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Phase transitions in the Hubbard model and ionic Hubbard model at half-filling on the honeycomb lattice
are investigated in the strong-coupling perturbation theory which corresponds to an expansion in powers of the
hopping t around the atomic limit. Within this formulation we find analytic expressions for the single-particle
spectrum, whereby the calculation of the insulating gap is reduced to a simple root finding problem. This
enables high-precision determination of the insulating gap that does not require any extrapolation procedure.
The critical value of Mott transition on the honeycomb lattice is obtained to be Uc ≈ 2.38t . Studying the ionic
Hubbard model at the lowest order, we find two insulating states, one with Mott character at large U and another
with single-particle gap character at large ionic potential �. The present approach gives a critical gapless state
at U = 2� at lowest order. By systematically improving on the perturbation expansion, the density of states
around this critical gapless phase reduces.
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I. INTRODUCTION

Graphene is the most extensively studied, both theoretically
and experimentally, example of a Dirac solid where the
effective motion of charge carriers is described by the
Dirac theory in two spatial dimensions. The Dirac theory
in graphene is a continuum limit of a simple tight-binding
hopping Hamiltonian on a honeycomb lattice of graphene
material. Breaking the sublattice symmetry of the underlying
honeycomb lattice leads to a mass in the Dirac theory. Such
a sublattice symmetry breaking can be either extrinsically
induced by the substrate, or intrinsically due to strong
Coulomb interactions [1,2]. Recent engineering of the band
gap in graphene on SiC brings the study of both massless and
massive Dirac fermions into the frontier of graphene research
[3]. Therefore, graphene is a natural framework to study both
massive and massless Dirac fermions in 2+1 (space+time)
dimensions. The atom next to carbon in column IV of the
periodic table is Si which also has a two-dimensional allotrope
known as silicene with a honeycomb structure, albeit with a
larger lattice constant than graphene. Corresponding to larger
distance, the hopping amplitude between the neighboring
atoms in silicene will be smaller than graphene. Already for
the case of graphene, the ab initio estimates of the Hubbard U

give a value near 10 eV, making a ratio of U/t ∼ 3.3 [4]. This
ratio is even larger in silicene due to larger lattice constant and
hence a smaller hopping amplitude. In the case of silicene,
the ratio is given by U/t ≈ 4.2 [5]. Given such large values
of U/t in both graphene and silicene where the low-energy
effective theory is a Dirac theory, it is necessary to understand
the effect of such large values of Hubbard U on the electronic
properties of two-dimensional Dirac fermions.

So far, the quantum phase transitions in the honeycomb
lattice have been investigated by various theoretical and
numerical studies. Sorella et al. methods the half-filled
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Hubbard model on graphene’s honeycomab lattice using
quantum Monte Carlo (QMC) simulations which found critical
interaction Uc/t = 4.5 ± 0.5 for semimetal to antiferromag-
netic phase transition [6]. Herbut within renormalization group
(RG) in the large-N limit showed that the semimetal to Mott
insulator transition (SMIT) occurs at a finite U/t value for the
physical case N = 2 [7]. Using functional RG in Ref. [8], the
critical minimal interaction strength toward antiferromagnetic
instability is found to be Uc/t = 3.8. The Mott transition
has been studied by dynamical mean field theory (DMFT)
calculations where the SMIT is shown to occur at relatively
large interaction strength Uc > 10t [9,10]. The DMFT esti-
mate of critical interaction is improved by performing cluster
dynamical mean field theory (CDMFT) to Uc/t = 3.3 [11],
Uc/t = 3.7 [12], and Uc/t = 3–4 [13]. The above difference
between the DMFT and CDMFT results is due to the fact
that honeycomb lattice is a two-dimensional lattice with the
smallest coordination number, so CDMFT includes the spatial
correlations missed in DMFT. The Mott transition on the
honeycomb lattice was also investigated within slave-particle
technique by Vaezi et al. who obtained a critical interaction
Uc � 3t [14]. The possible existence of a spin liquid phase
on the honeycomb lattice investigated by Meng et al. using
large-scale QMC calculations for clusters containing up to
648 sites. Their putative quantum spin liquid phase was found
for the range U = 3.5t to UAF = 4.3t [15]. The presence of
spin liquid phase has been supported by other studies based
on variational cluster approximation [16], CDMFT [17], and
density matrix embedding theory [18]. The spin liquid phase
has been challenged by Sorella et al. who performed the
same QMC calculations as in Meng et al. for larger clusters
including up to 2592 sites and found a direct SMIT at UAF/t =
3.869 ± 0.013 [19]. Moreover, recent studies have indicated
that existence of spin liquid phase is rather implausible and
have also confirmed a continuous transition from semimetal
to Mott (antiferromagnetic) insulator at critical interaction
Uc/t = 3.8 ± 0.1 [20–23].
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Motivated by the above discussions, we investigate the
phase transition from the Mott side. A natural framework
to approach from the infinite-U side is strong-coupling
perturbation theory to expand in powers of t/U . This can
be done in two ways: (1) the first choice is to do brute
force perturbation theory [24], or (2) the other way is to use
a dual transformation and to rewrite the strongly correlated
Hamiltonian in terms of dual degrees of freedom [25]. We find
the latter approach rewarding as it clearly indicates the onset
of gap closing by approaching from the strong-coupling side.
Despite some pathologies in the analytic continuation, in the
lower orders of perturbation theory considered here, we are
able to obtain closed-form formulas for the spectral functions
without encountering the problems of analytic continuation
faced by earlier investigators [25,26]. Within this approach
we identify the Mott transition in the half-filled massless
Dirac sea at zero temperature. Given our analytic formulas
for the spectral functions, the determination of Mott gap is
reduced to a simple root finding problem that can be done
with arbitrary precision. This does not require extrapolation
procedure [20,27–29]. Approaching from the Mott side, one
might think that electrons being localized in the Mott phase do
not have any idea what is going to happen when the Hubbard U

is reduced. However, on the weak-coupling side we know that
the underlying honeycomb structure leads to Dirac spectrum.
Therefore, the question would be how does the Mott phase
know that upon reducing the Hubbard U it should become
a Dirac solid? An interesting picture that emerges within
the present dual transformation approach is that deep in the
Mott phase, the dual fermions have a Dirac cone structure,
albeit far away from the Fermi level within the high-energy
states of upper and lower Hubbard bands, and hence the
Dirac “genome” is passed across the quantum critical point
separating the Dirac liquid and the Mott insulating phase.

We also take the same approach to study the massive
Dirac fermions approaching from the Mott side. For this
model, the U/t is not the only parameter governing the phase
diagram. The presence of another energy scale � related to
gap (mass) makes it more complicated. In the large-U limit
again we have the Mott phase. When the Hubbard U is
negligible in comparison to �, its main effect is to renormalize
Fermi liquid parameters of the underlying metallic state, and
hence the relevant parameter � opens up a single-particle
gap and we have a band insulator [30]. For the intermediate
regime, our earlier DMFT study suggests the presence of a
gapless semimetallic state which is born out of the competition
between the two parameters U and � [31,32]. Within the
present approach at the lowest orders of the kinetic energy t ,
we find that there is a critical point separating the Mott and
band insulating phases. The system at this critical point is
gapless and corresponds to a semimetallic (Dirac cone) state.
Systematically improving the perturbation theory by going to
higher orders shows that the density of states (DOS) around
this quantum critical semimetallic states tends to deplete.

The paper is organized as follows. We begin by reviewing
the strong-coupling expansion method in Sec. II. In Sec. III,
the method is applied to the half-filled Hubbard model and
by using an analytic approach the critical interaction of the
Mott transition is obtained. The method is also employed to
investigate the possible phases of the half-filled ionic Hubbard

model in Sec. IV. Finally, our findings are summarized and
conclusions are drawn in Sec. V. The paper is accompanied
by two appendixes which present the expression for DOS
on honeycomb lattice and our formulas for self-energies of
auxiliary fermions in the ionic Hubbard model case.

