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Some degree of quenched disorder is present in nearly all solids, and can have a marked impact on their
macroscopic properties. A manifestation of this effect is the Lifshitz tail of localized states that then gets attached
to the energy spectrum, resulting in the nonzero density of states in the band gap. We present here a systematic
approach for deriving the asymptotic behavior of the density of states and of the typical shape of the disorder
potentials in the Lifshitz tail. The analysis is carried out first for the well-controlled case of noninteracting particles
moving in a Gaussian random potential and then for a broad class of disordered scale-invariant models—pertinent
to a variety of systems ranging from semiconductors to semimetals to quantum critical systems. For relevant
Gaussian disorder, we obtain the general expression for the density of states deep in the tail, with the rate of
exponential suppression governed by the dynamical exponent and spatial dimensions. For marginally relevant
disorder, however, we would expect a power-law scaling. We discuss the implications of these results for
understanding conduction in disordered materials.
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I. INTRODUCTION

In forming solids, it is practically impossible to avoid
quenched disorder such as lattice vacancies or quenched
impurities. These microscopic imperfections effectively act as
randomly frozen degrees of freedom, which often measurably
affects the macroscopic properties of solids. A dramatic
example of such an effect is provided by Anderson local-
ization, where quenched disorder traps quasiparticles and
consequently turns a conducting metal into an insulating Fermi
glass [1–4]. Although the resulting material is insulating at
sufficiently low temperatures, the temperature dependence of
its direct current conductivity σ (T ) can be very different from
that of an intrinsic insulator. When the chemical potential lies
within the band gap of a very pure insulator with band gap
energy Eg, we naively expect

σ (T ) ∼ σ0exp

(
− Eg

2kBT

)
, (1)

mediated by rarely activated conduction quasiparticles [5].
By contrast, for sufficiently disordered materials, we expect
Mott’s law [6],

σ (T ) ∼ σ0exp

{
−

(
E0

kBT

)1/(d+1)
}

, (2)

to hold in spatial dimension d [7]. After accepting a few
physically reasonable assumptions and neglecting the role of
interactions, the estimation of the direct current conductivity
can indeed be mapped to a percolation problem [8]. In this
picture, conduction is mediated by variable-range hopping
of localized quasiparticles that exist in the band gap due to
deep disorder potential wells that trap them there. This tail of
localized quasiparticles in the energy spectrum is known as
the Lifshitz tail [9], and its characterization is the main object
of the present paper.

*sho.yaida@duke.edu

Various methods for obtaining an asymptotic expression
of the Lifshitz tail exist. Building on the work of Halperin
and Lax [10], Zittartz and Langer [11] obtained an asymptotic
expression for the density of states deep in the tail of the
band,

ρ(E) ≈ A(E)e−B(E), (3)

for noninteracting quasiparticles moving in a random potential
(see also Ref. [12]). Cardy derived the same result through the
replica trick [13] and a supersymmetry-based derivation also
exists [14,15]. All these techniques and results, however, are
confined to the noninteracting regime. As usual, once interac-
tions are included our theoretical machinery and understanding
remain rather primitive, especially for strongly correlated
systems. Because localized states deep in the Lifshitz tail
constitute the basis from which to understand conduction in
disordered materials, a method that is applicable for a class
of systems broader than a collection of simple noninteracting
systems would be desirable.

In order to go beyond the noninteracting regime, we
develop a systematic approach that enables us to analyze
the effect of quenched disorder deep in the Lifshitz tail.
The plan for the rest of this paper is as follows. In Sec. II
we first take the well-understood case of noninteracting
particles governed by the standard Schrödinger equation and
present the disorder saddle method, emphasizing that this
approach is more generically applicable than supersymmetric
and replica methods (reviewed in Appendix B). In particular, in
Sec. III we use the disorder saddle approach to study a broad
class of noninteracting and interacting systems whose low-
energy excitations are governed by scale-invariant theories.
We then derive the form of the Lifshitz tail induced by
relevant Gaussian disorder, which generalizes the result for
noninteracting systems to a host of quantum critical materials.
In Sec. IV, we conclude with a brief discussion of irrelevant
and marginally relevant disorder, and the general implications
of our results for understanding conduction in disordered
materials.
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II. DISORDER SADDLE APPROACH

