
PHYSICAL REVIEW B 93, 075126 (2016)

Observation of a nonradiative flat band for spoof surface plasmons in a metallic Lieb lattice
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We demonstrate a nonradiative flat band for spoof surface plasmon polaritons bounded on a structured surface
with Lieb lattice symmetry in the terahertz regime. First, we theoretically derive the dispersion relation of spoof
plasmons in a metallic Lieb lattice based on the electrical circuit model. We obtain three bands, one of which
is independent of wave vector. To confirm the theoretical result, we numerically and experimentally observe the
flat band in transmission and attenuated total reflection configurations. We reveal that the quality factor of the
nonradiative flat-band mode decoupled from the propagating wave is higher than that of the radiative flat-band
mode. This indicates that the nonradiative flat-band mode is three-dimensionally confined in the lattice.
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I. INTRODUCTION

In the terahertz (THz) region and lower frequency regions,
surface plasmon polaritons confined at a metal-dielectric
interface cannot exist because of the high conductivity of
metals [1]. However, if the surface of the metal is artificially
structured, electromagnetic modes similar to the surface
plasmons can be realized [2–4]. These surface-plasmon-like
modes are called spoof surface plasmon polaritons. The
dispersion relation of spoof surface plasmon polaritons can
be controlled by appropriately designing the structure of the
metal surface [2,5–7]. Especially, if the group velocity of
the spoof surface plasmon polaritons is slowed down, the
plasmon-matter interaction is enhanced as is the case in
light-matter interaction. To realize the slow group velocity of
the spoof surface plasmon polaritons, we focus on the fact that
the electron dispersion relation in crystals with specific lattice
structures, such as Lieb-type [8], Tasaki-type [9], and Mielke-
type [10], is independent of wave number and the group
velocity becomes zero in any direction owing to destructive
interference. The wave-number-independent band is called
a flat band. Recently, flat bands for electromagnetic waves
have been realized in photonic crystals [11–13]. They are also
expected to exist in metallic waveguide networks [14,15].

In previous work [16], utilizing electrical circuit models,
we showed that the dispersion relations of metal structures
with various lattice symmetries have flat bands. We confirmed
the formation of the electromagnetic flat bands for a metallic
kagome lattice by illumination of propagating waves theo-
retically and experimentally [17]. In this case, however, the
flat-band mode is only two-dimensionally localized in the
in-plane directions and the energy escapes into free space.
This is because the flat band is located inside the light cone
or in a radiative region. Thus the mode, which is coupled with
free-space modes, is considered as spoof plasmon polaritons,
not spoof surface plasmon polaritons. For complete three-
dimensional confinement of spoof surface plasmon polaritons,
we have to implement a flat band outside the light cone or in
a nonradiative region decoupled from free-space modes. In
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this paper, we demonstrate that the flat band for spoof surface
plasmon polaritons can be realized in a metallic Lieb lattice.
In the metallic Lieb lattice, the nonradiative flat-band mode
appears in lower frequencies than in the metallic kagome lattice
for the same design parameters, and the nonradiative flat-band
region is broadened compared with that of the kagome lattice.
The nonradiative flat-band mode for spoof surface plasmon
polaritons is excited by illumination of evanescent waves.

This paper is organized as follows: In Sec. II, we theoreti-
cally derive the dispersion relation of spoof plasmons in Lieb-
type bar-disk resonators based on an electrical circuit model. In
Sec. III, we numerically calculate the electromagnetic response
of Lieb-type bar-disk resonators using a finite-element method.
In Sec. IV, we describe our experimental setup for the
observation of the flat band and show the experimental results
and compare them with the simulation results. In Sec. V, we
discuss the results in detail. Finally, in Sec. VI, we conclude
our study and propose some applications of the nonradiative
flat-band mode.

II. THEORETICAL MODEL

Using a model similar to the one in our previous study [17],
we derive the dispersion relation for spoof plasmons in the
Lieb-type bar-disk resonators (LBDRs), as shown in Fig. 1(a).
The lattice formed by the disks connected to four disks is
named the main lattice, and the lattice formed by the disks
connected to two disks is named the sublattice. We assume that
the structure is made of an infinitely thin, lossless metal and
the electric charge is stored only on each disk and oscillates
alternately. The electric potential φi of the ith disk can be
expressed with the electric charge qj on the j th disk as follows:

φi = Uqi + U ′ ∑
j

Aij qj . (1)