II. METHOD OF CALCULATION

We employ the strong-coupling expansion to study SMIT
of the Hubbard model on the honeycomb lattice. We also
use this method to characterize phase diagram of the ionic
Hubbard model at zero temperature. In what follows, we briefly
describe the method proposed in Ref. [25]. Generally speaking,
in the strong-coupling limit, the Hamiltonian is written as
the sum of the unperturbed local Hamiltonian H0 and the
perturbation H1:

H = H0 + H1. (1)

According to formulation of Ref. [25], H0 = ∑
i hi(c

†
iσ ,ciσ )

where H0 is diagonal in variable i and σ denotes all the other
variables of the problem. If we assume i as site variable,
H0 is written as a sum over onsite Hamiltonians hi . On the
other hand, H1 is supposed to be a one-body hopping operator
H1 = ∑

ij

∑
σ Vij c

†
iσ cjσ where the Hermitian matrix V is the

hopping amplitude between orbitals located at sites i,j . The
partition function in the path-integral formulation can then be
expressed as

Z=
∫

[dγ � dγ ] exp

[
−

∫ β

0
dτ

{ ∑
iσ

γ �
iσ (τ )(∂τ − μ)γiσ (τ )

+
∑

i

hi(γ �
iσ (τ ),γiσ (τ )) +

∑
ijσ

γ �
iσ (τ )Vijγjσ (τ )

}]
, (2)

where γiσ (τ ), γ �
iσ (τ ) denote Grassmann fields of the electrons

and β is inverse of temperature T . In the Hubbard-type models
H0 is not quadratic, hence the simple form of an ordinary
Wick theorem can not be used to construct a diagrammatic
expansion for the Green’s functions.1 Introducing the auxiliary
Grassmann fields ψiσ (τ ), ψ�

iσ (τ ) via the Grassmann version of
the Hubbard-Stratonovich transformation [33] we can write∫

[dψ�dψ] exp

[ ∫ β

0
dτ

∑
iσ

{∑
j

ψ�
iσ (τ )(V −1)ijψjσ (τ )

+ψ�
iσ (τ )γiσ (τ ) + γ �

iσ (τ )ψiσ (τ )

}]

= det(V −1) exp

[
−

∫ β

0
dτ

∑
ijσ

γ �
iσ (τ )Vijγjσ (τ )

]
. (3)

With the aid of this equation, the the partition function can be
rewritten as

Z =
∫

[dψ�dψ] exp

[
−

{
S0[ψ�,ψ] +

∞∑
R=1

SR
int[ψ

�,ψ]

}]
,

(4)

1Although a more complicated version of the Wick theorem still
exists, it is not easy or intuitive to work with.
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where the action has a free auxiliary fermion part given by the
inverse of the hopping matrix of original fermions

S0[ψ�,ψ] = −
∫ β

0
dτ

∑
ijσ

ψ�
iσ (τ ) (V −1)ij ψjσ (τ ), (5)

and an infinite number of interaction terms

SR
int[ψ

�,ψ] = −1

(R!)2

∑
i

∑
{σlσ

′
l }

∫ β

0

R∏
l=1

dτldτ ′
l

×ψ�
iσ1

(τ1) . . . ψ�
iσR

(τR)ψiσ ′
R
(τ ′

R) . . . ψiσ ′
1
(τ ′

1)

×〈
γiσ1 (τ1) . . . γiσR

(τR)γ �
iσ ′

R
(τ ′

R) . . . γ �
iσ ′

1
(τ ′

1)
〉
0,c

.

(6)

The above equation denotes a vertex with R incoming ψ

fermions and R outgoing ψ fermions. Note again that ψ

fermions are auxiliary (dual) fermions. Thinking in terms of
ψ fermions, now their kinetic energy scale is given by V −1

which is a large number when the kinetic energy V of the
original fermions is much smaller than the Coulomb energy
scale U . Therefore, standard diagrammatic perturbation theory
can be applied. The only (very important) difference with
the textbook diagrammatics will be that in the present case
the vertex is not a simple number, but acquires a nontrivial
dynamical structure given by the the cumulant average 〈. . . 〉0,c

of the original Grassmann fields. These are the connected
correlation functions of original fermions with respect to the
local Hamiltonian hi . Higher-order cumulants are expected
to be less important in the limit of large U . Lower-order
cumulants which only depend on the form of the local
Hamiltonian hi , can be calculated straightforwardly [34]. Once
the multiparticle cumulants of the original fermions are known,
they act as dynamic vertices for the auxiliary fermions and
from this point, we can use standard perturbation theory for the
auxiliary fields. Eventually, if G denotes the Green’s function
of the original fermions and 
 the self-energy of the auxiliary
fermions, the relation between them is given by [26]

G = (
−1 − V )−1. (7)

This means to obtain Green’s function, we have to compute the
self-energy 
 of the auxiliary fermions which can be done with
standard perturbation theory. Further details of the method are
given in Refs. [25,26] and will not be repeated here.

In the following sections, we apply the method presented
here to two models at half-filling on the honeycomb lattice,
namely, the Hubbard model and ionic Hubbard model. On the
honeycomb lattice, free propagator of the auxiliary fermions
is determined by

V (k) =
(

0 ts(k)
ts�(k) 0

)
, (8)

where k = (kx,ky), and s(k) = exp(−ikxa) + 2 exp( ikxa

2 )

cos(
√

3kya

2 ). The atomic separation of the honeycomb lattice
assumed to be a = 1. The 2 × 2 matrix structure comes from
the two-sublattice structure of the honeycomb lattice. In the
following, we use the standard perturbation theory to study the
Hubbard and ionic Hubbard models the noninteracting limit of
which corresponds to massless and massive Dirac fermions.

III. HUBBARD MODEL

The Hubbard Hamiltonian for spin- 1
2 fermions is given by

H = −t
∑
〈ij〉,σ

(c†iσ cjσ + H.c) + U
∑

i

ni↑ni↓ − μ
∑
iσ

niσ , (9)

where c
†
iσ (ciσ ) creates (annihilates) a fermion of spin

projection σ =↑ , ↓ on lattice site i, niσ = c
†
iσ ciσ , t denotes

the nearest-neighbor hopping amplitude, and U � 0 denotes
the strength of the onsite repulsion. Through the paper, we
focus at half-filling (

∑
σ 〈niσ 〉 = 1) by setting the chemical

potential μ to U/2. For the strong-coupling expansion of the
Hubbard model, H0 corresponds to the atomic limit and H1

is equivalent to the kinetic term. The diagrams contributing
to 
 up to order t2 are presented in Fig. 1, which lead to the
following expression for 
 [26]:


(iω) =
(

iω

(iω)2 − (U/2)2
+ 3.45 t2(U/2)2(iω)

[(iω)2 − (U/2)2]3

)
I, (10)

where iω denotes a complex frequency and I stands for 2×2
identity matrix in the space of two sublattices.

As is evident from the above self-energy (for more details
see Ref. [25]), the above self-energy violates the causality.
A causal Green’s function (or self-energy) is Lehmann
representable if it can be written as a Jacobi continued fraction
form. So one has to find out a Jacobi continued fraction form
of self-energy Eq. (10) which in this case is simple and turns
out to be


(iω) = 1

iω − (U/2)2

iω − 3.45 t2

iω − (U/2)2

iω

I

(11)

which is equivalent to Eq. (10) up to (t/U )2. Now we can
calculate the Green’s function by substituting self-energy into
Eq. (7). In order to monitor the Mott transition, we should
calculate the DOS ρ(ω) = − 1

π
limη→0+

∑
k Im Tr G(k,ω +

iη) at different interaction strength. In other words, to identify
the electronic properties of the system by increasing U , we
calculate the single-particle gap that extracted from DOS
by integration over wave vectors numerically. But, in doing
so, it is hard to judge when the gap opens by increasing U

due to artificial Lorentzian broadening η used in the Greens’
functions to avoid numerical divergences. As we will explain
shortly in the following, we are able to work out the integration
analytically which enables us to avoid both numerical errors

FIG. 1. Diagrams contributing to the self-energy of the auxiliary
fermions up to order t2 where solid lines indicate free propagator
V of auxiliary fermions and vertices represent connected correlation
functions. Circles are one-particle connected correlation functions
and squares refer to two-particle connected correlation function.
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as well as the continued fraction issues. This reduces the
determination of the Mott gap into a simple root finding
problem which can be solved with arbitrary precision.