Let us consider a system of noninteracting quasiparticles
in spatial dimensions d < 4, governed by the Schrödinger
equation,

− �
2

2m
∇2ψV

n (x) + V (x)ψV
n (x) = EV

n ψV
n (x), (4)

with a Gaussian random potential V (x). Intensive observables,
when scanned over a macroscopic sample, typically self-
average [16]. In particular we can then legitimately estimate
the disorder-averaged density of states as

[ρ(E)]d.a. = 1

Nγ

∫
[DV ]e− 1

2γ

∫
dxV 2(x)

ρV (E), (5)

where

ρV (E) = 1

Vd

∑
n

δ
(
E − EV

n

)
. (6)

Here,Nγ ≡ ∫
[DV ]e− 1

2γ

∫
dxV 2(x) is the normalization constant

and γ characterizes the strength of the disorder. We are
interested in the asymptotic behavior of [ρ(E)]d.a. in the limit
of large negative E.

In the following we present a simple derivation that focuses
on disorder saddles, building upon classic work by Lifshitz,
Halperin, Lax, Zittartz, and Langer [9–12,18]. Namely we
evaluate the disorder integral through the saddle-point approx-
imation, seeking a localizing disorder saddle which minimizes
the cost 1

2γ

∫
dxV 2(x) with the constraint that it holds an eigen-

function with the negative eigenenergy E. In order to ensure
that the saddle point is the absolute minimum of the cost, the
corresponding eigenfunction must have the lowest energy. To
see this, let us suppose that there exists an eigenfunction ψ̃(x)
with lower energy Ẽ < E < 0. Then, setting s ≡

√
E/Ẽ < 1,

we would be able to lower the cost by replacing V (x) with
s2V (sx), which holds ψ̃(sx) as an eigenfunction with energy
E. Note that for d � 4 a square-integrable potential always has
a unique normalizable ground state [20]. We henceforth seek a
normalized ground-state wave function, which we further set
to be real without loss of generality.

To solve the constrained minimization problem at hand,
we introduce a Lagrange multiplier field λ(x) and a Lagrange
multiplier μ0. The problem then becomes equivalent to the
minimization of the cost action,

I [V (x),ψ(x),λ(x),μ0]

≡ + 1

2γ

∫
dxV 2(x)

− 1

γ

∫
dxλ(x)

{
E + �

2

2m
∇2 − V (x)

}
ψ(x)

+μ0

{∫
dxψ2(x) − 1

}
. (7)

Extremizing it yields

V (x) = −λ(x)ψ(x), (8)

− �
2

2m
∇2ψ(x) + V (x)ψ(x) = Eψ(x), (9)

∫
dxψ2(x) = 1, μ0 = 0, and

− �
2

2m
∇2λ(x) + V (x)λ(x) = Eλ(x). (10)

The last equality (10), combined with the uniqueness of the
ground state, dictates that λ(x) = λ0ψ(x) with a constant λ0.
Consequently, Eq. (8) tells us that V (x) = −λ0ψ

2(x) and the
Schrödinger equation (9) morphs into the instanton problem
with a single real scalar field,

− �
2

2m
∇2ψ(x) − λ0ψ

3(x) = Eψ(x). (11)

From the study of the instanton problem, for d < 4, we
know that this equation has spherically symmetric solutions
which minimize the action among all the nontrivial stationary
points [21]. We thus have the cost minimizing solutions,

V�(x) = Ef 2

(√
−2mE

�2
|x − x0|

)
, (12)

ψ�(x) =
√

−E

λ0
f

(√
−2mE

�2
|x − x0|

)
, (13)

where f (r̃) satisfies

d2f

dr̃2
+ d − 1

r̃

df

dr̃
− f + f 3 = 0, (14)

with the regularity condition df

dr̃
|
r̃=0

= 0 and the normalizabil-
ity condition limr̃→∞ f (r̃) = 0. The normalization condition

on ψ� fixes λ0 = cλ(−E)1− d
2 ( 2m

�2 )
− d

2 with

cλ = 2π
d
2



(

d
2

) ∫ ∞

0
dr̃r̃d−1f 2. (15)

