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We consider quantum Hamiltonians of the form H = H0 − U
∑

j cos(Cj ), where H0 is a quadratic function of
position and momentum variables {x1,p1,x2,p2, . . . } and the Cj ’s are linear in these variables. We allow H0 and
Cj to be completely general with only two restrictions: we require that (1) the Cj ’s are linearly independent and
(2) [Cj ,Ck] is an integer multiple of 2πi for all j,k so that the different cosine terms commute with one another.
Our main result is a recipe for solving these Hamiltonians and obtaining their exact low-energy spectrum in the
limit U → ∞. This recipe involves constructing creation and annihilation operators and is similar in spirit to
the procedure for diagonalizing quadratic Hamiltonians. In addition to our exact solution in the infinite U limit,
we also discuss how to analyze these systems when U is large but finite. Our results are relevant to a number
of different physical systems, but one of the most natural applications is to understanding the effects of electron
scattering on quantum Hall edge modes. To demonstrate this application, we use our formalism to solve a toy
model for a fractional quantum spin Hall edge with different types of impurities.

DOI: 10.1103/PhysRevB.93.075118

I. INTRODUCTION

In this paper, we study a general class of quantum
Hamiltonians, which are relevant to a number of different
physical systems. The Hamiltonians we consider are defined
on a 2N dimensional phase space {x1, . . . ,xN ,p1, . . . ,pN }
with [xi,pj ] = iδij . They take the form

H = H0 − U

M∑
i=1

cos(Ci), (1)

where H0 is a quadratic function of the phase space variables
{x1, . . . ,xN ,p1, . . . ,pN } and Ci is linear in these variables.
The Ci’s can be chosen arbitrarily except for two restrictions:
(1) {C1, . . . ,CM} are linearly independent and (2) [Ci,Cj ] is
an integer multiple of 2πi for all i,j . Here, the significance of
the second condition is that it guarantees that the cosine terms
commute with one another: [cos(Ci), cos(Cj )] = 0 for all i,j .

For small U , we can straightforwardly analyze these
Hamiltonians by treating the cosine terms as perturbations
to H0. However, how can we study these systems when U

is large? The most obvious approach is to expand around
U = ∞, just as in the small U case, we expand around U = 0,
but in order to make such an expansion, we first need to be able
to solve these Hamiltonians exactly in the infinite U limit. The
purpose of this paper is to describe a systematic procedure for
obtaining such a solution, at least at low energies.

The basic idea underlying our solution is that when U is
very large, the cosine terms act as constraints at low energies.
Thus the low-energy spectrum of H can be described by
an effective Hamiltonian Heff defined within a constrained
Hilbert spaceHeff. This effective Hamiltonian Heff is quadratic
in {x1, . . . ,xN ,p1, . . . ,pN } since H0 is quadratic and the
constraints are linear in these variables. We can therefore
diagonalize Heff and in this way determine the low-energy
properties of H .

Our main result is a general recipe for finding the exact
low-energy spectrum of H in the limit U → ∞. This recipe

consists of two steps and is only slightly more complicated than
what is required to solve a conventional quadratic Hamiltonian.
The first step involves finding creation and annihilation oper-
ators for the low-energy effective Hamiltonian Heff [Eq. (11)].
The second step of the recipe involves finding integer linear
combinations of the Ci’s that have simple commutation
relations with one another. In practice, this step amounts
to finding a change of basis that puts a particular integer
skew-symmetric matrix into canonical form [Eq. (14)]. Once
these two steps are completed, the low-energy spectrum can
be written down immediately [Eq. (19)].

In addition to our exact solution in the infinite U limit,
we also discuss how to analyze these systems when U is large
but finite. In particular, we show that in the finite U case, we
need to add small (nonquadratic) corrections to the effective
Hamiltonian Heff in order to reproduce the low-energy physics
of H . One of our key results is a discussion of the general form
of these finite U corrections, and how they scale with U .

Our results are useful because there are a number of physical
systems where one needs to understand the effect of cosinelike
interactions on a quadratic Hamiltonian. An important class of
examples are the edges of Abelian fractional quantum Hall
(FQH) states. Previously it has been argued that a general
Abelian FQH edge can be modeled as collection of p chiral
Luttinger liquids with Hamiltonian [1–4]

H0 =
∫

dx
1

4π
(∂x�)T V (∂x�).