Assuming the self-energy of auxiliary fermions in
Eq. (10) [or Eq. (11)] has a more general form 
 = F(iω)I
and plugging in Eq. (7), the DOS of physical electrons is given
by

ρ(ω) = − 1

π
lim

η→0+

∑
k

Im

[
1

1/F(ω + iη) − t |s(k)|

+ 1

1/F(ω + iη) + t |s(k)|
]
. (12)

On the other hand, in the noninteracting honeycomb lattice
(graphene), the DOS of a hopping Hamiltonian is given by
[35]

ρ0(ω) = − 1

π
lim

η→0+

∑
k

Im

[
1

ω + iη − t |s(k)|

+ 1

ω + iη + t |s(k)|
]

= |ω|
π2

1√
Z0

K

(√
Z1

Z0

)
, (13)

where

Z0 =
⎧⎨
⎩

(1 + |ω|)2 − (ω2 − 1)2/4, |ω| < 1

4|ω|, 1 � |ω| � 3
(14)

and

Z1 =
⎧⎨
⎩

4|ω|, |ω| < 1

(1 + |ω|)2 − (ω2 − 1)2/4, 1 � |ω| � 3.

(15)

Here, K(x) is the complete elliptic integral of the first kind
[36]. This representation is valid as long as the imaginary part
of the argument passed into the above function is negligible.
By comparison of Eqs. (12) and (13), the DOS of interacting
problem is analytically obtained as

ρ(ω) = ρ0[F−1(ω)]. (16)

This representation is valid as long as F−1 has a negligible
imaginary part. For the pure Hubbard model it turns out
that when F−1 is evaluated at ω + i0+, its imaginary part
tends to zero. Therefore, the above representation is valid. A
nice property of the function ρ0 is that it vanishes when its
argument |ω| exceeds 3. This statement is exact and involves
no numerical errors. Therefore, for the pure Hubbard model,
the gap opening corresponds to the condition

|F−1(ω + i0+)| > 3. (17)

Based on particle-hole symmetry, we expect the Mott-
Hubbard gap to open up at ω = 0, we only need to monitor the
behavior of F−1 at ω = 0. When this quantity is larger than
3, the DOS is zero, and hence we have a gap. Therefore,
starting from the large-U side it only suffices to monitor
the function F−1 at ω = 0 for various values of U . Upon
reducing U , once this value drops below 3 indicates that
we have entered the conducting phase. Therefore, we have

2 3 4 5 6 7 8 9 10

U/t

0

1

2

3

4

5

6

7

E ga
p/t

FIG. 2. U dependence of the single-particle gap calculated from
Eq. (17). For the self-energy F(ω + i0+) we can use both Eqs. (10)
(red squares) and (11) (blue circles). The red (blue) line indicates the
best linear fit to red (blue) data.

reduced the problem of determination of the Mott gap into
a root finding problem defined by Eq. (17) which can be
solved with arbitrary precision at negligible computational
cost. In this work, we determine the gaps up to the precision of
10−4t . Note that within the methods based on Jacobi continued
fraction followed by numerical integration scarcely can get
such resolutions.

Let us now implement condition (17) to study the Mott
transition on the honeycomb lattice. In Fig. 2, the single-
particle gap Egap as extracted from Eq. (17) versus onsite
interaction U is shown. As we study the Mott transition from
strong-coupling limit, the single-particle gap is determined for
large interaction strengths from the behavior of F(ω), i.e.,
the self-energy of auxiliary fermions. Now, to evaluate this
self-energy, we have two options: one is to use Eq. (10) and the
other is to use the continued fraction form (11). Note that these
options are not available in the absence of analytic formula for
DOS. As can be seen in Fig. 2, the two procedures agree on
the value of Hubbard gap obtained from the condition (17).
To characterize the critical Coulomb interaction Uc for the
SMIT, we do not bother with extrapolations of the Lorentzian
width of the numerical integration as the limit η → 0 has been
properly encoded in Eq. (13). We approach from the Mott
side where we are sure that (1) the method is more reliable
as it is a perturbation from the Mott side, and (2) the gap
is clearly open. Then, having a number of data in the Mott
side, we extrapolate by fitting the data to find out the value
of U at which Egap extrapolates to zero. With this approach
we find Uc = 2.38t for the Mott transition within the present
second-order strong-coupling approximation. Our motivation
to use a linear fit is that in the atomic limit the upper and lower
Hubbard bands are expected to behave linearly with U , and
the present method as well builds on the atomic limit within
the auxiliary fermions method.

In recent years, the critical exponent characterizing the
Mott criticality has been of interest [19,23,37–39]. Trying to
fit a nonlinear function of the form Egap ∝ (U − U nonlin

c )βg

to the same set of data represented in Fig. 2, we obtain
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1 1.2 1.4 1.6 1.8 2 2.2 2.4 2.6

U/t

0

0.05

0.1

 ρ
(ω

)

 ω = 0
 ω = 0.01t

FIG. 3. The η → 0 extrapolated ρ(ω) for ω = 0 and 0.01t as
a function of the onsite Coulomb interaction U on the honeycomb
lattice.

the gap exponent as βg = 1.28 ± 0.04 and the critical value
corresponding to nonlinear fit U nonlin

c = 1.75 ± 0.13. But,
since our method and data are reliable for values of U deep in
the Mott phase, we reckon that the linear fit is more consistent
with the method used to extract the gap data. As will be
explained in the sequel, using other diagnostic tools we also
get a value for Uc which is close to 2.38 found from the above
linear fit.

To demonstrate the advantage of the present analytical
approach, let us see how the previous authors [20,27–29] find
out the onset of gap formation. First, for a small but finite value
of η, the integral required in Eq. (12) is calculated by numerical
integration over wave vectors of the first Brillouin zone of the
honeycomb lattice. Thus, one computes ρη(ω) for a few values
of the Lorentzian broadening parameters η at ω = 0. Then, by
means of polynomial fitting one extrapolates to the η → 0
limit. The extrapolated ρ(ω = 0) must vanish in the insulating
phase. However, this is ambiguous because even in the Dirac
(non-Mott) phase the DOS at ω = 0 is expected to be zero.
To somehow get around this, it was suggested to focus on the
DOS at slightly different energy scale, e.g., ω = 0.01t [20].
We have presented a comparison of these two in Fig. 3. This
figure suggests that the Mott phase is stabilized for U � 2.4t .
However, the nonzero DOS at ω = 0 in the semimetallic side is
not remedied. As advertised, the critical value of 2.4 obtained
in this way is very close to our linear fit value of Uc = 2.38,
and hence we maintain that the linear fit is better suited for the
data obtained from the present method.

Now, let us employ the present analytical formula to study
the profile of the DOS as a function of the Hubbard U . In
Fig. 4 we plot DOS obtained from Eq. (16). The noninteracting
DOS has been denoted by dotted line for reference. As can be
seen in the semimetallic phase, there is a linear DOS feature
at ω = 0 which is due to the Dirac cone at the K points of the
Brillouin zone. But in addition, there appears another valley
in DOS which would correspond to Dirac cone at higher-
energy scales corresponding to ω = U/2. Interestingly, this
feature survives in the Mott phases where the major low-energy

-4 -2 0 2 4

 ω/t

0

0.2

0.4

0.6

0.8

 ρ
(ω

)

U/t=0
U/t=2
U/t=4

FIG. 4. DOS of the Hubbard model on honeycomb lattice. DOS
at U = 0 is given for reference.

