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Vertex functions at finite momentum: Application to antiferromagnetic quantum criticality
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We analyze the three-point vertex function that describes the coupling of fermionic particle-hole pairs in a metal
to spin or charge fluctuations at nonzero momentum. We consider Ward identities, which connect two-particle
vertex functions to the self-energy, in the framework of a Hubbard model. These are derived using conservation
laws following from local symmetries. The generators considered are the spin density and particle density. It
is shown that at certain antiferromagnetic critical points, where the quasiparticle effective mass is diverging,
the vertex function describing the coupling of particle-hole pairs to the spin density Fourier component at the
antiferromagnetic wave vector is also divergent. Then we give an explicit calculation of the irreducible vertex
function for the case of three-dimensional antiferromagnetic fluctuations, and show that it is proportional to the
diverging quasiparticle effective mass.
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I. INTRODUCTION

Over the past several decades the theoretical description of
the paramagnetic to antiferromagnetic (AFM) phase transition
in metals has been an ever-growing challenge (for a review see
Ref. [1]). The theoretical description of systems for which the
only critical degrees of freedom are the (bosonic) spin fluctu-
ations, while the fermionic quasiparticles (quasiparticles) are
not critical, is well developed [2–4]. However, in cases where
the quasiparticles acquire critical behavior, e.g., a diverging
effective mass, as indicated by an apparently diverging
specific heat coefficient (prominent examples of compounds
showing this behavior are CeCu5.9Au0.1 [5] and YbRh2Si2 [6]),
recent theoretical attempts [7–10] following the conventional
field-theoretical methodology have not successfully explained
experiment.

Recently a semiphenomenological theory of correlation
functions χ (q,ν) near an AFM quantum-critical point (QCP)
has been proposed [11,12]. Since the prominent AFM fluctu-
ations occur at a nonzero ordering wave vector Q, the theory
adopts a generalization, to nonzero wave vector, of the usual
Ward identity that relates the three-point spin-density vertex
function �(q,ν) in the limit of zero wave vector to the quasi-
particle effective mass. Then, the usual weak-coupling form of
the dynamical spin response function χ (q,ν) acquires singular
vertex corrections �(Q,ν) to the Landau damping term; and
the coupling of bosons and fermions also gets enhanced by
�(Q). Moreover, it was shown that spin exchange energy
fluctuations at small wave vector (a fluctuation combining two
spin fluctuation propagators) are highly singular, and may lead
to critical quasiparticles all over the Fermi surface, not only
at “hot spots” [13]. A central result of the theory [11–13] is a
self-consistent relation for the quasiparticle effective mass,
which allows for two very different solutions, depending
on initial conditions at high energy (or temperature): (1)
a weak-coupling solution similar to the conventional SDW
scenario [2,4] and (2) a strong-coupling solution characterized
by critical quasiparticles with effective mass that diverges
as a fractional power law. The results of this theory are in
quite detailed agreement with experiments [5,14,15]. It is
therefore natural to ask how the assumption of a singular vertex

correction as adopted in the phenomenological theory [11–13]
may be derived from microscopic theory. In the present paper
we shall use two different approaches (Secs. III and IV) to
achieve that goal.

In Sec. II we discuss generalized Ward identities, which are
based on conservation laws that follow from symmetries of the
Hamiltonian and which are important in the context of a class
of quantum-critical phenomena.

In Sec. III we show how spin-density conservation leads to
the required generalized Ward identity.

In Sec. IV we explicitly calculate the particle-hole irre-
ducible spin-density vertex function �(Q) at nonzero Q near
an incommensurate antiferromagnetic QCP in the framework
of the strong-coupling theory developed in Refs. [11–13]
and show that the vertex diverges like the effective mass, as
assumed earlier in that theory. This demonstrates that there
is a closed self-consistent system of equations connecting the
two singular quantities, effective mass m∗ and vertex function
�(Q).