Here, �(x) = (φ1(x), . . . ,φp(x)), with each component φI

describing a different (bosonized) edge mode, while V is a
p × p matrix that describes the velocities and density-density
interactions between the different edge modes. The commu-
tation relations for the φI operators are [φI (x),∂yφJ (y)] =
2πi(K−1)IJ δ(x − y), where K is a symmetric, integer p × p

matrix which is determined by the bulk FQH state.
The above Hamiltonian H0 is quadratic and hence exactly

soluble, but in many cases, it is unrealistic because it describes
an edge in which electrons do not scatter between the different
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edge modes. In order to incorporate scattering into the model,
we need to add terms to the Hamiltonian of the form

Hscat =
∫

U (x) cos(�T K� − α(x))dx,

where � is a p-component integer vector that describes the
number of electrons scattered from each edge mode [5].
However, it is usually difficult to analyze the effect of these
cosine terms beyond the small U limit where perturbative
techniques are applicable. (An important exception is when �

is a null vector [6], i.e., �T K� = 0: in this case, the fate of the
edge modes can be determined by mapping the system onto a
Sine-Gordon model [7].)

Our results can provide insight into this class of systems
because they allow us to construct exactly soluble toy models
that capture the effect of electron scattering at the edge. Such
toy models can be obtained by replacing the above continuum
scattering term Hscat by a collection of discrete impurity
scatterers, U

∑
i cos(�T K�(xi) − αi), and then taking the

limit U → ∞. It is not hard to see that the latter cosine terms
obey conditions (1) and (2) from above, so we can solve the
resulting models exactly using our general recipe. Importantly,
this construction is valid for any choice of �, whether or not
� is a null vector.

Although the application to FQH edge states is one of the
most interesting aspects of our results, our focus in this paper
is on the general formalism rather than the implications for
specific physical systems. Therefore we will only present a
few simple examples involving a fractional quantum spin Hall
edge with different types of impurities. The primary purpose
of these examples is to demonstrate how our formalism works
rather than to obtain novel results.

We now discuss the relationship with previous work.
One paper that explores some related ideas is Ref. [8].
In that paper, Gottesman, Kitaev, and Preskill discussed
Hamiltonians similar to (1) for the case where the Ci operators
do not commute, i.e., [Ci,Cj ] �= 0. They showed that these
Hamiltonians can have degenerate ground states and proposed
using these degenerate states to realize qubits in continuous
variable quantum systems.

Another line of research that has connections to the present
work involves the problem of understanding constraints in
quantum mechanics. In particular, a number of previous
works have studied the problem of a quantum particle that
is constrained to move on a surface by a strong confining
potential [9,10]. This problem is similar in spirit to one we
study here, particularly for the special case where [Ci,Cj ] = 0:
in that case, if we identify Ci as position coordinates xi , then
the Hamiltonian (1) can be thought of as describing a particle
that is constrained to move on a periodic array of hyperplanes.

Our proposal to apply our formalism to FQH edge states
also has connections to the previous literature. In particular,
it has long been known that the problem of an impurity in a
nonchiral Luttinger liquid has a simple exact solution in the
limit of infinitely strong backscattering [11–14]. The infinite
backscattering limit for a single impurity has also been studied
for more complicated Luttinger liquid systems [15–18]. The
advantage of our approach to these systems is that our methods
allow us to study not just single impurities but also multiple

coherently coupled impurities, and to obtain the full quantum
dynamics not just transport properties.

The paper is organized as follows. In Sec. II, we summarize
our formalism and main results. In Sec. III, we illustrate our
formalism with some examples involving fractional quantum
spin Hall edges with impurities. We discuss directions for
future work in the conclusion. The appendices contain the
general derivation of our formalism as well as other technical
results.

II. SUMMARY OF RESULTS

A. Low-energy effective theory

Our first result is that we derive an effective theory that
describes the low-energy spectrum of

H = H0 − U

M∑
i=1

cos(Ci)

in the limit U → ∞. This effective theory consists of an
effective Hamiltonian Heff and an effective Hilbert space Heff.
Conveniently, we find a simple algebraic expression for Heff

and Heff that holds in the most general case. Specifically, the
effective Hamiltonian is given by

Heff = H0 −
M∑

i,j=1

(M−1)ij
2

· 	i	j , (2)

where the operators 	1, . . . ,	M are defined by

	i = 1

2πi

M∑
j=1

Mij [Cj ,H0] (3)

and where Mij is an M × M matrix defined by

M = N−1, Nij = − 1

4π2
[Ci,[Cj ,H0]]. (4)