Dirac cone has been gapped out by strong U . This can be
easily understood from the form of Eq. (10): As can be seen,
the auxiliary fermion self-energy 
 diverges at ω = ±U/2,
which corresponds to F−1 = 0. But from Eq. (16), when the
argument of bare ρ0 becomes zero, it will correspond to a Dirac
node. This feature may help to shed light on the meaning
of auxiliary fermions: the divergence in the self-energy of
auxiliary fermions corresponds to Dirac nodes of the original
electrons.

At this point, let us emphasize that the expression of DOS
in terms of a function F is quite general. This is because
the expansion is basically in powers of the hopping matrix
V (k) which is a combination of Pauli matrices. But, since odd
powers of the Pauli matrices do not survive the trace, only even
powers corresponding to even orders of perturbation expansion
survive the trace needed in calculation of DOS. Therefore, at
any (even) order of perturbation theory, DOS can be expressed
in the form of Eq. (16). Going to higher orders only improves
the dynamical structure of the function F(ω).

IV. IONIC HUBBARD MODEL

Now that we are equipped with Eq. (16) to analytically ob-
tain DOS within a given order of strong-coupling perturbation
theory, and we have checked that it gives reasonable results for
the case of Mott transition in the Hubbard model, let us break
the sublattice symmetry by adding a scalar potential ±� to the
two sublattices. This potential is known as ionic potential and
hence the Hamiltonian of the ionic Hubbard model is given by

H = −t
∑

i∈A,j∈B,

σ

(c†iσ cjσ + H.c.) + U
∑

i

ni↑ni↓

+�
∑

i∈A,σ

niσ − �
∑

j∈B,σ

niσ − μ
∑
iσ

niσ . (18)

In the atomic limit (t = 0), the model reduces to classical
Ising-type effective model that contains various insulating
phases [31]. At the simplest level, setting t = 0 in the above
Hamiltonian and corresponding to half-filling, the essential
competition is between � and U terms. When the ionic
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FIG. 5. Atomic limit schematic representation of (a) U < 2� and
(b) U > 2�.

potential dominates, i.e., � � U as can be seen in the left part
of the schematic drawing of Fig. 5, both up- and down-spin
electrons are pilled in a sublattice whose ionic potential is
lower. In this limit, the U is not enough to exclude the double
occupancy. However, in the opposite limit of U � �, the
double occupancy is excluded and the system becomes a Mott
insulator with a charge gap ∼U . Then, the important question
is what is the nature of the ground state for the U ∼ � regime
when the fluctuations arising from the kinetic term (t) are
turned on?

Tackling the problem with strong-coupling perturbation
theory, in this case the H0 part of the Hamiltonian will contain
only U and � terms and the perturbation term H1 will be the
hopping term. Therefore, we expect the method to be reliable
only when both � and U are quite larger than the hopping t .
But, even in the limit U,� � t , it is interesting to have an idea
of the nature of the gap when U and � are comparable.

Now, the H0 part not only contains the parameter U , but
also contains the energy scale �. Therefore, the corresponding
vertices of the auxiliary fermions have a built-in structure
containing the competition between U and �. The role of
ionic � can be easily incorporated as two different types of
chemical potential for the two sublattices. If we denote the
self-energy of the auxiliary fermions on sublattices A and B

with 
(A) and 
(B), respectively, we obtain the self-energy of
auxiliary fermions on the lattice as


(iω) =
⎛
⎝
(A)(iω) 0

0 
(B)(iω)

⎞
⎠, (19)

and the DOS is given by

ρ(ω) = − 1

π

1

2

(√

(A)(ω)


(B)(ω)
+

√

(B)(ω)


(A)(ω)

)

× lim
η→0+

∑
k

Im

[(
1

1√

(A)(ω+iη)
(B)(ω+iη)

− t |s(k)|

+ 1
1√


(A)(ω+iη)
(B)(ω+iη)
+ t |s(k)|

)]
. (20)

Comparison between Eqs. (20) and (13) leads to the following
expression for DOS:

ρ(ω) = 1

2

(√

(A)(ω)


(B)(ω)
+

√

(B)(ω)


(A)(ω)

)
ρ0

(
F−1

1

)
, (21)

with

F1 =
√


(A)(ω)
(B)(ω). (22)

The representation (21) is valid as long as the function
F1 is purely real. In the case of ionic Hubbard model, the
above function when evaluated at ω + i0+ is either purely
real, which makes the above representation reliable, or purely
imaginary. In the latter case, a more general formula for
the Green’s function of hopping Hamiltonians derived by
Horiguchi [40] must be used. This has been summarized in
Appendix A. The expression of Horiguchi is valid for any
complex argument. Evaluation of the resulting DOS for purely
imaginary arguments shows that it becomes identically zero.
Therefore, the insulating gap is determined by∣∣F−1

1 (0)
∣∣ > 3 or Re[F1(0)] = 0. (23)

Note again that, so far we have not specified the self-energy
matrix elements 
(A) and 
(B) and, therefore, the discussion
up to now remains quite general. Depending on the order
of perturbation theory, these quantities may have different
expressions. But, the important point is that their dynamical
structure, as well as their parametric dependence on U and
� contains the essential physics of the interplay between the
Mott insulating phase and band insulating phase. As before,
the energy-dependent quantity F1 determines the gap opening
as well as the formation of Dirac nodes in the system.

Let us proceed with our discussion of the ionic Hubbard
model by defining the mean occupation for a given spin
projection on each sublattice at half-filling,

n(A) = eβ(u−�) + e−2β�

1 + 2eβ(u−�) + e−2β�
,

n(B) = eβ(u+�) + e2β�

1 + 2eβ(u+�) + e2β�
, (24)

where for brevity we have used u for U/2. Note that in the case
of simple Hubbard model where � = 0, the zero-temperature
limit (β → ∞) gives a very simple result n(A) = n(B) = 1

2 for
each spin projection.

A. Zeroth order

Now, let us start by the lowest order of the perturbation
theory for the ionic Hubbard model. Keeping only zeroth-order
diagram in powers of t depicted in Fig. 1, the self-energies of
the auxiliary fermions on two sublattices become


(A)(iω) = 1 − n(A)

iω + U/2 − �
+ n(A)

iω − U/2 − �
, (25)


(B)(iω) = 1 − n(B)

iω + U/2 + �
+ n(B)

iω − U/2 + �
. (26)

Let us first employ Eq. (21) to generate a plot of DOS.
As pointed out, the present approach being a strong-coupling
expansion is reliable when U,� � t . In generating the plots
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FIG. 6. DOS of the zeroth-order diagram for � = 4t in half-
filled ionic Hubbard model on honeycomb lattice at zero temperature.
The different colors as indicated in the legend correspond to band
insulating state (U = �/2), semimetallic state (U = 2�), and Mott
insulating state (U = 3�).

we set � = 4t and T = 0. As can be seen in Fig. 6, we have
three different situations. The blue plot corresponds to U =
2t = �/2 where there is a gap in the spectrum, and there are no
signatures of upper and lower Hubbard bands. In this case, the
gap is dominated by a single-particle character coming from
the ionic potential �. By increasing U , we get to the red plot
that corresponds to U = 8t = 2�. There is a very beautiful
linear V-shaped pseudogap in the spectrum characteristic of
a Dirac cone in two dimensions. At the same time, there are
also signatures of upper and lower Hubbard band formation
at higher-energy scales. Upon further increase of the Hubbard
parameter for U = 12t = 3� (green plot), again a gap opens
up on top of a Dirac liquid state [9]. This gap has a Mott nature
and features of upper and lower Hubbard bands are visible.
In Table I, we have extracted the precise gap values from the
criteria on F−1

1 [Eq. (23)].
Therefore, the essential physics emerging here is that the

competition between two gapped states at U � � (Mott state)
and U � � (band insulating state) gives rise to a conducting
state which in this case is a Dirac liquid state. This is in
agreement with our previous DMFT finding [32]. However,
note that within the DMFT we find a conducting (Dirac) region
sandwiched between the Mott and band insulating phases,
while in the present strong-coupling expansion the ensuing
conducting (Dirac) state at the lowest order is a quantum
critical Dirac state. Indeed, the existence of a Dirac cone
at U = 2� can be seen analytically from the lowest-order
expressions (25) and (26). Let us first take the limit T → 0
or equivalently β → ∞. In this limit, one has n(A) = 1

3 and

TABLE I. The single-particle gap for the zeroth-order diagram of
Fig. 1 at � = 4t and zero temperature.