We only consider the self- and nearest-neighbor capacitive
couplings, as shown in Fig. 1(b). The constants U and U ′ are
the potential coefficients, and Aij is an adjacency matrix of
the lattice; i.e., Aij = 1 if the ith and j th disks are connected
directly by a bar and otherwise Aij = 0. Using the wave vector
k|| on the plane of the LBDRs and the unit-lattice vectors a1

and a2 shown in Fig. 1(a), we can obtain the relation between
the electric potentials and the electric charges of the three disks
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FIG. 1. (a) Design of the LBDRs: Length of a unit cell a, radius
of a disk r , and width of a bar w. The wave vector k|| on a plane of the
LBDRs is depicted. The vectors a1 and a2 are unit lattice vectors. (b)
A unit cell of the LBDRs: qk (k = A, B1, B2) is the electric charge on
the disk, and φk is the electric potential at the disk. The arrows indicate
the nearest-neighbor capacitive couplings. (c) Dispersion relation
of the LBDRs for η = 0. The middle band is flat at ω/ω0 = √

2.
(d) Charge distribution of a localized mode forming the flat band.

(A, B1, and B2) in the unit cell as follows:

[φ̃A φ̃B1 φ̃B2]T = UP(k||)[q̃A q̃B1 q̃B2]T, (2)

where

P(k||) = η

⎡
⎣ η−1 1 + eik||·a1 1 + e−ik||·a2

1 + e−ik||·a1 η−1 0
1 + eik||·a2 0 η−1

⎤
⎦, (3)

with η = U ′/U . We use tildes to represent complex ampli-
tudes, and a harmonic time dependence e−iωt with angular
frequency ω is assumed.

Next, we introduce the current Iij flowing from the j th disk
to the ith disk and the self-inductance L of the bar connecting
the ith and j th disks. Then we have

dIij

dt
= − 1

L
(φi − φj ). (4)

From Eq. (4) and the charge conservation law dqi/dt =∑
j Aij Iij at the ith disk, we obtain

d2qi

dt2
= − 1

L

∑
j

Aij (φi − φj ). (5)

For the LBDRs, Eq. (5) is reduced to

1

L
Q(k||)[φ̃A φ̃B1 φ̃B2]T = ω2[q̃A q̃B1 q̃B2]T (6)

in the frequency domain. The matrix Q(k||) is defined as
follows:

Q(k||) = −
⎡
⎣ −4 1 + eik||·a1 1 + e−ik||·a2

1 + e−ik||·a1 −2 0
1 + eik||·a2 0 −2

⎤
⎦. (7)

Equations (2) and (6) give the following eigenvalue equation:

H(k||)[q̃A q̃B1 q̃B2]T =
(

ω

ω0

)2[
q̃A q̃B1 q̃B2

]T
, (8)

where H(k||) = Q(k||)P(k||) and ω0 = √
U/L. Solving

Eq. (8), we finally derive the dispersion relations

ω

ω0
=

√
2,

√
3 − 2[2 + F (k||)]η ±

√
5 − 24η + 32η2 + 2(1 − 6η + 8η2)F (k||), (9)

where F (k||) = cos(k|| · a1) + cos(k|| · a2). From these equa-
tions, we obtain the two-dimensional band structure shown in
Fig. 1(c) for η = 0. Note that η = 0 corresponds to neglecting
the nearest-neighbor capacitive couplings between the disks,
but the disks are sufficiently coupled through currents flowing
in the bars. There are three bands, and the middle band at
ω/ω0 = √

2 is flat. Although usual tight-binding models with
the same on-site potential present the degeneracy of a flat
band and one Dirac cone at the M point, only the lowest band
touches the flat band at the M point in Fig. 1(c). This is caused
by on-site potential difference on the main lattice and sublattice
for spoof plasmons on the Lieb lattice. From Eqs. (1) and (5)
with η = 0, we have

d2qi

dt2
= U

L

⎛
⎝∑

j

Aij qj

⎞
⎠ − U

L
miqi, (10)

where mi is the number of bars connected to the ith disk.
In Eq. (10), the first term and the second term represent
hopping and on-site potential, respectively. We can see that
on-site potentials on the main lattice and sublattice are actually
different in Eq. (10). In this study, we focus our attention on
the flat band.

The flat bands are formed by the localized modes with the
charge distribution shown in Fig. 1(d). In the flat-band mode,
the charges oscillate in antiphase on the sublattice and no
charges are induced on the main lattice owing to destructive
interference. Hence, spoof plasmons in the flat band are two-
dimensionally confined.