Finally, evaluating the cost action for these solutions yields the
leading exponential factor,

[ρ(E)]d.a. ∼ exp

{
− ad

g(E)

}
, (16)

with the dimensionless number,

ad = π
d
2



(

d
2

) ∫ ∞

0
dr̃r̃d−1f 4, (17)

and the dimensionless coupling,

g(E) = γ (−E)
d
2 −2

(
2m

�2

) d
2

. (18)

We can further obtain the subleading prefactor through the
fluctuation analysis (Appendix A). The result is that

[ρ(E)]d.a. ≈ A(E)e− ad
g(E) (19)

with the prefactor,

A(E) = c

(
2m

�2

) d
2

(−E)
d
2 −1{g(E)}− (d+1)

2 , (20)

where c is another dimensionless constant. This expres-
sion is asymptotically valid for d < 4 in the regime E �
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−γ
2

4−d ( 2m
�2 )

d
4−d where the disorder coupling g(E) is small, akin

to the dilute instanton gas limit.
The same result can also be derived through supersymmet-

ric and replica methods (Appendix B). The above derivation
clearly shows that the saddle point appearing in these two
methods corresponds to the most likely form of a localized
wave function of large negative energy E, dilutely distributed;
the disorder saddle depicts the shape of the associated trapping
potential. As we shall see next, the approach taken here
generalizes to a broad class of systems where supersymmetric
and replica methods are not readily applicable.

III. DISORDERED SCALE-INVARIANT MODELS

The noninteracting model considered above, relevant in
the vicinity of a band edge for conventional semiconductors,
is a special case of scale-invariant models. Other examples
of scale-invariant models include noninteracting models with
more general scaling relation E ∝ |k|z, as in semimetals,
and interacting models in the vicinity of quantum critical
points [25]. Taking the disorder saddle approach laid out in
the last section, we compute the Lifshtiz tails for disordered
scale-invariant models.

A clean scale-invariant model possesses a dilatation op-
erator D̂ along with a time-translation operator Ĥ0 and
space-translation operators P̂i for i = 1,...,d. These operators
obey commutation relations,

[Ĥ0,P̂i] = 0, [P̂i ,P̂j ] = 0, [D̂,P̂i] = iP̂i , (21)

and

[D̂,Ĥ0] = izĤ0, (22)

where z is a dynamical exponent. We suppose that the model
has a conserved current with a local density operator Ĵ t (x) =
e−iP̂·xĴ t (0)e+iP̂·x obeying [Ĵ t (x),Ĵ t (y)] = 0 and

[D̂,Ĵ t (0)] = idĴ t (0). (23)

A number operator Q̂ ≡ ∫
dxĴ t (x) in particular satisfies

[Ĥ0,Q̂] = [D̂,Q̂] = 0. We also suppose that there is a local
operator Ô†

pro(x) = e−iP̂·xÔ†
pro(0)e+iP̂·x with scaling dimension

�pro and unit, minimal, number qunit. In other words,

[D̂,Ô†
pro(0)] = i�proÔ†

pro(0), (24)

and

[Q̂,Ô†
pro(0)] = qunitÔ†

pro(0). (25)

We set � = 1 and qunit ≡ 1 henceforth.
Let us now sprinkle impurities into the clean system,

deforming the Hamiltonian to

ĤV = Ĥ0 +
∫

dxV (x)Ĵ t (x), (26)

where for now we suppose that a random potential V (x)
again obeys Gaussian statistics. We probe this dirty system by
injecting a unit-number excitation through Ô†

pro and observing
how it propagates. Specifically we look at a local density of
states defined via

ρV

Ô†
pro

(E,x) ≡ − 1

π
Im

{
GV

Ô†
pro

(x,x; E)
}
, (27)

where

GV

Ô†
pro

(x,y; E) ≡ −i

∫
dteiEt θ (t)

× V 〈0; 0|ÔV
pro(t,x)ÔV †

pro (0,y)|0; 0〉V , (28)

with ÔV †
pro (t,x) ≡ e+iĤV tÔ†

pro(x)e−iĤV t [26]. Here, |0; 0〉V de-
notes a state of the lowest energy among states with zero total
number. In general we label eigenstates as

