and AF phases, while in
CDMFT the NMI phase is preempted by the onset of AF
order as the interaction strength U increases. Topologically
nontrivial phases are characterized by a nonzero value of the
generalized Chern number computed from the one-particle
Green’s function.

The rest of the paper is organized as follows. In Sec. II we
introduce the HH model; in Sec. I1I we give a brief introduction
to quantum cluster methods; in Secs. IV and V we present our
VCA and CDMEFT results, respectively; and in Sec. VI we
discuss these results as well as possible avenues for future
work.

II. SPINFUL HALDANE-HUBBARD MODEL

The half-filled spinful HH model [9-17] is defined by the
Hamiltonian (Fig. 1)

H{'/t,U/t, )= —t Z c;facjg -1 Z ei”ff"’cjacjg

(ij)o {(ijho

+Uznmni¢ —MZCL,Cio, (D
i io

where c[ia (ciy) creates (annihilates) an electron of spin o =%
, | on site i of the two-dimensional (2D) honeycomb lattice,
t is the nearest-neighbor hopping amplitude, #’¢"i® is the
next-nearest-neighbor hopping amplitude with v;; = +1 (=1)
for clockwise (counterclockwise) hopping and we adopt the
convention that —m < ¢ < 7, U > 0 is the onsite repulsion
energy, and the chemical potential u is chosen to maintain the
system at half-filling. Under time-reversal symmetry (7°), the
Hamiltonian transforms as

THW /t,U/t,$)T " = HE' /t,U/t, — ¢), 2)

hence any ¢ # 0,7 breaks 7 explicitly. In the noninteracting
limit U =0, Eq. (1) reduces to two decoupled copies of
Haldane’s original model [2] for the quantum Hall effect
without Landau levels, and describes a gapped Chern insulator
(CI) with total Chern number C =2sgn¢ and quantized
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FIG. 1. Schematic depiction of the spinful Haldane-Hubbard
model on the honeycomb lattice: the real nearest-neighbor hopping
t and complex next-nearest-neighbor hopping #'e*'® give rise to the
band structure of a Chern insulator, while the onsite repulsion U > 0
introduces electronic correlations.

Hall conductivity o, = Ce?/h for ¢ #0,m. The system
becomes gapless for ¢ = 0,7, where time-reversal symmetry
is restored. At half-filling, particle-hole symmetry (C) implies

CH(t'/t,U/t,p)C"" = H({'/t,U/t,x — ¢), A3)

which, combined with Eq. (2) and the fact that a change of
sign of ¢’ is equivalent to a shift of ¢ by 7, implies

CTH(t'/t,U/t,p)CT)™" = H(—1'/t,U/t,¢). “)

Thus, the phase diagram of the interacting model is symmetric
about t' =0 and ¢ = /2, and it is sufficient to study the
problem for#’ > 0and 0 < ¢ < 7 /2. Henceforth, all energies
will be measured in units of 7, and we set t = 1.

Previous mean-field studies [9-17,19] all agree on the
fact that for ¢ # 0,7, the CI is stable against the Hubbard
interaction for U less than some critical U.(¢), where the
detailed form of U.(¢) depends on the approach being
used. One expects the CI to be perturbatively stable against
interactions because it is a gapped state. However, different
approaches lead to different conclusions regarding what phases
occur for U > U.(¢), and in what order. Most conventional
mean-field studies predict the occurrence of magnetically
ordered phases at large enough U [14-17,19], while slave-
particle studies predict additional nonmagnetic, topologically
ordered phases at intermediate U, such as the chiral spin liquid
(CSL) [9,15,59-62] and the correlated Chern insulator (CI*)
[13,17]. The possibility of a CSL ground state in models of CIs
augmented by an onsite Hubbard repulsion can also be inferred
from Gutzwiller-projection studies of such models [63] and
ED studies of effective spin Hamiltonians in the large-U limit
[18,64].