U/t 2 8 12
Egap/t 5.9558 0.0000 3.9998

n(B) = 2
3 when both U,� > 0. Flipping the sign of � amounts

to swapping the occupancies of the two sublattices. In this
limit, the self-energies of the two sublattices will become


(A/B)(ω) = 1

3

(
2

ω
+ 1

ω ∓ U

)
for U = 2�, T = 0. (27)

The divergence of the above sublattice self-energies at ω = 0
makes F1 divergent at this point and therefore gives rise to
vanishing DOS and hence a Dirac point. Note that the existence
of an intermediate Dirac phase which has been brought up
with state-of-the-art DMFT now can be seen analytically using
even a lowest-order expression for the auxiliary fermion self-
energies. Therefore, the conducting phase that results from the
competition between U and � does not seem to be an artifact
of infinite dimensions inherent in DMFT formulation. Let us
now go beyond the zeroth order and see how the spectral gap
evolves upon going to higher orders of expansion.

B. Beyond zeroth order

Up to now, we have only considered the lowest-order
diagram of Fig. 1. Let us now add the second-order diagram of
Fig. 1. The self-energy of auxiliary fermions of second-order
diagram on sublattice A (
(A)

2 ) for arbitrary temperature is
given in Appendix B 1. The one for sublattice B is obtained
by simply changing the sign of �, i.e., � → −�. We have
used subscript 2 in 


(A)
2 to stress that this self-energy is only

related to second-order diagram of Fig. 1. Note that self-energy
of auxiliary fermions on sublattice A in expansion up to
second order is obtained by adding Eq. (B2) to (25). Also,
the zero-temperature limit of auxiliary fermion self-energies
on two sublattices for second-order diagram is presented in
Appendix B 1. Having 
(A) and 
(B), we are able to calculate
the single-particle gap. The competition between interaction
U and ionic potential � at � = 4t for zero temperature is
shown in Fig. 7. This figure shows the value of gap as a

0 2 4 6 8 10 12

U/t

0

2

4

6

8

E ga
p/t

up to 2nd order
up to 4th order (a)
up to 4th order (a)+(b)

7.95 8 8.05 8.1
0

0.05

0.1

0.15

0.2

0.25

FIG. 7. Calculated single-particle gap of the half-filled ionic
Hubbard model on honeycomb lattice in zero-temperature limit for
� = 4t up to second order (blue circles), to fourth-order diagram
8(a) (red squares), and to both fourth-order diagrams of Fig. 8 (green
diamonds). The inset zooms in the region around U = 2�.
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FIG. 8. Fourth-order diagrams contributed to self-energy of
auxiliary fermions where squares and circles refer to two- and
one-particle connected correlation functions, respectively. Solid lines
also represent free propagator of auxiliary fermions.

function of U for a fixed � = 4t at zero temperature. The
quantum critical metallic state is at U = 8t that corresponds
to U = 2� where the gap entirely vanishes, and the spectrum
of excitation contains a Dirac cone. As pointed out earlier, the
present strong-coupling scheme being an expansion in powers
of t works better when the parameters satisfy U,� � t . That
is why we have chosen � = 4t to address the competition
between U and � in presence of the hopping term.

As can be seen in Fig. 7 (blue circles), in the presence of
� for two diagrams of Fig. 1, when the Hubbard interaction
term U is small, there is a gap in the spectrum of single-
particle excitation. Since this gap is continuously connected
to the U → 0 limit, this gapped phase is a band insulating
state. When U increases, there is a critical point where the
gap is zero, and the DOS is characterized by a Dirac cone
around the ω = 0. As U increases more, the system enters
the Mott insulating phase. It is important to see that for small
values of U/t , although the parameters fall outside of the
expected region of convergence of the present strong-coupling
approximation, the corresponding phases captured here are in
qualitative agreement with our earlier studies using DMFT
[32].

In order to better treat the quantum fluctuations on top
of the classical Hamiltonian H0 of the ionic Hubbard model
(i.e., � and U terms involving commuting niσ variables only),
we consider higher orders in the perturbation theory. All
fourth-order diagrams are demonstrated in Fig. 18 of Ref. [26],
but to illustrate their effect on the gap magnitude near the
critical Dirac state U = 2�, we only consider two fourth-order
diagrams that are depicted in Fig. 8. Since for other fourth-
order diagrams, one needs to calculate three-particle connected
correlation function which involves different expressions for
5! possible time orderings (one of the times can be set to zero)
which makes it a formidable task to consider all of them. The
self-energies of auxiliary fermions on sublattices A/B in the
zero-temperature limit for fourth-order diagrams of Figs. 8(a)
(
(A/B)

4(a) ) and 8(b) (
(A/B)
4(b) ) are given in Appendix B 2. The

single-particle gaps obtained from adding diagram 8(a) (red
squares) and both diagrams of Fig. 8 (green diamonds) to
diagrams of Fig. 1 are shown in Fig. 7. As we see, by increasing
the order of perturbation theory, the gap magnitudes for values
of U around U = 2� become smaller (see inset of Fig. 7).
However, the present partial fourth-order calculation is not

enough to imply that the quantum critical point at U = 2� is
broadened into a conducting (Dirac) region.

V. DISCUSSIONS AND SUMMARY

We have implemented a strong-coupling expansion based
on formalism proposed by Pairault et al. in Ref. [25] on
honeycomb lattice. We have used this method to study the
semimetal to Mott insulator transition on honeycomb lattice
systems such as graphene and silicene. We have also used
the ionic Hubbard model to study the competition between the
ionic potential (mass term) and the Hubbard U .

To study the influence of the onsite Coulomb interaction
on honeycomb lattice, we have carried out the perturbative
expansion of the auxiliary fermions around the atomic limit
up to order (t/U )2 and have analytically calculated the single-
particle gap of the half-filled Hubbard model as function of U .
The behavior of a closed-form function F(ω) particularly at
ω = 0 contains a great deal of dynamical information about the
possible interaction-induced gaps as well as about the Dirac
nature of charge carriers on the honeycomb lattice. With this
approach we find that the Mott transition for the Hubbard
model on the honeycomb lattice occurs at 2.38t . Although
within the other various methods cited in Sec. I, it seems that
the critical value for Mott transition is above 3, but since the
present method is based on the strong-coupling expansion, it is
natural for this method to emphasize the Mottness, unless one
is able to perform the perturbation up to infinite order, which
is not feasible.

In the second part of this paper we have studied the
half-filled ionic Hubbard model on honeycomb lattice by
strong-coupling perturbation theory up to fourth order in terms
of the hopping amplitude t . We have found the limits U < 2�

and U > 2� are gapped states corresponding to band and
Mott insulating phases, respectively. In the interaction strength
U = 2�, owing to interplay between ionic potential and
interaction, a semimetallic phase is restored. This agrees with
earlier studies [31,32]. It is interesting that the present result
has been extracted within lowest-, second-, and fourth-order
diagrams in terms of the behavior of function F1, particularly
around ω = 0. The detailed functional form of this function
depends on the particular order of the auxiliary fermion
perturbation theory.

This study can be directly relevant to recent graphene/SiC
where a gap of 0.5 eV has been found [3]. In this case, the
gap of 0.5 eV is jointly determined by a single-particle gap
parameter � and the many-particle (Mott) gap parameter U .