Q̂|Q; n〉V = Q|Q; n〉V , (29)

and

ĤV |Q; n〉V = EV
Q;n|Q; n〉V (30)

for each realization of V (x). The density of states defined
above generalizes the standard definition for noninteracting
systems and in general admits the spectral representation
[27],∑

n

|V 〈1; n|Ô†
pro(x)|0; 0〉V |2δ(E − EV

1;n + EV
0;0

)
. (31)

Contributions for negative energy E, if any, come from
bound states with EV

1;n − EV
0;0 = E < 0 and a nonzero overlap

V 〈1; n|Ô†
pro(x)|0; 0〉V �= 0. When disorder-averaged, they give

rise to a smooth Lifshitz tail. We are interested in the
asymptotic behavior of [ρÔ†

pro
(E)]

d.a.
in the limit of large

negative energy E, which we obtain through the disorder
saddle approach.

At this point we make two hypotheses, both of which can
be rigorously established for a noninteracting scale-invariant
theory with z = 2 considered in the last section. First we
assume that for any square-integrable potential V (x) �= 0,
when d � 2z, there exists a state of the lowest energy EV

1;0

among states with a unit number excited by Ô†
pro (and similarly

the existence of the vacuum state |0; 0〉V ). Then, as emphasized
in the last section, the game is to seek a localizing potential
saddle which minimizes the cost

∫
dxV 2(x) while still holding

a bound state with EV
1;0 − EV

0;0 = E for a fixed negative
energy E. Generically we expect that the competition between
the cost, preferring narrower and shallower potential wells,
and the demand for trapping a bound state with a large
negative energy, preferring broader and deeper wells, settles
into such minimizers. Hence we expect the following, second,
hypothesis to hold: There exists a family of square-integrable
potentials V E

� (x) which minimizes the cost among all the
square-integrable potentials with EV

1;0 − EV
0;0 = E for d < 2z.

In the saddle-point approximation,

[ρÔ†
pro

(E)]d.a. ∼ exp

[
− 1

2γ

∫
dx{V E

� (x)}2

]
(32)

then yields the leading exponential factor.
Accepting these two hypotheses, we can obtain the asymp-

totic expression for the density of states in the tail via simple
dimensional analysis. Let us be as pedantic as possible,
however. First we can use commutation relations to show
that

e−iλD̂ĤV e+iλD̂ = ezλĤV (λ) , (33)
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with

V (λ)(x) = e−zλV (e−λx), (34)

from which we deduce that

e−iλD̂|Q; n〉V = |Q; n〉V (λ) (35)

with the scaling relation of the spectra,

EV (λ)

Q;n = e−zλEV
Q;n. (36)

Combined with the scaling relation of the cost,∫
dx{V (λ)(x)}2 = e(d−2z)λ

[∫
dx{V (x)}2

]
, (37)

we conclude that for E(λ) = e−zλE

V E(λ)

� (x) = {V E
� (x)}(λ) = e−zλV E

� (e−λx). (38)

From Eqs. (37) and (38) it then follows that

1

2γ

∫
dx

{
V E

� (x)
}2 = a0

g(E)
, (39)

with the dimensionless constant a0 and the dimensionless
disorder coupling,

g(E) = γ (−E)
d
z
−2. (40)

Thus in the saddle-point approximation,

[ρÔ†
pro

(E)]d.a. ∼ exp

{
− a0

g(E)

}
(41)

for d < 2z, valid in the regime E � −γ
z

2z−d .
We see that the asymptotic scaling of the Lifshitz tail

is dictated by the spatial dimensions and the dynamical
exponent, ordaining the dispersion relation of the low-energy
excitations. The scaling dimension �pro enters only into the
subleading prefactor. Our result conforms with the result for
noninteracting scale-invariant systems with z = 2. It is also in
accord with the Harris criterion [28] which stipulates that the
disorder is relevant for d < 2z. Further insight can be obtained
through the use of a Lagrange multiplier (Appendix C).