We will focus on the possibility of AF order in the
spinful HH model, as well as possible non-symmetry-breaking
Mott transitions. By contrast with studies of effective spin
Hamiltonians valid deep in the Mott phase U > 1 where
charge fluctuations are completely frozen [15,18,64], here
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charge fluctuations remain included and we are able to access
Mott transitions and the weak Mott regime U ~ 1. Given
the bipartite nature of the honeycomb lattice and the SU(2)
spin symmetry of the model, AF order is the simplest and
most likely type of order one can consider. Motivated in
particular by the Hartree-Fock study of Ref. [16] which finds
collinear (Néel) AF order in this model for sufficiently large
U and ¢’ < 0.35, we will focus on the range 0 < ¢’ < 0.35 and
likewise evaluate the likelihood of Néel AF order as a function
of U > 0and 0 < ¢ < m/2. Néel AF order is also a natural
choice because the ' = 0 limit of the model corresponds
to the nearest-neighbor Hubbard model on the honeycomb
lattice, which has been convincingly shown to exhibit Néel
AF order for U > 3.869 via large-scale, sign-problem-free
QMC simulations [65].

III. QUANTUM CLUSTER METHODS

Quantum cluster methods are based on Potthoff’s varia-
tional principle for strongly correlated systems [37,41]. Given
a Hamiltonian H = Hy(t) + H;(U) that is the sum of a
noninteracting term Hy(¢) with one-body Hamiltonian matrix
t, and a local interaction term H,(U) with interaction strength
U, one defines a functional €;[X] of the self-energy X as

QIZI=Trin(— (G;' = %))+ FIZI, &)

where the trace and logarithm are to be understood in
the functional sense, Go = (w + 1 — £)~! is the one-particle
Green’s function of the noninteracting system, and F[X] =
D[G[X]] — Tr(XG[X]) is the Legendre transform of the
Luttinger-Ward functional ®[G] [66], G being regarded as
a functional of X. Potthoff’s principle states that €2;[X] is
stationary at the exact (physical) self-energy, and its value at
the stationary point coincides with the exact thermodynamic
grand potential €2 of the system.

Because the exact form of F[X] is not known in general,
one cannot directly use Eq. (5) for variational calculations.
However, one can take advantage of the fact that the functional
form of F[X] depends only on the interaction term H;(U) and
not on the one-body term Hy(¢). F[X] inherits this property
from ®[G], whose diagrammatic representation contains only
skeleton diagrams with fully dressed Green’s functions G and
interaction vertices U, but no explicit dependence on ¢. One
thus defines a reference Hamiltonian H' = Hy(t') + H;(U)
that differs from H in its one-body Hamiltonian matrix ¢’ only,
but which is more easily solved. In the context of quantum
cluster methods, one chooses ¢’ by severing bonds in H, such
H' describes fully interacting but decoupled clusters. One
can then use ED to compute the fully interacting one-particle
Green’s function G’ for the reference Hamiltonian, from which
the exact self-energy X(¢) and grand potential Q' for H' can
be determined. Applying Eq. (5) to the reference problem, we
obtain

QX)) =Q =Trln ( — (G/O_l - Z(t’))fl) + F[X())],
(6)
where Gy = (v + p — t)~! is the noninteracting Green’s

function for the reference Hamiltonian. We used the fact that
the functional form of F[X] is the same regardless of the
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one-body term, and the fact that X(¢#') is a stationary point of
Qy[X] since it is the exact self-energy for H'. Equation (6)
can then be used to give an explicit expression for F[X]:

FIX@)] = Q —Trin(-G), @)

using G~ = Gt — X(¢).

We now assume that the exact self-energy of the original
Hamiltonian H can be represented as the self-energy X(¢') of
the reference Hamiltonian H’ for a suitable choice of ¢'. In
other words, we search for a stationary point of €,[X] on the
set of self-energies of this form. Using Egs. (5) and (6), the
functional to be extremized is

QI = Q +Trin (- [Gy' — =@)] )
— Trin(—G"). (8)

In practice, one extremizes the functional (8) with respect to
the one-body Hamiltonian matrix ¢’ of the decoupled clusters.

So far, the discussion has been exact, assuming the exact
self-energy is ¢’ representable as explained earlier. In CPT
[35,36], one approximates the exact Green’s function G of the
original Hamiltonian H as

G'=G,'-3(t)=G"-V, )

where V =t — ¢’ corresponds to intercluster hopping terms
that were severed in the reference Hamiltonian. The cluster
Green'’s function G’ is thus viewed as the unperturbed Green’s
function, and V is treated as a perturbation (albeit to infinite
order). Using Eq. (9), the Potthoff functional (8) can be written
as

Q)] = Q —Trin(1 - VG)). (10)

In VCA, one searches for stationary points of the functional
(10), i.e., solutions of the Euler equation 92,[X(¢')]/dt’ = 0.
This is achieved in practice by using the cluster one-body
terms ¢’ as variational parameters. In particular, one can
search for spontaneously broken symmetries by including in
t’ symmetry-breaking terms, i.e., Weiss fields. By contrast
with conventional mean-field theory, however, here the full
dynamical effect of correlations is taken into account via the
frequency dependence of the cluster Green’s function G’ in
Eq. (10).