This effective Hamiltonian is defined on an effective Hilbert
space Heff, which is a subspace of the original Hilbert space
H, and consists of all states |ψ〉 that satisfy

cos(Ci)|ψ〉 = |ψ〉, i = 1, . . . ,M. (5)

A few remarks about these formulas: first, notice that
M and N are matrices of c numbers since H0 is quadratic
and the Ci’s are linear combinations of xj ’s and pj ’s.
Also notice that the 	i operators are linear functions of
{x1, . . . ,xN ,p1, . . . ,pN }. These observations imply that the
effective Hamiltonian Heff is always quadratic. Another
important point is that the 	i operators are conjugate to the
Ci’s:

[Ci,	j ] = 2πiδij . (6)

This means that we can think of the 	i’s as generalized
momentum operators. Finally, notice that

[Ci,Heff] = 0. (7)

The significance of this last equation is that it shows that the
Hamiltonian Heff can be naturally defined within the above
Hilbert space (5).
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We can motivate this effective theory as follows. First,
it is natural to expect that the lowest energy states in the
limit U → ∞ are those that minimize the cosine terms. This
leads to the effective Hilbert space given in Eq. (5). Second,
it is natural to expect that the dynamics in the C1, . . . ,CM

directions freezes out at low energies. Hence the terms that

generate this dynamics, namely
∑

ij

M−1
ij

2 	i	j , should be
removed from the effective Hamiltonian. This leads to Eq. (2).
Of course, this line of reasoning is just an intuitive picture; for
a formal derivation of the effective theory, we refer the reader
to Appendix A.

At what energy scale is the above effective theory valid?
We show that Heff correctly reproduces the energy spectrum
of H for energies less than

√
U/m where m is the maximum

eigenvalue of Mij . One implication of this result is that our
effective theory is only valid if N is nondegenerate: if N were
degenerate than M would have an infinitely large eigenvalue,
which would mean that there would be no energy scale below
which our theory is valid. Physically, the reason that our
effective theory breaks down when N is degenerate is that
in this case, the dynamics in the C1, . . . ,CM directions does
not completely freeze-out at low energies.

To see an example of these results, consider a one-
dimensional harmonic oscillator with a cosine term:

H = p2

2m
+ Kx2

2
− U cos(2πx). (8)

In this case, we have H0 = p2

2m
+ Kx2

2 and C = 2πx. If we
substitute these expressions into Eq. (2), a little algebra gives

Heff = Kx2

2
.

As for the effective Hilbert space, Eq. (5) tells us that Heff

consists of position eigenstates

Heff = {|x = q〉, q = (integer)}.
If we now diagonalize the effective Hamiltonian within the
effective Hilbert space, we obtain eigenstates |x = q〉 with
energies E = Kq2

2 . Our basic claim is that these eigenstates
and energies should match the low-energy spectrum of H in
the U → ∞ limit. In Appendix A 1 a, we analyze this example
in detail and we confirm that this claim is correct (up to a
constant shift in the energy spectrum).

To see another illustrative example, consider a one-
dimensional harmonic oscillator with two cosine terms,

H = p2

2m
+ Kx2

2
− U cos(dp) − U cos(2πx), (9)

where d is a positive integer. This example is fundamentally
different from the previous one because the arguments of the
cosine do not commute: [x,p] �= 0. This property leads to
some new features, such as degeneracies in the low-energy
spectrum. To find the effective theory in this case, we note
that H0 = p2

2m
+ Kx2

2 and C1 = dp, C2 = 2πx. With a little
algebra, Eq. (2) gives

Heff = 0.

As for the effective Hilbert space, Eq. (5) tells us that Heff

consists of all states |ψ〉 satisfying

cos(2πx)|ψ〉 = cos(dp)|ψ〉 = |ψ〉.
One can check that there are d linearly independent states
obeying the above conditions; hence if we diagonalize the
effective Hamiltonian within the effective Hilbert space, we
obtain d exactly degenerate eigenstates with energy E = 0.
The prediction of our formalism is therefore that H has
a d-fold ground-state degeneracy in the U → ∞ limit. In
Appendix A 1 b, we analyze this example and confirm this
prediction.

B. Diagonalizing the effective theory

We now move on to discuss our second result, which is a
recipe for diagonalizing the effective Hamiltonian Heff. Note
that this diagonalization procedure is unnecessary for the two
examples discussed above, since Heff is very simple in these
cases. However, in general, Heff is a complicated quadratic
Hamiltonian, which is defined within a complicated Hilbert
space Heff, so diagonalization is an important issue. In fact,
in practice, the results in this section are more useful than
those in the previous section because we will see that we can
diagonalize Heff without explicitly evaluating the expression
in Eq. (2).