II. SYMMETRY, WARD IDENTITY, AND QUANTUM
CRITICALITY

Symmetry properties are among the most important pieces
of knowledge characterizing a system. The standard symme-
tries, related to invariance under translation in space and time,
rotation in position space, spin space, or other internal spaces
are well known and are used to develop methods of calculating
the system’s properties. In the realm of quantum many-body
physics and quantum field theory, symmetry properties may be
shown to give rise to useful relations among the two-particle
and the one-particle Green’s functions, the Ward-Takahashi
identities [16,17]. These identities are usually derived by
considering global symmetry transformations effected by
the application of unitary operators (gauge transformations,
rotations, etc.). Typically, a Ward identity relates the structure
of the single-particle Green’s function to a three-point vertex
function �(k; q,ν). A standard way [18] of constructing a
Ward identity is to identify a conservation law that follows
from a symmetry of the Hamiltonian and then using it to
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simplify the equation of motion for a two-particle Green’s
function that contains the three-point vertex. Since we are
primarily interested in an incommensurate antiferromagnetic
QCP in the framework of the strong-coupling theory developed
in Refs. [11–13], in what follows we shall concentrate on the
consequences of spin-rotational invariance.

The Ward identities are usually applied for the limit of
vanishing wave vector and frequency of an applied test field.
They are therefore of limited use in characterizing fluctuations
at nonzero wave vector, such as antiferromagnetic fluctuations
or charge density wave fluctuations in a metal.

However, the local conservation laws are valid on all
spatial and temporal scales and give rise to generalized Ward
identities even at nonzero wave vector. This has already been
recognized and implemented by Behn [19], who used the
procedure described above and which we elaborate in Sec. III.
Although these identities may be less stringent because, as
we shall see, they could involve two vertex functions, one
of a density type, the other of a current-density type, they
nonetheless may be used to infer qualitative information.
This is of particular interest if single-particle properties,
such as the quasiparticle effective mass at the Fermi surface,
are singular. This may happen at a quantum critical point.
In metallic compounds, quantum critical points are often
found to be of antiferromagnetic or charge-density wave
character, which involve fluctuations of spin or charge at
nonzero wave vector. Specific heat data in the neighborhood
of such critical points often indicate a divergent quasiparticle
effective mass. Examples are many of the heavy-fermion
compounds, some of the iron-based superconductors, and
possibly the cuprate superconductors. The question becomes:
How does a singularity in the single-particle properties affect
the two-particle vertex functions at nonzero wave vector? Here
the generalized Ward identities may be useful. In the present
paper the answer will be given as

�(k; Q,ν → 0) ∼ Z−1(k+) + Z−1(k−), (1)

where Z−1 = 1 − ∂�/∂ω is proportional to the quasiparticle
effective mass and k± = k ± Q/2 are the momenta of the in-
coming and outgoing legs of the three-point vertex describing
momentum transfer Q and energy transfer ν

III. CONSERVATION LAW AND CONTINUITY EQUATION:
VERTEX FUNCTION IN LINEAR RESPONSE

We consider systems of identical fermions interacting via
spin-conserving density-density interactions, either on a lattice
or in the continuum, e.g., the Hubbard model. To be concrete,
we may take the interaction term in the form

Hint = U

∫
dr�

†
↑(r)�↑(r)�†

↓(r)�↓(r), (2)

where �†
α(r),�α(r) creates or annihilates an electron of spin

α =↑ , ↓ at location r . Later, the following derivations will
be taken over for the case of electrons on a lattice within
a one-band model, for which the spin is to be understood
as a conserved “pseudospin,” corresponding to the two-level
ground-state doublet that is determined by the crystal field and
the spin-orbit interaction. As a practical example we consider
the response of the system to an external magnetic field �H (r)

that couples to the spin density �ρs(r) = ∑
α,β �†

α(r)�σαβ�β(r)
via an interaction term

H′ = λ

∫
dr �H (r) · �ρs(r). (3)