We choose the reference Hamiltonian H' to consist of
decoupled hexagonal six-site clusters whose centers form
a triangular superlattice (Fig. 2). This choice of cluster is
sufficient to study Néel AF order, which is probed by adding
to H' the symmetry-breaking term

H,y, = M£<Z<nm —ni))— Y (niy — nu)), (1)
icA ieB

where A and B correspond to sites within the cluster that
belong to the two sublattices of the honeycomb lattice, and
M. is the Weiss field. In addition to M/, we also treat the
chemical potential u’ of the cluster as a variational parameter.
For a given value of the physical chemical potential u,
which is chosen to maintain the system at half-filling, M
and p' are used as variational parameters to extremize the
Potthoff functional (10). It is necessary to consider the cluster
chemical potential y’ as a variational parameter to ensure
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FIG. 2. Six-site cluster used in the VCA calculations (shaded
area), with Bravais lattice vectors e;,e, (green arrows) and superlat-
tice vectors E, E, (red arrows).

thermodynamic consistency, i.e., that the electronic density
n calculated from the trace of the Green’s function G matches
that obtained from the thermodynamic relationn = —9Q2/9u,
where 2 is the grand potential obtained from the Potthoff
functional at its stationary point [67].

IV. VCA: NUMERICAL RESULTS

We used VCA to determine the ground-state phase diagram
of the half-filled spinful HH model in the U-¢’ plane (Fig. 3)
and in the U-¢ plane (Fig. 4). We find a correlated Chern
insulator (CI) at small U, a Néel antiferromagnet (AF) at
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FIG. 3. Ground-state phase diagram of the half-filled spinful
Haldane-Hubbard model in the U-t’ plane for ¢ = /2, obtained
in VCA. CI: Chern insulator, NMI: nonmagnetic insulator, AF: Néel
antiferromagnetic insulator. The CI, NMI, and AF phases all have a
nonzero one-particle (charge) gap. The CI-NMI phase boundary (blue
circles) corresponds to a closing of the one-particle gap as determined
from the one-particle density of states or the dependence of the
electron density n on the chemical potential 1 (both methods closely
agree). Shown for comparison, the solid gray line is the direct CI-AF
transition found in the Hartree-Fock (HF) study of Ref. [16]. The thin
vertical green lines at t' = é, % are cuts through the phase diagram
across which various quantities are plotted in following figures.
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FIG. 4. Ground-state phase diagram of the half-filled spinful
Haldane-Hubbard model in the U-¢ plane for ¢ = é, obtained in
VCA. Phase boundaries are determined in the same way as in Fig. 3.

large U, and a nonmagnetic insulator (NMI) at intermediate
U, sandwiched between the CI and AF phases. The AF
order parameter (staggered magnetization), defined as the
expectation value of the operator multiplying the Weiss
field M. in Eq. (11), is nonzero only in the AF phase and
vanishes in the CI and NMI phases. All three phases have a
nonzero one-particle gap and are thus insulating. At ' =0,
the model reduces to the conventional Hubbard model with
nearest-neighbor hopping on the honeycomb lattice. Although
VCA finds a nonzero gap for all U > 0, we know from
large-scale QMC simulations [65] that at ' =0 the gap
remains zero for U < 3.869, corresponding to a correlated
semimetal. Above that critical value Néel AF order develops
and a gap opens. There exists a finite critical U for the
opening of a gap at ' =0 because the U = 0 low-energy
spectrum of the model contains massless Dirac fermions that
are protected by a combination of inversion and time-reversal
symmetries. Unless they are broken spontaneously, those
symmetries prevent the occurrence of mass terms for the
Dirac fermions [2,68]. At half-filling, the chemical potential
for the noninteracting problem is at the Dirac point, the
density of states vanishes, and there is a finite threshold
value of U for symmetry-breaking instabilities. Although
VCA is unable to capture the gaplessness of the semimetallic
region at ¢’ = 0, the onset of AF order is predicted correctly,
with a critical U, = 3.82 at ' = 0 very close to the QMC
value U, = 3.869. Another cluster method, namely CDMFT,
captures the gaplessness of the semimetallic region, and will
be used in Sec. V to complement the VCA results presented
in this section.