In passing we note that the same derivation can be repeated
for non-Gaussian disorder distributions, for example, those
governed by the cost functional of the form,

1

2γ

∫
dx|V (x)|p, (42)

as long as we restrict ourselves to the square-integrable
potentials. Such a disorder is relevant for d < pz.

We also point out limitations of the current approach.
First, it does not provide a systematic way of analyzing
fluctuations around the saddle and thus a prefactor in front
of the exponential is beyond its scope in general. Another
notable restriction is that the method does not apply to the
class of strictly bounded disorders for which there exists no
obvious large negative energy regime. For example, for the
disorder uniformly distributed in bounded interval, our second
hypothesis is not justified as there is no apparent penalty for
creating broad potential wells. Viewing such disorder as the
suitable p = ∞ limit of the above non-Gaussian disorder, the
interesting essential singularity near the band edge [29–31]

sits right at the border of the applicability of the dilute saddle
regime.

IV. CONCLUSION

We have presented the systematic approach for analyzing
observables deep in the Lifshitz tail, focusing on disorder
saddles rather than integrating them out at the onset. This
approach clearly illuminates the physical origin of the Lifshitz
tail, attributing it to rare regions of deep potential wells that
trap and localize wave functions. We have further obtained
the form of Lifshitz tails for general scale-invariant models
deformed by relevant disorder, including conventional semi-
conductors and some quantum critical materials. For marginal
disorder—for example, Gaussian-disordered semimetal such
as graphene with z = 1 in d = 2 dimensions—the answer
depends on whether the disorder is marginally relevant or
marginally irrelevant. For the former, positing the existence of
saddle points in appropriate disorder integrals, the logarithmic
running of the disorder coupling would result in the power-law
behavior of the tails and weakly localized states. It is worth
carrying out detailed analysis of the tail within the disorder
saddle framework for concrete models with marginally rele-
vant disorder. For marginally irrelevant—or, more generally,
irrelevant—disorders, there instead exists no clean ultraviolet
fixed point and thus the form of the Lifshitz tail sensitively
depends on microscopic details of the disorder distribution.
This is indeed what happens in the case of Gaussian-disordered
semimetals with z = 1 in d = 3 dimensions [32] and, more
generally, Gaussian-disordered systems in higher dimensions
d > 2z [33]. Even in such cases, the disorder saddle approach
nonetheless seems to provide a good starting point [32].

More wildly, it would be interesting to seek the generalized
Mott’s law for generic disordered scale-invariant models.
When the disorder is relevant and exponentially localized
states are only dilutely populated, we would expect the
variable-range hopping picture to roughly hold with insulation
at sufficiently low temperature. A systematic derivation of this
picture is nonetheless desirable in order to put the theory of
conduction in disordered materials on the same footing as that
for the Lifshitz tail. It would then be particularly interesting
to ponder how the effect of interaction could possibly halt
the percolation at finite temperature, resulting in many-body
localization.
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APPENDIX A: FLUCTUATION ANALYSIS

To evaluate the subleading prefactor, let us first expand
around each saddle V�(x) as

V − V� =
∞∑
l=0

ξlvl, (A1)

where vl’s are a set of orthonormal functions. We choose

v0 = AEf 2

(√
−2mE

�2
|x − x0|

)
, (A2)

with AE = (2ad )−
1
2 (−E)

d
4 ( 2m

�2 )
d
4 so that all the other modes

will not change the ground-state energy to first order in ξl .
Integration over ξ0, hitting the energy delta function in the
density of states, leaves us with the factor,(√

2πγ
∂E

∂ξ0

)−1

=
(√

2πγ

∫
dxψ2

� v0

)−1

=
⎛
⎝ cλ

2π
1
2 a

1
2
d

⎞
⎠g− 1

2
1

(−E)
, (A3)

where we also took care of the factor coming from Nγ .
Next for i = 1,...,d we choose

vi = AT∂iV�, (A4)

where AT = cT(−E)
d
4 − 3

2 ( 2m
�2 )

d
4 − 1

2 with

cT =
{

8π
d
2

d × 

(

d
2

) ∫ ∞

0
dr̃r̃d−1f 2

(
df

dr̃

)2
}− 1

2

. (A5)