Before showing how the spin-density vertex function, the
expectation value of �ρs(r,t) (in Heisenberg representation),
controls the response to H′, we remind that when a density
operator commutes with the interaction term in the Hamil-
tonian, then it obeys a continuity equation, derived from
∂�/∂t = i[H,�]. Since the spin density operator commutes
with Eq. (2), only the kinetic energy enters the commutator
and we have the familiar local conservation law (repeated
greek indices are summed):

∂ �ρs(r,t)

∂t
− i

2m
[ �∇ · ( �∇�†

α �σαβ�β − �†
α �σαβ

�∇�β)] = 0. (4)

The spatial derivatives in Eq. (4) come from the commutator
of ρs with the kinetic energy, which in momentum space is∑

k,α εkc
†
k,αck,α . For later convenience, it is useful to re-express

the continuity equation in momentum space:

i∂ �ρq/∂t =
∑

k

(εkq)c†k+,α �σαβck−,β , (5)

where �ρq = ∑
k c

†
k+,α �σαβck−,β , with k± = k ± q/2 and εkq =

εk+ − εk− In compact form, it is∑
k

D(k,q; t) c
†
k+α �σαβck−,β = 0, (6)

where the operator D(k,q; t) is

D(k,q; t) = ∂

∂t
− (εkq). (7)

The considerations above apply also to the charge response
and lead to the usual charge continuity equation. For our
general purposes, we want to discuss the vertex function that
describes the coupling of an electron (spin or charge) density
to an external perturbation such as a charge or spin density
fluctuation boson field or a magnetic field. For example, in
linear response, the magnetic field perturbation H′ of Eq. (3)
gives rise to a correction to the single-particle Green’s function
Gαβ(1,2) = −〈T �α(1)�†

β(2)〉, where T is the time-ordering
operator

δGαβ(1,2) =
∫

d3 G
(2)
αβδγ (1,2; 3,3+)λ �H (3) · �σγ δ. (8)

Here the two-particle Green’s function is

G
(2)
αβγ δ(1,2; 3,4) = −〈T �α(1)�†

β(2)�γ (3)�†
δ (4)〉 (9)

and in Eq. (8), 3+ means (r3,t3 + 0+). It is seen that the right-
hand side of Eq. (8) contains �ρs(3):

δGαβ (1,2) =
∫

d3〈T �α(1)�†
β(2) �ρs(3)〉 · λ �H (3). (10)

This shows how the vertex function controls the response.
Making use of the conservation law we may now derive

identities relating the response function to the single-particle
Green’s function or its self-energy. To achieve this we re-
express the two-particle Green’s function in the integrand of
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Eq. (10) in momentum space. It becomes∑
p

G
(2)
αβδγ (k,p; q)�σγ δ, (11)

where

G
(2)
αβδγ (k,p; q) = −〈T ck+α(t1)c†k−β(t2)cp−δ(t3)c†p+γ (t+3 )〉. (12)

Here k± = k ± q/2,p± = p ± q/2 are the momenta of the
particle-hole pairs entering and leaving the two-particle
Green’s function.

The next step is to let the operator D(k,q; t3) that appears
in the conservation law, Eq. (6), act on this G(2). The action of
the operator on the ρq part of G(2) gives zero because of the
conservation law, whereas the time derivative in D acts on the
step functions defined by the time ordering. The result is∑

p

[ν − εpq]G(2)(k,p; q) = G(k−) − G(k+). (13)

Here we have Fourier transformed in time (t3) and on the
right-hand side of Eq. (13), k and q mean (k,ω) and (q,ν),
respectively. That is, k± → (k ± q/2,ω ± ν/2) and here the
sum on p includes

∫
dω. For the charge response, Eq. (13)

holds, as the spin indices are irrelevant. We shall restore them
later, when necessary.