For ' # 0 and ¢ # 0,7, the next-nearest-neighbor hop-
ping term breaks time-reversal symmetry explicitly, and the
Dirac fermions are gapped out already in the U = 0 limit,
corresponding to a noninteracting CI. Because it is gapped,
the noninteracting CI evolves smoothly into a correlated CI
upon increasing U. However, the one-particle gap decreases
upon increasing U, and eventually closes and reopens at some
critical value of U that is ' and ¢ dependent [Fig. 5(a)].
It appears to be linear in U near the transition. The gap is
calculated in two ways: from the one-particle density of states
and from the dependence of n on the chemical potential u, that
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FIG. 5. Quantum phase transitions in the half-filled spinful
Haldane-Hubbard model, obtained in VCA. (a) One-particle gap A
and AF order parameter as a function of U for t' = é, ¢ =m/2 and
t = %, ¢ = 0.8. (b) Potthoff functional 2 as a function of the Weiss
field M/ for 1’ = ¢ and ¢ = 0.8.

is, from the compressibility. Both methods closely agree, and
only one curve is shown. The closing of the one-particle gap
occurs before the onset of magnetic order, unlike what is found
in Hartree-Fock studies of the same Hamiltonian [16,19].
Furthermore, there are quantitative differences between ours
and the Hartree-Fock result regarding the exact location of the
AF phase boundary (Fig. 3). In particular, for #’ = 0.25 the AF
phase boundary in VCA is pushed up to higher values of U
compared to the mean-field result. From the point of view of
the effective spin model obtained from the HH model (1) in the
large-U limit, it is natural to expect that the AF phase boundary
would be pushed up in U by a nonzero t’, which generates
next-nearest-neighbor interaction terms that frustrate Néel AF
order [15,18]. Given that it ignores the disordering effect
of quantum fluctuations, conventional mean-field theory is
known to overestimate the stability of magnetically ordered
states and underestimate the effects of frustration. It is thus
not surprising that the region of stability of AF order shrinks
in VCA compared to the Hartree-Fock result.

InFig. 5(a) we also plot the AF order parameter as a function
of U, demonstrating that the NMI-AF transition is continuous.
The AF order parameter is calculated from the CPT Green’s
function (9) at the stationary point of the Potthoff functional €2,
i.e., with the values of " and M that extremize Q2. In Fig. 5(b)
we plot the Potthoff functional as a function of the AF Weiss
field M, at the value of the cluster chemical potential u” that
extremizes 2. This again clearly demonstrates the continuous
nature of the NMI-AF transition. We find that at the stationary
point, € is a minimum as a function of M but a maximum as
a function of ', as is often the case for models of correlated
electrons [34].

VCA also allows one to calculate the one-particle density
of states p(w) (Fig. 6) from the CPT Green’s function (9) at
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FIG. 6. One-particle density of states p(w) obtained in VCA for
t = %, ¢ = 0.8, as a function of frequency w in (a) the correlated CI
(U =1),NMI (U =4.3),and AF (U = 5) phases; (b) at the CI-NMI

transition (U = 3.81); and (c) at the NMI-AF transition (U = 4.72).

the stationary point of the Potthoff functional. In Fig. 6(a),
we plot the density of states in the CI, NMI, and AF phases,
which clearly displays a gap around @ = 0. Figures 6(b) and
6(c) show the density of states at the CI-NMI and NMI-AF
transitions, respectively. At the CI-NMI transition, the density
of states is roughly linear in frequency near the gap-closing
point. Unlike the CI-NMI transition, the NMI-AF transition
is not accompanied by a closing of the one-particle gap. In
fact, as Fig. 5(a) shows, there is virtually no signature of the
onset of magnetic order in the one-particle gap. This is very
different from the mean-field picture, in which the onset of
Néel AF order is immediately accompanied by a reduction of
the one-particle gap [16].