They are d translational zero modes and integration over these
modes should be traded for integration over the collective
coordinates x0, sweeping along the saddle submanifold in
the field space. The Jacobian involved in this coordinate
transformation is A−1

T for each mode as can be seen by
comparing changes in the field induced by (δx0)i and by δξi .
After dividing by the volume Vd and again taking Nγ into
account, we receive

(AT

√
2πγ )−d = g− d

2

(−2mE

�2

) d
2 (

2πc2
T

)− d
2 (A6)

from these modes.
For l � d + 1, we have the ground-state energy shift,

∞∑
l=d+1

∞∑
l′=d+1

ξlξl′
∑

n

〈0|vl|n〉〈n|vl′ |0〉
E

V�

0 − E
V�
n

, (A7)

to second order in ξl’s. We compensate it by setting

ξ0 = − 1

〈0|v0|0〉
∞∑

l=d+1

∞∑
l′=d+1

ξlξl′
∑

n

〈0|vl|n〉〈n|vl′ |0〉
E

V�

0 − E
V�
n

(A8)

so as to keep the ground-state energy intact to this order. The
resulting disorder cost is

1

2γ

∞∑
l=d+1

∞∑
l′=d+1

ξlξl′

(
δl,l′ − 2λ0

∑
n

〈0|vl|n〉〈n|vl′ |0〉
E

V�
n − E

)
. (A9)

Imitating Ref. [11], we proceed by choosing vl = f ul with[
− �

2

2m
∇2 − E + (1 + cl)V�

]
ul = 0. (A10)

(Corresponding to v0 and vi , we have u0 ∝ f and ui ∝ ∂if

with c0 = 0 and ci = 2, respectively.) With this trick we
evaluate the cost to be

1

2γ

∞∑
l=d+1

ξ 2
l

(
1 − 2

cl

)
. (A11)

Performing Gaussian integrals over ξl’s for l � d + 1 and
taking Nγ into account yields their contributions.

All in all we find the prefactor,

A(E) = c

(
2m

�2

) d
2

(−E)
d
2 −1{g(E)}− (d+1)

2 , (A12)

with

c =
⎛
⎝ cλ

2π
1
2 a

1
2
d

⎞
⎠(

2πc2
T

)− d
2

∞∏
l=d+1

(
1 − 2

cl

)− 1
2

. (A13)

Another expression for c is given in Ref. [19].
For d = 1, we get ad = 8

3 , cλ = 4, cT =
√

15
8 , and cl =

l(l+3)
2 , the last of which can be obtained through the use

of Gegenbauer polynomials of order 3
2 [11]. Thus c = 4

π
,

conforming with the exact result obtained by Halperin [34].
For d = 2,3, the product is actually divergent and needs to be
regularized [35].

APPENDIX B: SUPERSYMMETRIC AND REPLICA
METHODS

Here we review the supersymmetric and replica derivations
of Lifshitz tails. Before doing so, let us mention the original
motivation for this study. A decade after the work by Zittartz
and Langer [11], Cardy revisited the Lifshitz tail problem
using the replica trick [13]. An instanton yielded the same
exponential factor e−B(E), but zero-mode counting showed that
the way the prefactor A(E) scales with E is different from
the one presented in Ref. [11]. To confirm our understanding
of these methods, it is important to reconcile the dispute. The
supersymmetric method was brought into this study as a judge.
It turns out that the source of the disagreement lies in a minor
algebraic mistake. Correcting Eq. (5.24) of Ref. [11] to

|det(∇∇D)| =
∣∣∣∣det

{
2
∫

dxV (x)∇∇V̄ (x)

}∣∣∣∣
≈

∣∣∣∣det

{
2
∫

dxV̄ (x)∇∇V̄ (x)

}∣∣∣∣ ≡ c, (B1)

the apparent discrepancy between Refs. [11] and [13] is
resolved. The eventual agreement adds confidence to the use
of the replica trick in the nonperturbative regime.