The next steps involve the use of well-known relations
among the Green’s functions and associated amplitudes:

G−1(k,ω) = ω − εk − �(k,ω) = G−1
0 (k,ω) − �(k,ω), (14)

G(2)(k,p; q) = G(k+)G(k−)�(k,p; q), (15)

�(k,p; q) = δ(k,p) + �(k,p; q)G(p−)G(p+), (16)

�(k,q) = 1 +
∑

p

�(k,p; q)G(p−)G(p+). (17)

In the above, �(k,p; q) is the four-point vertex (without
external legs) and �(k,q) is the three-point vertex amplitude
that enters the Ward identity, We use Eq. (15) in Eq. (13),
divide out G(k+)G(k−), and find∑

p

(ν − εpq)�(k,p; q) = ν − εkq − �(k+) + �(k−), (18)

where �(k) is the self-energy part as in Eq. (14). This result
has already been anticipated in Ref. [19]; we make use of it in
what follows.

We take the derivative of Eq. (18) with respect to ν and as
we are interested in the behavior of �(k,ω; q,ν) for ν → 0
and arbitrary q, we then take ν = 0 and obtain

�(k; q,0) −
∑

p

εpq

[
∂

∂ν
�(k,p; q)G(p−)G(p+)

]
ν=0

= 1

2
[Z−1(k+,ω) + Z−1(k−,ω)], (19)

where we used the quasiparticle weight factor at (k,ω) defined
as

Z−1(k,ω) = 1 − ∂

∂ω
�(k,ω). (20)

The second term on the left-hand side of the key result
Eq. (19) is the ν = 0 derivative of the spin-current density
vertex.

A situation of particular interest arises if the quasiparticle
weight factor Z(k,ω) happens to be small, or even tends to
vanish, implying that the effective quasiparticle mass m∗/m =
Z−1(k,ω) is large either in certain regions on the Fermi
surface (so-called hot spots) or all over the Fermi surface.
This will be the case in the critical regime near a quantum
phase transition to, e.g., an antiferromagnetic phase. We may
then conclude from the key equation (19) that the three-point
vertex is enhanced approximately proportional to the effective
mass enhancement. This follows from the fact that both the
spin density and the spin-current density vertices are given by
integrals of � G(p+)G(p−) multiplied by two different weight
factors, 1 and εpq(∂/∂ν), respectively. Although the effective
mass enhancement occurs for a state near the Fermi surface,
we emphasize the new result that the vertex enhancement takes
place if at least one of the partners of the particle-hole pair,
with momenta k+ or k−, is on the Fermi surface. In order to
demonstrate that Eq. (19) does indeed imply a proportionality
of � to Z−1 we consider the limit of small, but nonzero q

and ν = 0, when Fermi liquid theory applies. In this case the
vertex function is given as � = Z−1/(1 + Fa), where Fa is
the Landau parameter in the spin channel. In order for the
Ward identity Eq. (19) to be satisfied, the current density term
has to amount to Z−1Fa/(1 + Fa). The two contributions add
up to Z−1, as required by the Ward identity. In other words,
for any nonzero Fermi liquid interaction Fa both terms on the
left-hand side of Eq. (19) are proportional to Z−1, and will
therefore diverge whenever Z−1 diverges.

IV. VERTEX FUNCTION AT LARGE Q

We now calculate the irreducible spin-density vertex
function �(k,ω; Q,ν = 0) (called λQ in Ref. [13]) in the
framework of the theory of critical quasiparticles near an
antiferromagnetic critical point as developed in Refs. [11–13].
There it was shown that for the case of three-dimensional
AFM spin fluctuations, when conventional spin density wave
theory is supposed to work, a new strong-coupling regime
may be accessible under certain conditions. This regime is
characterized by a power-law divergence of the effective
mass as a function of energy, and hyperscaling with critical
exponents z = 4 and ν = 1/3. The theory requires the particle-
hole irreducible spin density vertex function at wave vector Q
to diverge like the effective mass. As shown in Sec. III, this
can be a consequence of the Ward identities. However, since
the Ward identities relate the full vertex functions � to the
effective mass (or the inverse quasiparticle weight factor 1/Z),
one may ask how the irreducible vertex, which is the quantity
needed in the strong coupling theory [11–13], depends on Z.
We therefore show in the following that a certain diagram
contributing to the irreducible vertex correction is indeed
proportional to 1/Z, provided one assumes that this very vertex
correction renormalizes the spectrum of spin fluctuations and
their the coupling to quasiparticles in just the way that was
assumed in the theory of critical quasiparticles.