The exact nature of the NMI phase is difficult to pinpoint in
our VCA calculations. By the nature of the method itself, we
are limited to computing one-particle properties. As a further
diagnostic of the phase, we have computed a topological
invariant known as the generalized Chern number [69-71]

N 1 / / dzk
=—€ Ir d(() —_—
2 5 VA (2 )2
x G lak“GG 'BkaG '8k;~G, (12)

where p,v,A take values 0, 1, and 2 with kg = w, €,
is the fully antisymmetric tensor in three dimensions, G
is the imaginary-time one-particle Green’s function (here taken
to be the CPT Green'’s function), G~ is its matrix inverse, and
the trace is taken over the matrix indices of G, which include
spin and band indices. From a mathematical standpoint, a
N x N Green’s function matrix G(k,w) should be viewed
as a mapping from frequency-momentum space R x T2 to
the space GL(N,C) of N x N complex-valued matrices, and
Eq. (12) is known as the Cartan-Maurer integral invariant, an
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FIG. 7. Generalized Chern number N, in the U-t' plane for ¢ =
1 /2, computed from the one-particle CPT Green’s function obtained
in VCA. The AF phase of Fig. 3 contains a narrow topologically
nontrivial region (red region) near the AF-NMI phase boundary. We
show for comparison the topologically nontrivial AF region (gray
region) found in the Hartree-Fock study of Ref. [16].

integer-valued topological invariant that expresses the third
homotopy class 73[GL(N,C)] = Z of this mapping.

Rather than evaluating the frequency integral in Eq. (12),
we have used the simplified expression for the generalized
Chern number derived in Ref. [72], which only requires the
knowledge of the Green’s function at zero frequency:

d*k A, A,
= A Jx ’ x = - ) 1
M= [ Ea. Fat = w0
where
Ajly=—i > (k.a|og k., (14)
o, e (k)>0

and the |k,a) are the eigenvectors of the Green’s function
matrix G(k,w = 0) with positive eigenvalues wuy(k) (G is
a 4 x 4 matrix because of the two bands and the two spin
projections). The practical computation of N, is done using the
method proposed in Ref. [73], which yields quantized (integer)
values up to double precision accuracy (107'°).

In Fig. 7, we illustrate the values taken by N, in the U-t'
plane. The gap-closing CI-NMI transition is accompanied by
a topological transition at which N, changes from +1 in the
CI phase to —1 in the NMI phase: thus, the NMI phase is
topologically nontrivial. The greater part of the AF phase has a
vanishing generalized Chern number and is thus topologically
trivial, except for a narrow sliver near the NMI-AF transition
where N, = —1 (red region in Fig. 7). To be precise, this
topological AF region is bounded from below by the NMI-AF
transition line of Fig. 3 and from above by a topological
transition at which N, changes by one. Similar results hold
in the U-¢ plane of Fig. 4: there is a narrow topological
AF region just above the NMI-AF phase boundary, but the
one-particle gap there is too small to allow for an accurate
determination of the location of the topological transition. For
comparison, we also plot in Fig. 7 the topological AF region
found in the Hartree-Fock study of Ref. [16] (gray region).
Aside from the different position of the transition lines, the
latter study finds no NMI region and the topological AF region
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FIG. 8. Berry curvature as a function of wave vector for ' =
0.2, ¢ = /2 and four values of U associated with the following
phases obtained in VCA: (a) CI, (b) NMI, (c) topological AF, and
(d) nontopological AF. Blue means positive, red means negative.
Only the spin-up contribution is shown. The spin-down contribution
is obtained by inverting with respect to the origin, but the two spin
contributions to N, are equal.

is sandwiched between the CI and the topologically trivial AF
insulator; furthermore, the topological AF region has N, = 1
(per spin) as in the CI rather than N, = —1.

In Fig. 8, we show the Berry curvature F, (k) as a function
of wave vector at t' = 0.2, ¢ = 7/2 and four values of U,
corresponding to four different phases: CI, NMI, topological
AF, and nontopological AF. Whereas the change from N, = 1
to N, = —1 at the CI-NMI transition is sudden, since we
are then going through a gapless point, the passage from
NMI to AF has a gradual effect on the Berry curvature
map, weakening the contribution around the Dirac point K
and strengthening that from K’. At some value of U in
the AF phase, the contribution from K’ changes sign, the
net contribution abruptly goes to zero, and we fall into the
topologically trivial AF phase.