The present strong-coupling scheme seems to give reason-
able results about the nature of the gap in the spectrum of
excitation. The method seems to be capable of an unbiased
estimate of the excitation spectrum in strongly correlated
systems.
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FIG. 9. DOS of the half-filled ionic Hubbard model on honey-
comb lattice for U = 6, � = 2, and T = 0 up to order t2 obtained
from (a) Eq. (A1) for η = 10−4 and (b) Eq. (A6).

APPENDIX A: EXACT EXPRESSION FOR DOS
ON HONEYCOMB LATTICE

We are going to represent the DOS of arbitrary complex
frequency ξ on honeycomb lattice. According to Ref. [40], the
DOS for tight-binding model on the honeycomb lattice can be
expressed as

ρ = − 1

π

∑
k

Im Tr G(ξ,k)

= − 1

π
Im

[
2 ξ Gξ

(
1

2
(ξ 2 − 3); 0,0

)]
, (A1)

where

Gξ (ξ ; 0,0) = 1

2π
g K̃(k) (A2)

is the local Green’s function evaluated at general complex
argument ξ , and g, k, and K̃(k) are given as follows:

g = 2

[(2ξ + 3)1/2 − 1]3/2[(2ξ + 3)1/2 − 1]1/2
, (A3)

k = 4(2ξ + 3)1/4

[(2ξ + 3)1/2 − 1]3/2[(2ξ + 3)1/2 − 1]1/2
, (A4)

K̃(k) =

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

K(k), Imξ > 0 and Imk < 0
or Imξ < 0 and Imk > 0,

K(k) + 2iK ′(k), Imξ > 0 and Imk > 0,

K(k) − 2iK ′(k), Imξ < 0 and Imk < 0,

(A5)

where K(k) and K ′(k) are the complete elliptic integral of the
first kind and the complete elliptic integral of the first kind
with complementary modulus of k, respectively.

The above formula is quite general. However, in the
η → 0 limit it turns out that when ξ = F(ω + iη), DOS (A1)
reduces to

ρ(ω) = |F(ω)|
π2

1√
Z0

K

(√
Z1

Z0

)
, (A6)

where Z0 and Z1 are those introduced in Eqs. (14) and (15),
albeit substitute ω with F(ω). If we assume ξ in Eq. (A1)
has infinitesimal imaginary part, ω + i0+, the resulting DOS
will be DOS of graphene. Also, DOS for the ionic Hubbard
model on honeycomb lattice for U = 6, � = 2, and T = 0
obtained from Eqs. (A1) and (A6) are shown on Figs. 9(a) and
9(b), respectively. As we can see, the two DOS well coincide,
demonstrating that the above representation works well for
situations where F is purely imaginary or purely real.

APPENDIX B: DUAL FERMION SELF-ENERGIES IN IONIC HUBBARD MODEL

This appendix gives the calculated self-energies of auxiliary fermions in second and fourth order.

1. Second order

Introducing the definitions

Z(A) = 1 + 2eβ(u−�) + e−2β�, nF (x) = 1

eβx + 1
, nB(x) = 1

eβx − 1
, (B1)

the self-energy of the second-order diagram of Fig. 1 on sublattice A (
(A)
2 ) at arbitrary temperature 1/β reads as



(A)
2 (iω) = −1.15 t2 (2n(A) − 1) nF (� + u)

(iω − �)2 − u2

(
1 − n(B)

� + u
+ n(B)

�

)

+2.3 t2 (2n(A) − 1) nB(2�)

(iω − �)2 − u2

(
1 − n(B)

iω − 3� − u
+ n(B)

iω − 3� + u

)

− 1.15 t2

(iω − �)2 − u2

(
βu2n(A)(1 − n(A)) + βu2

(Z(A))2
(e−2β� − e2β(u−�)) + u(1 − n(A))

)

×
{

(1 − n(B))

(
nF (� + u)

u(� + u)
+ nF (−� − u)

�(� + u)
− nF (� − u)

�u

)
+ n(B)

(
nF (� + u)

�u
− nF (� − u)

u(� − u)
− nF (−� + u)

�(−� + u)

)}

075122-9



ELAHEH ADIBI AND S. AKBAR JAFARI PHYSICAL REVIEW B 93, 075122 (2016)

+2.3 t2 u (1 − n(A))

(iω − �)2 − u2

{
(1 − n(B))

(
nF (−� − u) − nF (� − u)

4�2
+ −β nF (� − u) + β [nF (� − u)]2

2�

)

+n(B)

(
nF (−� + u) − nF (� − u)

4(� − u)2
+ −β nF (� − u) + β [nF (� − u)]2

2(� − u)

)}

+1.15 t2 ((iω − �)(2n(A) − 1) + u)
(iω − �)2 − u2

{
(1 − n(B))

×
(

nF (−� − u) − nF (� + u)

4(� + u)2
+ −β nF (� + u) + β [nF (� + u)]2

2(� + u)

)

+n(B)

(
nF (−� + u) − nF (� + u)

4�2
+ −β nF (� + u) + β [nF (� + u)]2

2�

)}

+ 4.6 t2 u2

[(iω − �)2 − u2]2

(
1 − n(B)

iω + � + u
+ n(B)

iω + � − u

) (
n(A)(1 − n(A)) + eβ(u−�)

Z(A)

)

+1.15 t2 u

(
(1 − n(A))

2 (iω − � + u)2
+ 1

4 (iω − � − u)2

)

×
{

(1 − n(B))

(
nF (� + u)

u(� + u)
+ nF (−� − u)

�(� + u)
− nF (� − u)

�u

)
+ n(B)

(
nF (� + u)

�u
− nF (� − u)

u(� − u)
− nF (−� + u)

�(−� + u)

)}

+1.15 t2 (2n(A) − 1)

4 (iω − � − u)2

{
(1 − n(B))

(
nF (� − u)

�
+ nF (� + u)

� + u
− (2� + u) nF (−� − u)

�(� + u)

)

+n(B)

(
nF (� − u)

� − u
+ nF (� + u)

�
+ (2� − u) nF (−� + u)

�(−� + u)

)}

−1.15 t2 (2n(A) − 1)

(iω − � − u)2

{
(1 − n(B))(nF (−� − u) + nB(2�))

iω − 3� − u
+ n(B)(nF (−� + u) + nB(2�))

iω − 3� + u

}

−1.15 t2 (2n(A) − 1)

(iω − � + u)2

{
nB(2�)

(
1 − n(B)

iω − 3� − u
+ n(B)

iω − 3� + u

)

−nF (� + u)

(
n(B)(iω + � + u)

4�2
+ (1 − n(B))(iω + � + 3u)

4(� + u)2

)}

+1.15 t2 (2n(A) − 1)

2 (iω − � + u)
(β nF (� + u) − β [nF (� + u)]2)

(
1 − n(B)

� + u
+ n(B)

�

)

−1.15 t2 (2n(A) − 1) n(B) nF (−� + u)

iω − 3� + u

(
1

4�2
− 1

� (iω − � − u)

)

−1.15 t2 (2n(A) − 1) (1 − n(B)) nF (−� − u)

iω − 3� − u

(
1

4(� + u)2
− 1

(� + u) (iω − � − u)

)
, (B2)

where u = U/2 and n(A), n(B) are given in Eq. (24). By flipping the sign of � in the self-energy 

(A)
2 of sublattice A, one

can obtain the self-energy of auxiliary fermions on sublattice B in given order (
(B)
2 ). Taking the zero-temperature limit, the

second-order self-energy of auxiliary fermions on sublattices A and B is simplified to



(A)
2 (iω̃) =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

1.15t̃2

�

[ −ũ2

2(ũ2−1)2[(iω̃−1)2−ũ2] + 3ũ2(iω̃+1)
[(iω̃−1)2−ũ2]2[(iω̃+1)2−ũ2] + 1

4(ũ2−1)