III. SIMULATION

To confirm the result of the previous theoretical calculation,
we numerically simulate the electromagnetic response of
the LBDRs. We use a commercial finite-element method
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FIG. 2. Simulation setups. (a) Transmission simulation setup. A
plane wave enters into the LBDRs at an incident angle θ , which ranges
from θ = 0◦ to θ = 90◦ with a step �θ = 5◦. The incident wave is
in the TE mode for the �-M scan, and the TM mode for the �-X
scan. (b) ATR simulation setup. A plane wave enters from a dielectric,
which has refractive index n = 3.4, into the air. The incident angle θi

ranges from θi = 17.15◦ to θi = 40◦ (θi = 17.15◦, 17.5◦, and 20◦ to
40◦ with a step �θi = 2◦). The incident wave is in the TE mode for
the �-M scan.

solver (Ansys HFSS). The design parameters of the LBDRs
in Fig. 1(a) are as follows: the length of the unit cell is
a = 420 μm, the bar width is w = 27 μm, and the disk radius
is r = 76.5 μm. In our simulation, the LBDRs are made of
infinitely thin, perfect electric conductors. To observe the flat
band both in the radiative region and in the nonradiative region,
we treat two cases: free-space transmission and attenuated total
reflection (ATR) configurations [1]. The transmission and ATR
spectra, respectively, reflect the band structure of the LBDRs
in the radiative and nonradiative regions.

Figure 2(a) shows the setup of the transmission simulation.
A plane wave enters into the LBDRs at an incident angle
θ , which is varied from θ = 0◦ to 90◦. In this case, the
magnitude of the wave vector k|| on the sample plane is given
by k|| = (ω/c) sin θ , where c is the speed of light in vacuum.
In order to excite the flat-band mode, the incident wave is in
the transverse electric (TE) mode for the �-M scan, and the
transverse magnetic (TM) mode for the �-X scan.

Figure 2(b) shows the setup of the ATR simulation. The
distance between the LBDRs and the dielectric is set to 200 μm
to reduce the proximity effect of the dielectric, as described
in Sec V. A plane wave enters from the dielectric, which has
refractive index n, into the air. If the incident angle θi is larger
than the critical angle θ0 = arcsin(1/n), the incident wave is
totally reflected, generating evanescent waves in the air. The
refractive index of the dielectric is set to n = 3.4, assuming
the use of silicon in the THz region [18]. The incident angle θi

is varied from θi = 17.15◦ to 40◦, all of which are greater than
θ0 = 17.1◦. In this case, the magnitude of the wave vector k|| on
the sample plane is given by k|| = n(ω/c) sin θi. The incident
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FIG. 3. Simulation results. (a) Power transmission and ATR
power spectra mapped on the wave-vector–frequency plane. The open
circles indicate eigenfrequencies calculated by the eigenmode solver
of HFSS. The wave number k|| is normalized by kM = √

2π/a and
kX = π/a. The value k‖/kM = 1 corresponds to the M point, and the
value k‖/kX = 1 corresponds to the X point. (b) Transmission spectra
at θ = 30◦ and 60◦ in the �-M scan. The circle on the dotted line
and the square on the dashed line correspond to the points where the
transmission is 0.5. (c) ATR spectrum at θi = 30◦ in the �-M scan.
Surface electric charge distributions at (d) 0.362 THz for θ = 30◦

(the circle on the dotted line), (e) 0.338 THz for θ = 60◦ (the square
on the dashed line), and (f) 0.322 THz for θi = 30◦ (the dip in the
ATR spectrum).

wave is in the TE mode for the �-M scan. The non-radiative re-
gion is negligibly small in the 1st Brillouin zone along the �-X
line, so the ATR simulation is performed only in the �-M line.

By using periodic boundary conditions with phase shifts,
the transmission, reflection, and surface electric charge distri-
bution in the unit cell are calculated for various incident angles.
Figure 3(a) displays the simulation results of the transmission
and ATR spectra in the wave-vector–frequency plane. We can
observe a narrow band insensitive to the wave vector in the
nonradiative region. We also observe a broader band in the
radiative region from 0.2 to 0.6 THz.