How should one interpret these results for the generalized
Chern number? First of all, the correlated CI at U > 0 is
adiabatically connected to the noninteracting CI at U = 0.
Since N, reduces to the single-particle Chern number in
the noninteracting limit, and since the single-particle Chern
number measures the Hall conductivity (here, per spin) in units
of 2 / h [74], in the correlated CI phase also N, measures the
Hall conductivity in units of ez/h. However, this does not
necessarily mean that the NMI and topological AF regions
have quantized Hall conductivity —2e?/h. The CI and NMI
regions are separated by a phase transition, and the NMI and
topological AF regions occur at a finite interaction strength
U > 0. In the presence of interactions, N, is not generally
equal to the Hall conductivity [75]. The only statement one

075131-6



QUANTUM CLUSTER APPROACH TO THE SPINFUL ...

&0 0é
| | "—e
£ EL\ 0, 361 01§ 0, /,EI £
€3 Dx”03 164 94§ 93\\]] €3
€4 I:l I:l €4

FIG. 9. Left: cluster-bath system used in CDMFT. The cluster
contains two sites (blue symbols) forming the unit cell of the model.
The bath sites are indicated by gray squares. They have energies ¢;
(i=1,...,4) and are hybridized with the cluster sites as indicated
(dashed lines) with hopping amplitudes 6;. Right: arrangement of this
cluster to form a repeated pattern.

can safely make is that if one considers an interface between
two semi-infinite CI and NMI regions, the difference between
the number of gapless interface states and the number of
zeros of the Green’s function at the interface should equal the
difference in generalized Chern numbers across the interface,
namely, four (accounting for the twofold spin degeneracy)
[76]. Therefore, the NMI phase has a topological character,
but it does not necessarily have a nonzero quantized Hall
conductivity.

V. CDMFT: NUMERICAL RESULTS

As a complement to our VCA results, we have also studied
the same system using CDMFT [38,39]. We will not provide
a review of the method here, but rather refer the reader to
the literature [77-79]. The method proceeds like CPT and
VCA: an effective model is solved on a small cluster, and the
self-energy associated with that cluster is applied to the whole
lattice. However, the effect of the cluster’s environment is not
embodied in various Weiss fields residing on the cluster, but
rather by a set of uncorrelated, additional orbitals hybridized
with the cluster (the “bath”). These bath orbitals have their
own (possibly spin-dependent) energy levels (g;,) and are
hybridized with the cluster sites with amplitudes 6;,. The
bath parameters (¢;,,6;,) are determined by a self-consistency
condition. With an ED solver, the computational complexity
is determined by the total number of orbitals (cluster plus
bath) and a compromise must be made between the number
of bath orbitals and the number of sites in the cluster. A better
resolution in the time domain, and therefore a better rendering
of spectral properties, is generally obtained by increasing the
number of bath orbitals at the expense of cluster sites. But, this
in turn deteriorates the spatial resolution of the method.

In order to study the spectral properties of model (1), we will
use the cluster-bath system illustrated in Fig. 9, which contains
only two cluster sites (the unit cell) and eight bath sites. The
two-site clusters are arranged to form a hexagon, as indicated
on the right, and these hexagons are repeated just like the
VCA cluster of Fig. 2. The computation can be carried out by
suppressing antiferromagnetism, i.e., by assuming that the bath
parameters are independent of spin and identical for the two
sublattices, or by allowing antiferromagnetism to develop with
spin and sublattice-dependent bath parameters. The density
of states p(w) for two values of ¢’ (0 and 0.2) is shown in
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FIG. 10. One-particle density of states p(w) computed from
CDMFT for a range of values of U, shifted for clarity. On the top
panel (' = 0), we observe a transition at U = 5.6 from the semimetal
to the Mott insulator. On the middle panel (¢ = 0.2, ¢ = /2),
antiferromagnetism is suppressed by hand and a transition occurs
from the CI to the Mott insulator at U = 6.1. On the bottom panel,
antiferromagnetism is allowed to develop and two transitions occur: a
Cltoatopological AFat U = 3.9, followed by a topological transition
to an ordinary AF at U = 5.8.