Without further ado, let us present the supersymmetric
derivation [14,15,36]. First we express the density of state
as

ρV (E) = − 1

π
lim

δ→+0
Im

[
1

Vd

∫
dxGV

R (x,x; E + iδ)

]
. (B2)
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The retarded one-particle Green function GV
R (x,x′; E + iδ) can

be represented as

(−i)

∫
[Dφ]φ(x)φ(x′)eiSV [φ]∫

[Dφ]eiSV [φ]
(B3)

with

SV [φ] = 1

2

∫
dxφ

{
E + iδ + �

2

2m
∇2 − V

}
φ. (B4)

The supersymmetric method proceeds by rewriting the expres-
sion (B3) as(−i

2

) ∫
[D �φDχ1Dχ2] �φ(x) · �φ(x′)e

∑2
a=1 iSV [φa ]+iSV [χ1,χ2]

(B5)

with

SV [χ1,χ2] = 1

2

∫
dxχ2

{
E + iδ + �

2

2m
∇2 − V

}
χ1, (B6)

where we doubled the bosonic field φ to �φ = (φ1,φ2) and
introduced fermionic fields χ1 and χ2. Now that there is no
denominator containing the random potential, we can perform
functional integration over V and obtain

[ρ(E)]d.a. = 1

2πVd

Im
∫

[D �̃φDχ̃2Dχ̃1]
∫

dx �̃φ(x) · �̃φ(x)

×e−Sb[ �̃φ]−S2f [χ̃1,χ̃2,
�̃φ]−S4f [χ̃1,χ̃2], (B7)

with

Sb[ �̃φ] = 1

2

∫
dx

[
�̃φ ·

(
− �

2

2m
∇2 − E − γ

4
�̃φ2

)
�̃φ
]
, (B8)

S2f[χ̃1,χ̃2,
�̃φ] = 1

2

∫
dxχ̃2

(
− �

2

2m
∇2 − E − γ

2
�̃φ2

)
χ̃1,

(B9)

and

S4f[χ̃1,χ̃2] = −γ

8

∫
dx(χ̃2χ̃1)2. (B10)

We have defined �̃φ ≡ e+ iπ
4 �φ and χ̃a ≡ e+ iπ

4 χa for E < 0 and
the expression (B7) should be viewed with appropriate analytic
continuation in mind [37,38].

To evaluate [ρ(E)]d.a. for large negative E, we use the
method of steepest descent, extremizing Sb. The trivial saddle
�̃φ = 0 gives no contribution to [ρ(E)]d.a. due to the absence
of negative modes. Among nontrivial saddles, we assume that
the saddles,

�̃φcl(x) = �e
√

−2E

γ
f

(√
−2mE

�2
|x − x0|

)
, (B11)

minimize the action, where �e is a constant unit vector and f (r̃)
was defined around Eq. (14) [39]. Evaluating the action for
these solutions gives the same leading exponential factor e

− ad
g

as before.

In regards to the subleading prefactor, one contribution
comes from ∫

dx �̃φcl(x) · �̃φcl(x) ∼ g−1(−E)−1 (B12)

in front. (We will not keep track of the overall dimensionless
constant in this derivation.) To evaluate the remaining contri-
butions, we expand around each saddle as

�̃φ − �̃φcl = �e
∞∑
l=0

ξ
B‖
l ϕ

B‖
l + �e⊥

∞∑
l=0

ξB⊥
l ϕB⊥

l , (B13)

and

χ̃a =
∞∑
l=0

(
ξF
l

)
a
ϕF

l . (B14)

Here, �e⊥ is a unit vector perpendicular to �e, and ϕ
B‖
l ’s are a set

of orthonormal functions satisfying(
− �

2

2m
∇2 − E − 3γ

2
�̃φ2

cl

)
ϕ

B‖
l = (−E)c‖

l ϕ
B‖
l , (B15)

and ϕB⊥
l = ϕF

l ≡ ϕ⊥
l ’s are another set of orthonormal functions

satisfying(
− �

2

2m
∇2 − E − γ

2
�̃φ2

cl

)
ϕ⊥

l = (−E)c⊥
l ϕ⊥

l , (B16)

with dimensionless numbers c
‖
l ’s and c⊥

l ’s. We deal first with
ξ

B‖
l fluctuations and then with the rest.