There are two ways in which the vertex function λQ enters
the theory: first, the spin-fluctuation spectrum is affected in
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χE
k+

k− p−

p+

χ

χ

λQ

λv=

FIG. 1. Structure of the energy fluctuation. The spin fluctuations
χ carry momentum Q. The black dots denote the vertex function λQ

and the gray vertex corrections denote the small q vertex λv . The
black diamonds on each end of χE denote the combination λ2

Qλv

the Landau damping term; it acquires a factor λ2
Q, from the

renormalization of the particle-hole bubble diagram of Landau
damping at each end. Thus, for the spin fluctuations

Im χ (q,ν) = N0λ
2
Qν

[r + (q − Q)2]2 + (
λ2

Qν
)2 .

Here N0 is the bare density of states, r is the dimensionless
tuning parameter (r → 0 at the QCP), and wave vector q and
frequency ν are in units of kF and εF , respectively. Second,
since the coupling of the spin fluctuations to the quasiparticles
also involves a factor λQ, each end of a spin fluctuation line
receives a factor λQN−1

0 .
The large momentum transfer involved in a scattering

process of quasiparticles off AFM spin fluctuations usually
takes quasiparticles into final states far from the Fermi surface,
except for momenta at hot spots on the Fermi surface. The con-
sequences of these limitations of critical scattering are often
not compatible with what is observed experimentally. It was
therefore suggested in Ref. [13] that simultaneous scattering
off two spin fluctuations with opposite momenta, leading to
small total momentum transfer, would be a more relevant
process [20]. Two spin fluctuations may be thought of as
an (exchange) energy fluctuation χE(q,ν). Schematically, the
energy fluctuation propagator is constructed from GGχ χ (χ
is the spin fluctuation propagator) as in the diagram of Fig. 1, in
which the vertex corrections are shown. Not shown in Fig. 1 is
a further diagram in which the two χ lines are crossed; it gives
an identical contribution except that the spin structures of the
two diagrams add up to give a pure density-density interaction.

In Fig. 1 the vertex function λv is shown at each end of χE .
Since χE carries a small momentum transfer, λv ∝ 1/Z; it is
governed by by the usual Ward identity at (q ≈ 0,ν → 0).

The spectrum of χE was calculated in Ref. [13], Eqs. (2)
and (3), to be

Im χE(q,ν) = (N0)3λ3
Qν5/2

(r + q2)2 + (
λ2

Qν
)2 . (21)

The corresponding self-energy due to energy fluctuation
exchange is given by

�(k,ω) = λ2
Qu2

∫
dq G(k + q,ω + ν) χE(q,ν) (22)

and leads to � ∝ ω3/4; hence Z(ω) ∝ ω1/4. In Eq. (22), u ∝
N−1

0 .
The first vertex correction diagram that corresponds to the

dressing of the spin-density vertex λQ by energy fluctuations is

=

k−

k+

Λ(1)
Q Q Q

k+

k−

χE(q)

k −
+

q

k
+

+
q

FIG. 2. Structure of the first energy fluctuation contribution to
the spin-density vertex. The energy fluctuation χE carries (small)
momentum q. The black diamonds denote the combination λ2

Qλv , as
in Fig. 1

shown in Fig. 2. It has has one energy fluctuation that bridges
the vertex:

λ
(1)
Q = λ4

Qλ2
vu

4
∫

dq G(k+ + q)G(k− + q)χE(q). (23)

For generic p, one of the momenta p + q + Q will be far
from the Fermi momentum, while the other p + q is close to
it (or vice versa). We may then put G(p + q + Q) ≈ 1/εF .
What remains is the self-energy expression, Eq. (22), so that

λ
(1)
Q (k,ω; Q,ν = 0) ≈ �(k,ω)

εF

. (24)

We see that λ
(1)
Q → 0 as ω → 0 and is not singular.