Fig. 10. The top panel (¢ = 0) shows the transition from
the semimetallic state at weak coupling to the Mott insulator
at strong coupling, when antiferromagnetism is suppressed.
The V-like line shape of the semimetallic state is correctly
reproduced by CDMFT, and the Mott transition is followed by
a gap that increases linearly with U thereafter. With the chosen
cluster-bath system, no sharp transition occurs as a function
of U at t' = 0: it is a crossover, albeit a rather well-defined
one. However, a sharp transition is observed for ¢ > 0.02.
In CDMFT, an additional signature of the Mott transition is
the abrupt change in behavior of the bath parameters (¢;,6;),
sometimes with hysteretic behavior. The middle panel of
Fig. 10 shows the density of states at ' = 0.2 and ¢ = 7/2.
The difference lies in the weak-coupling phase, which is a
gapped CI. The gap vanishes at the Mott transition (red curve),
and the invariant N, goes suddenly from +1 to —1 across the
transition, indicating that we are entering the NMI phase found
in VCA. Finally, in the bottom panel, antiferromagnetism
was allowed to develop. In that case, two transitions occur,
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FIG. 11. Ground-state phase diagram of the half-filled spinful
Haldane-Hubbard model in the U-t’ plane for ¢ = /2, according
to CDMFT computations based on the cluster-bath system of Fig. 9.
CI: Chern insulator, TAF: topological antiferromagnetic insulator,
AF: ordinary antiferromagnetic insulator. The CI and TAF phases
have topological charge N, = 1. The CI-TAF and TAF-AF phase
boundaries are shown in red and blue, respectively. Also shown
is the boundary between the CI and the NMI Mott phase when
suppressing antiferromagnetism. In that case, the boundary also
marks a topological change: the Mott phase has N, = —1. Again,
the topologically nontrivial AF region found in the Hartree-Fock
study of Ref. [16] is shown (gray area).

indicated by red curves: the first one, at U ~ 3.8, from a CI to
a topological AF, without closure of the gap (the invariant N,
remains equal to 4+1). A second transition occurs at U ~ 5.7,
through a gapless point, when N, suddenly drops to zero,
towards an ordinary, nontopological AF. In all these spectral
plots, a Lorentzian broadening is added to each peak of the
spectral function A(k,w), and this broadening has been set to
increase with |w|, because high-frequency features obtained
from an ED solver are not as accurate as low-frequency ones.
This removes the sharpness of gap edges.

Figure 11 shows where these transitions occur in the U-t'
plane, for a fixed value ¢ = m /2 of the phase. This is the
CDMFT version of Fig. 3. The orange curve shows the
Mott CI-NMI transition found when antiferromagnetism is
suppressed. The red curve is the first transition, from CI
to topological AF (TAF), and the blue curve is the second
transition, towards a nontopological AF. The Hartree-Fock
result of Ref. [16] is again shown, in gray. The topological AF
phase disappears at #' = 0. Beyond ' = 0.33, the @ = 0 Néel
phase is likely no longer the correct magnetic order to probe, as
hinted at by Hartree-Fock computations. Once in the AF phase,
i.e., when antiferromagnetism is not suppressed, no hint of the
Mott transition occurs across the (orange) Mott line: the NMI
phase is completely preempted by the antiferromagnetic state.

The critical value U, for the onset of antiferromagnetism at
t' = 01is U, = 1.45. This is obviously incorrect, and must be
attributed to the small size of the cluster used in CDMFT (two
sites). In cluster methods, small clusters tend to exaggerate the
effect of U. It is thus conceivable that larger clusters might
push the onset of AF order to higher values of U and expose a
stable region of NMI phase as in the VCA results.
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(a) U= 0 (CI) . (b U= ) (TAF)
.
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FIG. 12. Berry curvature as a function of wave vector fort' = 0.2,
¢ = 7 /2 and four values of U associated with the following phases
obtained in CDMFT: (a) CI, (b) TAF, (c) AF, and (d) NMI (normal
phase). Blue means positive, red means negative. Only the spin-up
contribution is shown. The spin-down contribution is obtained by
inverting with respect to the origin, but the two spin contributions to
N, are equal.

In order to confirm the mapping between the phases
observed in VCA and CDMFT, we show in Fig. 12 the Berry
curvature map in the first Brillouin zone for the solutions
found in CDMFT. This is to be compared with the same plots
in Fig. 8, obtained in VCA. In both cases, the CI phase is
characterized by a positive Berry curvature concentrated along
the Brillouin zone edges and the NMI phase by a negative
curvature concentrated around the Dirac points. The difference
lies in the respective positions of these phases with respect to
the magnetic phases. The latter display the expected symmetry
breaking between the two inequivalent Dirac points (only the
spin-up density of states is shown).