To find where the flat band is located exactly, we use
the eigenmode solver of HFSS, which provides the field
distributions of resonant modes and their resonant frequencies
for given structures and environments. In this simulation, we
use periodic boundary conditions and the perfectly matched
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layer (PML). The PML regions are about a half-wavelength
apart from the LBDRs. In this configuration, the solver
calculates the resonant mode propagating along the surface.
The calculated eigenfrequencies are indicated by the open
circles in Fig. 3(a). The charge distribution of this eigenmode
corresponds to the flat-band mode illustrated in Fig. 1(d);
therefore, we find that the narrow band in the nonradiative
region is the flat band. On the other hand, the flat band in the
radiative region is embedded in the high-transmission regions
that are broadly distributed around 0.2–0.6 THz and is located
on the boundary between the high- and low-transmission
regions around 0.35 THz. It is revealed that the flat band is
bending, and the degree of the bend is about 15% of the bottom
frequency of the flat band along the �-M line, and 11% along
the �-X line. The reason for the bend is discussed in Sec. V.

Figure 3(b) shows the transmission spectra at incident
angles θ = 30◦ and θ = 60◦ in the �-M scan, and Fig. 3(c)
shows the ATR spectrum at an incident angle θi = 30◦ in the
�-M scan. The ATR spectrum is simpler than the transmission
spectra. For the transmission spectra, it is presumed that the
flat-band mode interferes with the broad mode, as is the case
in Fano interference [19].

Figures 3(d) and 3(e) show the surface electric charge
distributions in the transmission configuration at the resonant
frequencies: 0.362 THz for θ = 30◦ and 0.338 THz for
θ = 60◦ in the �-M scan. Figure 3(f) shows the surface electric
charge distributions of the ATR configuration at the resonant
frequency 0.322 THz for θi = 30◦ in the �-M scan. It is clear
that the surface charge oscillates in antiphase on the two disks
of the sublattice in the unit cell. This resonant mode coincides
with the theoretical charge distribution of the flat-band mode
described in Sec. II. Therefore, we can conclude that the flat
band is observed.

We also calculate the group velocity vg and the quality
factor of the flat-band mode in the nonradiative region
from the eigenfrequencies obtained by the eigenmode solver
along the �-M line. The group velocity vg ∼ −c/60 is
obtained from the slope of the straight line fitted to the eigen-
frequencies in the nonradiative region. In our simulation, we
obtain the quality factor Qout = 1.7 × 104 in the nonradiative
region, which is a factor of ∼350 higher than the quality factor
Qin = 48 in the radiative region.

IV. EXPERIMENTS

A. Experimental setup

Figure 4(a) shows the LBDRs patterned on a stainless-
steel (SUS304) sheet with thickness h = 30 μm by etching.
The period of the lattice is 420 μm and the whole area
is 1.1 × 1.1 cm2. To observe the dispersion relation in the
radiative and nonradiative regions experimentally, we perform
a transmission measurement using THz time-domain spec-
troscopy (THz-TDS), as shown in Fig. 4(b) [17], and a total re-
flection measurement using THz time-domain attenuated total
reflection (TD-ATR) spectroscopy, as shown in Fig. 4(c) [20].
We use a THz emitter and detector (EKSPLA, Ltd.) with dipole
antennas. The antennas are fixed on low-temperature-grown
GaAs photoconductors illuminated by a femtosecond fiber
laser (F-100, IMRA America, Inc.) with a wavelength of

FIG. 4. (a) Photomicrograph of the LBDRs fabricated on
a stainless-steel (SUS304) sheet with thickness h = 30 μm.
(b) Schematic of the transmission measurement with THz-TDS.
(c) Schematic of the total reflection measurement with THz TD-ATR
spectroscopy. The distance between the LBDRs and the prism is
d ∼ 64 μm.

λ = 810 nm and pulse duration of τ = 120 fs. A silicon lens
is used to produce a collimated THz beam with diameter
of 7.4 mm. The electric field of the THz wave, E(t), is
measured in the time domain. In the TD-ATR measurement,
a silicon prism [18] with refractive index n = 3.4 is used.
The distance between the LBDRs and the prism is d ∼ 64 μm
(the thickness of the polyimide spacing tape). We can obtain
the transmission spectrum T (ω) and the ATR spectrum R(ω)
from T (ω) = |Ẽ(ω)/Ẽref(ω)|2 and R(ω) = |Ẽ(ω)/Ẽref(ω)|2,
where Ẽ(ω) and Ẽref(ω) are the Fourier-transformed electric
fields with and without the sample, respectively.