However, singular diagrams do occur if at least three spin
fluctuation lines in parallel are internal in a contribution to
λQ(p,ω; Q,ν = 0) (any odd number will do). Two of these
combine into an energy fluctuation. The resulting diagram,
shown in Fig. 3, has a spin fluctuation and an energy fluctuation
in the intermediate state, similar to the Azlamasov-Larkin
diagram in the theory of superconducting fluctuations:

λ
(3)
Q = A

∫
dq G(p − q)T (q; Q)χ (Q + q)χE(q),

where A = λ6
Qλ2

vu
6 and we defined the triangle loop

T (q; Q) =
∫

dp′G(p′ + q)G(p′)G(p′ + q + Q).

The quantity T (q; Q) is noncritical and may be replaced
by T (q; Q) ≈ N0/εF . It is convenient to first calculate the

χ

k−

k+

χE

Q

FIG. 3. Structure of the singular energy fluctuation contribution
to the spin-density vertex. The energy fluctuation χE carries (small)
momentum q. The black diamonds denote the combination λ2

Qλv , as
in Fig. 1. The black dots denote the vertex function λQ.
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imaginary part of λ
(3)
Q at temperature T << ω:

Imλ
(3)
Q ≈ A1

∫ ω

0
dν

∫
d �q Imχ (Q + q)ImχE(q)

× ImG(p − q). (25)

Here A1 = λ6
Qλ2

vu
6(N0/εF ). The result of the integration over

the solid angle of �q is ∝ 1/q. We restrict ourselves to the
critical regime r = 0 in χE . The q integration may then be
performed for λ2

Q|ν| < q2 < ∞:

Imλ
(3)
Q ∝ k3

F

N0εF

λ11
Q λ2

v

∫ ω

0
dν|ν|7/2

∫
qdq

1

[q4 + (
λ2

Q|ν|)2
]2

∝ λ5
QZ−2|ω|3/2,

where we used λv ∝ Z−1 as stated above. We now identify
λ

(3)
Q = λQ, and solve the resulting equation for λQ:

λQ ∝ Z1/2|ω|−3/8. (26)

This result may be combined with the result for Z in the strong-
coupling regime which was obtained in Ref. [13], Eq. (4):

Z ∝ λ5
Q|ω|3/2. (27)

Combining Eqs. (26) and (27) we find

λQ ∝ Z−1 ∝ |ω|−1/4,

which is precisely what has been postulated in Ref. [13] on the
basis of phenomenological arguments.

V. CONCLUSION

We investigated the Ward-Takahashi identity for the spin
or charge density vertex amplitude that describes the response
to an external probe and/or coupling to a collective mode. We

showed that even when the momentum transfer entering the
vertex �q is nonzero, the vertex amplitude λq may be related to
the quasiparticle weight factor Z; it therefore acquires singular
behavior when Z does. Thus, our results are of use in analyzing
behavior of metals near quantum critical points, where Z → 0.

In particular, the result is of importance for the case of an
antiferromagnetic quantum critical point, where the relevant
momentum transfer �Q is the ordering vector and is not small.
This situation is the setting for the recent development of
critical quasiparticle theory [12,13], in which the singular
behavior of λq=Q was proposed. A new feature of the present
work is that it is sufficient that (at least) one of the external lines
to the (three-point) vertex is on the Fermi surface, rather than
requiring both to be. Therefore, the identity holds even when �q
does not connect two points on the Fermi surface (hot spots).
This was essential in the critical quasiparticle theory to achieve
good agreement with experiments on YbRh2Si2 (resistivity,
specific heat, thermopower, magnetic susceptibility, magnetic
Grüneisen ratio) [11,12] and CeCu5.9Au0.1 (neutron scattering,
specific heat, resistivity, magnetization) [13].
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