VI. CONCLUSION

‘We have investigated the ground-state phase diagram of the
half-filled spinful HH model with a combination of quantum
cluster methods: CPT, VCA, and CDMFT. In agreement with
previous mean-field studies [16], in both VCA and CDMFT
we find a topologically trivial Néel AF at large U and a
correlated CI at small U. Here, we define phases as being
topologically nontrivial if their generalized Chern number
N,, defined as a winding number of the one-particle Green’s
function (here approximated as the CPT Green’s function),
is nonzero. For intermediate interactions, in both VCA and
CDMFT we find topologically nontrivial Néel AF phases. This
is also in agreement with previous studies, although the precise
ordering of these phases and their value of N, depends on the
method. To the difference of previous studies, however, we also
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find a topologically nontrivial NMI phase in the intermediate
interaction regime. Whether this phase is stabilized as the
actual ground state in our calculations or is preempted by the
onset of AF order depends on the method used.

Given that quantum cluster methods are essentially de-
signed to determine one-particle properties of correlated
systems, our study does not allow us to precisely pinpoint the
nature of the NMI phase. A tantalizing possibility is that this
phase could be a fractionalized topological phase such as the
CSL [9,15] or the CI* [13,17], which have been predicted
in this model by slave-particle mean-field approaches. In
particular, to the difference of the CSL, the CI* has a nonzero
quantized Hall conductivity oy, = +2¢?/ h [13], which would
be consistent with the value N, = —1 found in the NMI phase,
that is, if N, does happen to coincide with the Hall conductivity
(per spin) in this case. To determine unambiguously whether
the NMI phase corresponds to the CSL or the CI*, one
would first have to show the existence of intrinsic topological
order in the NMI phase via the demonstration of topological
ground-state degeneracy D on the torus and/or the fractional
statistics of excitations. The CSL would correspond to D = 2
and semionic excitations, while the CI* would have D = 4 and
excitations with semionic, antisemionic, and bosonic statistics.
However, the quantum cluster methods used here do not allow
us to determine these properties, which require the knowledge
of the full many-body ground-state wave function [80], and
one must use methods such as ED or the density-matrix
renormalization group (DMRG).

From the point of view of effective spin models valid in
the strong Mott regime U >> 1 [15,18], the NMI phase found
here would correspond to the weak Mott regime U ~ 1 in
which sizable ring-exchange spin interactions induced by a
small charge gap could frustrate magnetic order and stabilize
exotic quantum disordered phases [81,82]. Of course, a more
mundane possibility is that the NMI is simply adiabatically
connected to a (topological) band insulator without fractional-
ization or topological order. The NMI could then be considered
a topological Mott insulator in the sense of Ref. [83]. In
general, one should also consider the possibility of other types
of magnetic order besides Néel order, but in previous studies
these occur either in the U >> 1 limit [15,18] or for ¢' 2 0.35
[16,19].

Further numerical studies are clearly needed to resolve the
difference between VCA and CDMFT predictions and fully
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elucidate the ground-state properties of the spinful HH model,
especially in the regime of intermediate repulsion U ~ 1. In
our opinion, by Occam’s razor the most likely scenario is the
CDMFT one, in which the NMI phase is preempted by the
onset of conventional AF order. However, it is known that in
CDMEFT the critical U for AF order will increase with cluster
size, as small clusters have comparatively fewer links than sites
and thus overestimate the effect of onsite interactions relative
to intersite hopping. The critical U for the Mott transition,
on the other hand, does not vary much with cluster size, that
transition being more of a local phenomenon compared to
the AF transition. Although not extremely likely, it is thus
possible that the AF transition might be pushed beyond the
Mott transition even in CDMFT, for larger clusters. Finally, it
is possible that adding frustrating interactions to the HH model
such as third-neighbor hopping [18] might stabilize the NMI
phase and realize the VCA scenario. As mentioned earlier,
studies of models of interacting fermions where explicitly
broken time-reversal and/or particle-hole symmetries preclude
the use of powerful QMC methods are notoriously hard. Aside
from VCA and CDMFT, however, other powerful numerical
methods have been successfully applied recently to the study
of models of correlated Chern insulators, such as the cellular
dynamical impurity approximation [84] (CDIA) and DMRG
[85,86]. It would be worthwhile to apply these methods to the
study of the spinful HH model at half-filling.
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