To observe the band structure experimentally, the incident
angle is changed in each measurement as follows: (i) In the
transmission measurement, the sample is rotated by θ around
the y ′ axis from normal incidence, as shown in Fig. 4(b). The
incident angle θ is changed from θ = 0◦ to 65◦ in steps of
�θ = 2.5◦, and the corresponding wave number is given by
k|| = (ω/c) sin θ . The incident wave is in the TE mode for
the �-M scan and the TM mode for the �-X scan. (ii) In the
total reflection measurement, the gold mirrors are rotated from
θm = 28◦ to 38◦ by �θm = 2◦, corresponding to changing the
incident angle from θi = 25.3◦ to θi = 31.2◦, as shown in
Fig. 4(c). The incident wave is in the TE mode. The angle, or
in-plane wave vector, is limited by the finite size of the mirror
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FIG. 5. Experimental results. (a) Transmission and ATR spectra
mapped on the wave-vector–frequency plane. The value k‖/kM =
1 on the horizontal axis corresponds to the M point, where kM =√

2π/a. The value k‖/kX = 1 on the horizontal axis corresponds
to the X point, where kX = π/a. (b) Transmission spectra for the
incident angles θ = 30◦ and 60◦ in the �-M scan. (c) ATR spectrum
for the incident angle θi = 30◦ in the �-M scan.

mounts and the finite area of the LBDRs. The corresponding
wave number is given by k|| = n(ω/c) sin θi .

B. Results

Figure 5 displays the results of the experiments. The
transmission and ATR spectra mapped on the wave-vector–
frequency plane are shown in Fig. 5(a). In the nonradiative
region, a single ATR dip that is insensitive to the wave number
is observed. In the radiative region, there exists a broader band
from 0.2 to 0.6 THz. These results are qualitatively and almost
quantitatively in good agreement with the simulation shown
in Fig. 3(a). Figure 5(b) shows the transmission spectra at
the incident angles θ = 30◦ and θ = 60◦ in the �-M scan.
Figure 5(c) shows the ATR spectrum at the incident angle
θi = 30◦ in the �-M scan. These results also agree well with
the results of the simulation.

Compared with the simulation result obtained for ideal
conditions, the resonant frequency of the flat-band mode is
a little higher, and the linewidth of the spectrum broadens. The
possible reasons for these disagreements are as follows: First,
although the LBDRs are assumed to be perfect conductors in
the simulation, the fabricated LBDRs used in the experiment
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FIG. 6. (a) Capacitive couplings between the nearest-neighbor
disks (solid arrows) and the second-nearest-neighbor disks (dashed
arrows). (b) Theoretical curve (solid line) fitted to the eigenfre-
quencies calculated by the eigenmode solver. The parameters are
ω0/(2π ) = 0.233 THz, η = 0, and η′ = −0.0690.

have the finite conductivity of the stainless steel. It has been
confirmed that the linewidth of the spectrum broadens also
in the simulation for the LBDRs with finite conductivity (see
Sec. V). Second, owing to the lack of precision of the etching,
the width of the bar is widened. This causes a decrease of
the effective inductance of the bar, and the resonant frequency
shifts higher. Finally, the distance between the LBDRs and
the prism, d ∼ 64 μm, in the experiment differs from the
simulation parameter d = 200 μm. The dependence of the
ATR spectra on the distance between the LBDRs and the prism
is discussed in Sec. V.

V. DISCUSSION

A. Origin of the bend of the flat band

The flat-band frequency is slightly dependent on the wave
vector both in the simulation and in the experiment. As a major
cause we consider the second-nearest-neighbor capacitive
couplings, as shown in Fig. 6(a), in addition to the nearest-
neighbor couplings. In this model, Eq. (1) is replaced with

φi = Uqi + U ′ ∑
j

Aij qj + U ′′ ∑
k

Bikqk. (11)

We define the distance between the centers of the two disks of
the sublattice in a unit cell as dsub. Bik = 1 if the kth disk exists
within a radius dsub from the center of the ith disk; otherwise
Bik = 0. By using Eq. (11) instead of Eq. (1), P(k||) in Eq. (2)
is replaced with

P ′(k||) = P(k||) + η′

⎡
⎣0 0 0

0 0 1 + e−ik||·a1 + e−ik||·a2 + e−ik||·(a1+a2)

0 1 + eik||·a1 + eik||·a2 + eik||·(a1+a2) 0

⎤
⎦, (12)
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where η′ = U ′′/U . The dispersion relation is obtained by
solving the eigenvalue problem H′(k||) = Q(k||)P ′(k||).