(
1

(iω̃+ũ−1) + 1
(iω̃−ũ−1)

)2]
, ũ > 1

∞, ũ = 1

1.15t̃2

�

[
ũ

[(iω̃−1)2−ũ2]

(
1

2(1−ũ)2 − 1
(1−ũ)

) − 1
4(iω̃+ũ−1) + 1

2(1−ũ)

(
1

(iω̃−ũ−1)2 + ũ
(iω̃+ũ−1)2

)
+ 1

(iω̃+ũ−3)

(
1

(iω̃−ũ−1) − 1
2

)2]
, ũ < 1

(B3)
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and



(B)
2 (iω̃) =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

1.15t̃2

�

[
ũ2

2(ũ2−1)2[(iω̃+1)2−ũ2] + 3ũ2(iω̃−1)
[(iω̃+1)2−ũ2]2[(iω̃−1)2−ũ2] − 1

4(ũ2−1)

(
1

(iω̃+ũ+1) + 1
(iω̃−ũ+1)

)2]
, ũ > 1

∞, ũ = 1

1.15t̃2

�

[ −1
(ũ−1)[(iω̃+1)2−ũ2] − 1

4(ũ−1)2(iω̃−ũ+1) + 1
2(ũ−1)[iω̃−ũ+1]2 + (iω̃+3ũ−1)

4(ũ+1)2(iω̃+ũ+1)2

+ 1
(iω̃−ũ+3)

(
1

(iω̃−ũ+1) − 1
(iω̃+ũ+1)

)2]
, ũ < 1

(B4)

where we have used dimensionless quantities t̃ = t
�

, ω̃ = ω
�

, and ũ = u
�

. It is interesting to note that the above expressions have
an overall scale t̃2/� multiplied by a function of ω/� and u/�. This scaling functional form continues to higher order as we
see in the next subsection.

2. Fourth order

We have undertaken the cumbersome task of calculation of two of the fourth-order diagrams discussed in the text. The
arbitrary temperature expression for the fourth-order contributions is huge. Therefore, in this appendix we only report their
zero-temperature limit. The zero-temperature limit of self-energies of auxiliary fermions on sublattices A/B corresponding
to diagrams 8(a) (
(A/B)

4(a) ) and 8(b) (
(A/B)
4(b) ) are separately calculated in two regions u > �(ũ > 1) and u < �(ũ < 1). This

separation naturally arises when we take the zero-temperature limit.
In the ũ > 1 limit, the self-energies are given by



(A)
4(a)(iω̃) = t̃4

�

[
3ũ2

8[(iω̃ − 1)2 − ũ2]2

(
1

iω̃ + ũ + 1
+ 1

iω̃ − ũ + 1

)2( 1

iω̃ + ũ − 1
+ 1

iω̃ − ũ − 1

)

+ ũ

8

(
1

(iω̃ + ũ − 1)2
+ 1

(iω̃ − ũ − 1)2

)(
(ũ + 1)2 + 1

8ũ(ũ + 1)3
− ũ + 2

8(ũ + 1)2
+ 1

8ũ2(1 − ũ)3
+ ũ − 1

8ũ2

)
+ ũ

8[(iω̃−1)2−ũ2]

×
(

− ũ + 2

8ũ(ũ + 1)2
+ ũ − 2

8ũ(ũ − 1)2
+ 5ũ − 2

16ũ(ũ − 1)4
+ 2ũ2 + 7ũ + 3

16(ũ + 1)3
+ 2 − ũ

16ũ(ũ + 1)4
+ 2ũ2 − 3ũ + 7

16(1 − ũ)3

)]
, (B5)



(B)
4(a)(iω̃) = t̃4

�

[
3ũ2

8[(iω̃ + 1)2 − ũ]2

(
1

iω̃ + ũ − 1
+ 1

iω̃ − ũ − 1

)2( 1

iω̃ + ũ + 1
+ 1

iω̃ − ũ + 1

)

+ ũ

8

(
1

(iω̃ + ũ + 1)2
+ 1

(iω̃ − ũ + 1)2

)(
(ũ − 1)2 + 1

8ũ(ũ − 1)3
+ ũ − 2

8(ũ − 1)2
+ 1

8ũ2(ũ + 1)3
− ũ + 1

8ũ2

)

+ ũ

8[(iω̃ + 1)2 − ũ2]

(
2 − ũ

8ũ(ũ− 1)2
+ ũ+ 2

8ũ(ũ+ 1)2
+ 5ũ + 2

16ũ(ũ+ 1)4
− 2ũ2 − 7ũ + 3

16(ũ − 1)3
− ũ + 2

16ũ(ũ− 1)4
+ 2ũ2 + 3ũ + 7

16(ũ + 1)3

)]
,

(B6)



(A)
4(b)(iω̃) = (1.15)2 t̃4

�

[
− 9 ũ4

4[(iω̃ − 1)2 − ũ2]2 [(iω̃ + 1)2 − ũ2]2

(
1

iω̃ + ũ − 1
+ 1

iω̃ − ũ − 1

)

+ ũ2

8(ũ2 − 1) [(iω̃ − 1)2 − ũ2]2

(
1

iω̃ + ũ + 1
− 1

iω̃ − ũ + 1

)2

− ũ4

4 (ũ2 − 1)2 [(iω̃ − 1)2 − ũ2]2 [(iω̃ + 1)2 − ũ2]

− (4ũ3 − 3ũ2 − 2ũ + 1)

64 (ũ2 − 1)2 (ũ − 1)2

(
1

iω̃ + ũ − 1
− 1

iω̃ − ũ − 1

)2

+ 3

128

(
ũ3 + 4ũ2 + 6ũ + 2

(1 + ũ)3
− ũ2(ũ − 2)

(ũ − 1)3

)(
1

(iω̃ + ũ − 1)2
+ 1

(iω̃ − ũ − 1)2

)

+ 1

2[(iω̃ − 1)2 − ũ2]

(
3(3ũ + 2)

128
− 3ũ3(3ũ2 + 4)

128(ũ − 1)4
+ (1 + ũ2)(ũ4 + 2ũ2 − 1)

16(ũ2 − 1)4
+ 3ũ2

32(ũ − 1)2

− 3(ũ4 + 5ũ3 + 10ũ2 + 3ũ)

64(ũ + 1)4

)]
, (B7)
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(B)
4(b)(iω̃) = (1.15)2 t̃4

�

[ −9ũ4

4[(iω̃ + 1)2 − ũ2]2[(iω̃ − 1)2 − ũ2]2

(
1

iω̃ + ũ + 1
+ 1

iω̃ − ũ + 1

)

+ ũ2

8(1 − ũ2)[(iω̃ + 1)2 − ũ2]2

(
1

iω̃ + ũ − 1
− 1

iω̃ − ũ − 1

)2

+ ũ4

4(ũ2 − 1)2[(iω̃2 + 1)2 − ũ2]2[(iω̃ − 1)2 − ũ2]
− (4ũ3 + 3ũ2 − 2ũ − 1)

64(1 + ũ)2(ũ2 − 1)2

(
1

iω̃ + ω̃ + 1
− 1

iω̃ − ũ + 1

)2

+ 3

128

(
ũ2(ũ + 2)

(ũ + 1)3
− ũ3 − 4ũ2 + 6ũ − 2

(ũ − 1)3

)(
1

(iω̃ − ũ + 1)2
+ 1

(iω̃ + ũ + 1)2

)

− 1

2[(iω + 1)2 − ũ2]

(−3(3ũ − 2)

128
+ 3ũ3(3ũ2 + 4)

128(ũ + 1)4
+ (ũ2 + 1)(ũ4 + 2ũ2 + 1)

16(ũ2 − 1)4
+ 3ũ2

32(ũ + 1)2

− 3(ũ4 − 5ũ3 + 10ũ2 − 3ũ)

64(ũ − 1)4

)]
. (B8)