Analyzing ϕ
B‖
l modes, we find that the lowest mode has a

negative eigenvalue c
‖
0 < 0, giving rise to a factor of

i(−E)−
1
2 , (B17)

and allowing the saddles to contribute to the density of states.
Next come d translational zero modes. Trading integration
over these modes for integration over x0 and dividing by the
volume, we receive the Jacobian,{

1

d

∫
dx

(∇ �̃φcl

)2
} d

2

∼
{

g− d
2

(−2mE

�2

) d
2

}
. (B18)

Finally all the other modes have positive eigenvalues, each of
which gives a factor of (−E)−

1
2 .

Analyzing the other set of fluctuations, except the lowest
modes, all the modes have positive eigenvalues, each of which
gives a factor of (−E)−

1
2 + 1

2 + 1
2 = (−E)+

1
2 . The lowest modes

are the zero modes arising from O(2)-rotational symmetry,

proportional to | �̃φcl(x)|. The bosonic zero mode, upon trading

integration over ξB⊥
0 for integration over �e, yields the Jacobian,{∫

dx �̃φ2

cl

} 1
2

∼ (−E)−
1
2 (g− 1

2 ). (B19)

We also need to saturate fermionic zero modes by expanding
the action to the quartic order in fluctuations: If we kept only
quadratic terms in the expansion of the action, integration
over (ξF

0 )
a
’s would give zero. Thus we must bring down

either a factor of γ
∫

dxχ̃2( �̃φ2 − �̃φ2

cl)χ̃1 or γ
∫

dx(χ̃2χ̃1)2.
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After appropriate Gaussian integrations, we obtain a factor
of

(−E)+
2
2 (g+ 2

2 ). (B20)

Putting them all together, we recover the same result (19) as
before.

Finally let us turn to the replica derivation [13]. The replica
trick proceeds by rewriting the expression (B3) as(−i

Nr

)∫
[D �φ] �φ(x) · �φ(x′)ei

∑Nr
a=1 SV [φa ], (B21)

where we introduced (Nr − 1) replicas, promoting φ to �φ =
(φ1,φ2,...,φNr ), and took the dicey limit in which Nr → 0
to eliminate the denominator. After integrating over V and
making analytic continuation, we find instantons of the same
form (B11), but zero-mode analysis is slightly different
from the one in the supersymmetric derivation. Besides d

translational zero modes, there are limNr→0(Nr − 1) = −1
bosonic zero modes coming from O(Nr)-rotational symmetry.
The latter is replaced by the combination of one bosonic zero
mode and two fermionic zero modes in the supersymmetric
derivation.

We note that the instantons (B11) appearing in replica
and supersymmetric derivations and the localized wave func-
tions (13) have exactly the same shape. Thus we interpret the
instantons as most likely forms of localized wave functions
or square roots of localizing potentials [cf. Eq. (12)], dilutely
distributed for large negative E. It may be more appropriate to
call all these solutions “localons.”

APPENDIX C: GENERAL FORM OF DISORDER SADDLE

In this appendix we derive coupled equations which
determine saddle points of the disorder integral for scale-

invariant models. Recall that we are seeking minima of the cost∫
dxV 2(x) with the constraint EV

1;0 − EV
0;0 = E. Through the

introduction of a Lagrange multiplier λ0, the problem becomes
equivalent to the minimization of

I [V (x),λ0] ≡ +1

2

∫
dxV 2(x) + λ0

(
EV

1;0 − EV
0;0 − E

)
.

Extremizing it with respect to λ0 reproduces the constraint

EV
1;0 − EV

0;0 = E, (C1)

while extremizing it with respect to V (x) yields

V (x) = −λ0[V 〈1; 0|Ĵ t (x)|1; 0〉V − V 〈0; 0|Ĵ t (x)|0; 0〉V ].

(C2)

Here

ĤV |0; 0〉V = EV
0;0|0; 0〉V , (C3)

ĤV |1; 0〉V = EV
1;0|1; 0〉V , (C4)

and we used the Hellmann-Feynman relation [41,42],

δ

δV (x)
EV

Q;0 = V 〈Q; 0|Ĵ t (x)|Q; 0〉V .

We can see from Eq. (C2) that the disorder saddle in general is
proportional to the excess density profile of the localized state,
as is the case for noninteracting systems.
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