The solid line in Fig. 6(b) is the theoretical curve fitted to
the eigenfrequencies (shown as open circles) that are obtained
by the eigenmode solver. By solving the eigenvalue problem
of H′(k||), we obtain the frequencies of the flat-band mode at
the � point as ωf, �/(2π ) = √

2 − 8η′ω0/(2π ), the M point as
ωf, M/(2π ) = √

2ω0/(2π ), and the X point as ωf, X/(2π ) =√
2ω0/(2π ). By averaging of the eigenfrequencies 0.323 and

0.336 THz at the M and X points, the parameter ω0/(2π ) =
0.233 THz is determined. From the eigenfrequency 0.372 THz
at the � point, the parameter η′ = −0.0690 is determined. We
note that the variation of the curve is affected only by the
parameter η′, not by η. This is because the second-nearest-
neighbor couplings break the condition on the formation of the
localized modes. For simplification, we assume the value of η

as 0. If η′ > 0, the band takes its minimal value at k|| = 0; in
contrast, if η′ < 0, it takes its maximal value. In the static limit
(ω → 0), positive charges on a disk create positive electric
potential on the other disks; hence the parameter η′ is expected
to be positive. However, the actual value of η′ is negative.
This can be explained by the retardation effect [21,22]. The
phase difference between the second-nearest disks is given by
(
√

2ω0/c) × a/
√

2 ∼ 0.65 × π at
√

2ω0/(2π ) = 0.330 THz.
The negative sign of η′ is caused by this shift being greater
than π/2. Note that the second-nearest-neighbor coupling is
weakened by reducing the disk radius and the bar width without
changing the length of the unit cell, and we could further
suppress the degree of the bend by improving the precision of
the fabrication.

B. Dependence of ATR spectra on the distance between
the LBDRs and the prism

The flat band in the nonradiative region cannot couple
with free-space modes; theoretically, this mode has no energy
radiation into free space and is perfectly confined at the surface.
However, in our situation, the nonradiative flat-band mode
is excited by evanescent waves. The evanescent waves are
generated by the total reflection of the propagating waves; that
is, the flat-band mode couples with the propagating waves.
This coupling strength depends on the distance d between the
LBDRs and the prism. It is expected that the width of the ATR
dip becomes narrower by increasing the distance d because
the coupling strength is weakened.

To verify the coupling effect, we perform total reflection
measurements with several distances in the simulation and the
experiment. The simulation is performed for d = 100, 200, and
300 μm under the same conditions of the ATR configuration
in Sec. III. In the experiment, the distance d is changed by
increasing the number of polyimide spacer layers from 1 to 3.
Figures 7(a) and 7(b) show the results of the simulation and
the experiment, respectively. These results demonstrate that
the ATR dip becomes narrower and shallower as d increases.
Furthermore, we see that, as the distance between the LBDRs
and the prism is increased, the resonant frequency shifts to
higher frequency and converges to the resonant frequency
in free space. Figure 7(c) shows the ATR spectra obtained
by the simulation in the case where the finite-conductivity
boundary condition with the dc conductivity σ = 1.4 ×

FIG. 7. Dependence of the ATR spectra on the distance between
the LBDRs and the prism. (a) Simulation results of the ATR spectra
of the perfectly conducting LBDRs. (b) Experimental results of the
ATR spectra. (c) Simulation results of the ATR spectra in the case of
the LBDRs with the dc conductivity of SUS304.

106 S/m of SUS304 is applied to the infinitely thin LBDRs
region [23]. From this result, we can confirm that the spectra
are broadened owing to the finite conductivity in the ATR
experiment.

VI. CONCLUSION

In this paper, we demonstrated the three-dimensionally
confined flat-band mode for spoof surface plasmons. We
analytically calculated the dispersion relation of spoof plas-
mons on the LBDRs based on the electrical circuit model.
We obtained three bands, the middle of which is a flat
band. To confirm this theoretical result, we numerically
simulated the electromagnetic response of the LBDRs using
the finite-element method. The simulation results revealed
that the flat band in the nonradiative region shows narrower
linewidth than that in the radiative region. Besides, we found
that the flat-band bend can be explained by the second-
nearest-neighbor capacitive coupling. Finally, we performed
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transmission and total reflection measurements using the
THz-TDS and the TD-ATR methods. The experimental results
showed qualitatively good agreement with the simulation
results.

In the total reflection measurement, as the distance between
the sample and the coupling prism is increased, the coupling
strength between the spoof surface plasmons and the evanes-
cent wave is weakened, and the ATR dip becomes narrower.
Because spatially localized modes can be formed, these modes
can be applied to sensitive plasmon sensors [24] with high
spatial resolution. Furthermore, combined with the low group

velocity, the flat-band mode with a high quality factor can be
used to enhance the nonlinear response of materials [25].
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