In the ũ < 1, the self-energies are expressed as



(A)
4(a)(iω̃) = −t̃4

�

[
1

(iω̃ − ũ − 1)2

(
1

2(ũ − 1)(iω̃ + ũ − 3)2
+ 1

4(ũ − 1)2(iω̃ + ũ − 3)
+ 1

16(ũ − 1)
+ (ũ − 3)(ũ + 1)

16(ũ − 1)3

)

− 2

(iω̃ − ũ− 1)(iω̃ + ũ− 3)

(
1

4(ũ − 1)(iω̃ + ũ− 3)
− ũ − 2

8(ũ − 1)2

)
+ ũ

[(iω̃ − 1)2 − ũ2]

(
3

8(ũ − 1)4
+ 4(3 − ũ)

16(ũ − 1)3

)

+ 2ũ(ũ − 3)

16(ũ − 1)3(iω̃ + ũ − 1)2
+ 2ũ − 3

16(ũ − 1)2(iω̃ + ũ − 1)
+ 3 − 2ũ

16(ũ − 1)2(iω̃ + ũ − 3)
+ 1

8(ũ − 1)(iω̃ + ũ − 3)2

]
,

(B9)



(B)
4(a) = −t̃4

�

[
1

(iω̃ + ũ + 1)

( −1

(iω̃ − ũ + 1)2(iω̃ − ũ + 3)2
+ 1

4(ũ − 1)2(iω̃ − ũ + 1)2
− 1

(iω̃ + ũ + 1)2(iω̃ − ũ + 3)2

+ 1

4(ũ − 1)2(iω̃ + ũ + 1)2
+ 3

16(ũ − 1)4

)

+ 1

iω̃ − ũ + 1

(
2

(iω̃ + ũ + 1)2(iω̃ − ũ + 3)2
− 1

2(ũ − 1)2(iω̃ + ũ + 1)2
− 1

2(ũ − 1)3(iω̃ + ũ + 1)
− 3

16(ũ − 1)4

)

+ 1

8(ũ − 1)2(iω̃ − ũ + 1)2

]
, (B10)



(A)
4(b)(iω̃) = (1.15)2 t̃4

�

[
1

(iω̃ − ũ − 1)2

[
1

8(iω̃ − ũ − 5)

(
1 + 1

ũ − 1

)2

+ (1 + ũ)2 − 3(ũ2 − 1)

16ũ(ũ − 1)(iω̃ + ũ − 3)
− 3ũ − 2

4ũ(ũ − 1)2(iω̃ − ũ − 3)

− 1

4ũ(iω̃ + ũ − 1)
− 1

4(iω̃ + ũ − 3)2
+ 1

2(ũ − 1)(iω̃ − ũ − 3)2

]

+ 1

(iω̃ − ũ − 1)

(
2ũ − 1

2ũ(ũ2 − 1)2(iω̃ − ũ − 3)
+ ũ − 2

4ũ(ũ − 1)(iω̃ + ũ − 3)
+ 2 − ũ2

16(ũ − 1)2(iω̃ + ũ − 5)

− 1

2(ũ2 − 1)(iω̃ − ũ − 3)2
+ 1

8(iω̃ + ũ − 3)2

)

+ 1

128(iω̃ + ũ − 5)

(
1 + 1

ũ − 1

)2

+ ũ + (ũ − 2)2

32ũ(ũ − 1)(iω̃ + ũ − 3)
− (ũ − 1)2 + ũ + 1

16ũ(1 + ũ)(ũ2 − 1)2(iω̃ − ũ − 3)

− 1

16(iω̃ + ũ − 3)2

1

8(ũ − 1)(1 + ũ)2(iω̃ − ũ − 3)2

+ ũ

[(iω̃ − 1)2 − ũ2]

(
(ũ − 1)3 + 2ũ

4ũ(ũ2 − 1)2
+ ũ + (ũ − 1)2

16(ũ − 1)(ũ − 2)2
+ 1

4ũ(1 − ũ)
+ 2ũ2 − 3ũ + 1

16(ũ − 1)4
+ 1 − 4ũ

16(ũ − 1)2

)

+ 1

(iω̃ + ũ − 1)

( −9

128
− 1

128(ũ − 1)2
+ 1

8(ũ − 1)(1 + ũ)3
+ 3ũ − 4

128ũ(ũ − 1)
− (ũ + 1)2 + (ũ − 1)(ũ + 2)

32(ũ2 − 1)2

)
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+ 1

32(iω − ũ − 1)2

(
(ũ + 1)(ũ − 3)

(ũ − 1)3
+ 5

(2 − ũ)(ũ − 1)
+ 2ũ − 1

ũ(2 − ũ)
+ −2ũ2 + ũ − 1

ũ(ũ − 1)2

)

+ ũ

(iω + ũ − 1)2

(
ũ + (ũ − 1)2

32(ũ − 1)2(2 − ũ)
+ −ũ3 − 3ũ2 + ũ + 1

8ũ(ũ2 − 1)2
+ ũ − 2

8(ũ − 1)3

)]
, (B11)



(B)
4(b) = (1.15)2 t̃4

�

[
1

2(iω̃ − ũ + 1)2

(
1

(iω̃ − ũ + 5)(iω̃ + ũ + 3)2
+ 1

4(iω̃ − ũ + 5)
+ 1

(iω̃ + ũ + 3)(iω̃ − ũ + 5)

+ (ũ − 1)3 − 2ũ3

4(ũ − 1)2[(iω̃ + 3)2 − ũ2]
+ 1

2(ũ − 1)(iω̃ + ũ + 3)2
− iω̃ + 2

4[(iω̃ + 3)2 − ũ2]
− 1

2(ũ − 2)
+ 3

8(ũ − 1)2
+ 1 + ũ

16ũ

)

+ 1

(iω̃ − ũ + 1)

( −1

(iω̃ + ũ + 1)(iω̃ − ũ + 5)(iω̃ + ũ + 3)2
+ 1

2(ũ − 2)(iω̃ + ũ + 1)
− 1

4(iω̃ + ũ + 1)(iω̃ − ũ + 5)

− 1

(iω̃ + ũ + 1)(iω̃ + ũ + 3)(iω̃ − ũ + 5)
+ ũ − 3

16(ũ − 1)(iω̃ + ũ + 1)
− 1

2(ũ − 1)(iω̃ + ũ + 1)(iω̃ + ũ + 3)2

+ iω̃ + 2

4(iω̃ + ũ + 1)[(iω̃ + 3)2 − ũ2]
+ 2ũ3 + (1 − ũ)3

4(ũ − 1)2(iω̃ + ũ + 1)[(iω̃ + 3)2 − ũ2]
− 2ũ3 + (1 − ũ)3

16(ũ − 1)3(iω̃ + ũ + 1)

+ ũ − 3

4(ũ − 2)2
+ 7ũ − 5

64(ũ − 1)2
− ũ(ũ + 2)

32(ũ − 1)4

)

+ 1

2(iω̃ + ũ + 1)2

(
1

(iω̃ − ũ + 5)(iω̃ + ũ + 3)
+ 1

4(iω̃ − ũ + 5)
+ 2ũ3 − (ũ − 1)3

4(ũ − 1)2[(iω̃ + 3)2 − ũ2]
− 1

4(iω̃ + ũ + 3)2

× 1

2(ũ − 1)(iω̃ + ũ + 3)2
− (iω̃ + 2)

4[(iω̃ + 3)2 − ũ2]
− 1

2(ũ − 2)
+ 2 − ũ

8(ũ − 1)
+ ũ3

4(ũ − 1)3

)

+ 1

(iω̃ + ũ + 1)

(
ũ − 3

32(ũ − 1)
+ ũ − 3

8(ũ − 2)2
− ũ3(ũ − 2)

32(ũ − 1)4

)]
, (B12)

where, as before, t̃ = t
�

, ω̃ = ω
�

, and ũ = u
�

.
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