Our recipe for diagonalizing Heff has three steps. The first
step is to find creation and annihilation operators for Heff.
Formally, this amounts to finding all operators a that are linear
combinations of {x1, . . . ,xN ,p1, . . . ,pN }, and satisfy

[a,Heff] = Ea, [a,Ci] = 0, i = 1, . . . ,M (10)

for some scalar E �= 0. While the first condition is the usual
definition of creation and annihilation operators, the second
condition is less standard; the motivation for this condition
is that Heff commutes with Ci [see Eq. (7)]. As a result, we
can impose the requirement [a,Ci] = 0 and we will still have
enough quantum numbers to diagonalize Heff since we can use
the Ci’s in addition to the a’s.

Alternatively, there is another way to find creation and
annihilation operators which is often more convenient: instead
of looking for solutions to (10), one can look for solutions to

[a,H0] = Ea +
M∑

j=1

λj [Cj ,H0],

(11)
[a,Ci] = 0, i = 1, . . . ,M

for some scalars E,λj with E �= 0. Indeed, we show in
Appendix B 4 that every solution to (10) is also a solution
to (11) and vice versa, so these two sets of equations are
equivalent. In practice, it is easier to work with Eq. (11) than
Eq. (10) because Eq. (11) is written in terms of H0, and thus it
does not require us to work out the expression for Heff.

The solutions to (10), or equivalently (11), can be divided
into two classes: “annihilation operators” with E > 0, and
“creation operators” with E < 0. Let a1, . . . ,aK denote a
complete set of linearly independent annihilation operators.
We will denote the corresponding E’s by E1, . . . ,EK and
the creation operators by a

†
1, . . . ,a

†
K . The creation/annihilation
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operators should be normalized so that

[ak,a
†
k′] = δkk′, [ak,ak′] = [a†

k,a
†
k′] = 0.

We are now ready to discuss the second step of the recipe.
This step involves searching for integer linear combinations of
{C1, . . . ,CM} that have simple commutation relations with one
another. The idea behind this step is that we ultimately need
to construct a complete set of quantum numbers for labeling
the eigenstates of Heff. Some of these quantum numbers will
necessarily involve the Ci operators since these operators play
a prominent role in the definition of the effective Hilbert
space, Heff. However, the Ci’s are unwieldy because they have
complicated commutation relations with one another. Thus it
is natural to look for linear combinations of Ci’s that have
simpler commutation relations.

With this motivation in mind, let Zij be the M × M matrix
defined by

Zij = 1

2πi
[Ci,Cj ]. (12)

The matrix Zij is integer and skew-symmetric, but otherwise
arbitrary. Next, let

C ′
i =

M∑
j=1

VijCj + χi (13)

for some matrixV and some vector χ . Then, [C ′
i ,C

′
j ] = 2πiZ ′

ij

where Z ′ = VZVT . The second step of the recipe is to find a
matrix V with integer entries and determinant ±1, such that
Z ′ takes the simple form

Z ′ =

⎛
⎜⎝

0I −D 0

D 0I 0

0 0 0M−2I

⎞
⎟⎠, D =

⎛
⎜⎜⎜⎝

d1 0 . . . 0
0 d2 . . . 0
...

...
...

...

0 0 . . . dI

⎞
⎟⎟⎟⎠.

(14)

Here, I is some integer with 0 � I � M/2 and 0I denotes
an I × I matrix of zeros. In mathematical language, V is an
integer change of basis that puts Z into skew-normal form. It
is known that such a change of basis always exists, though it
is not unique [19]. After finding an appropriate V , the offset χ

should then be chosen so that

χi = π ·
∑
j<k

VijVikZjk (mod 2π ) (15)

The reason for choosing χ in this way is that it ensures that
eiC ′

i |ψ〉 = |ψ〉 for any |ψ〉 ∈ Heff, as can be easily seen from
the Campbell-Baker-Hausdorff formula.

Once we perform these two steps, we can obtain the
complete energy spectrum of Heff with the help of a few results
that we prove in Appendix B [20]. Our first result is that Heff

can always be written in the form

Heff =
K∑

k=1

Eka
†
kak + F (C ′

2I+1, . . . ,C
′
M ), (16)

where F is some (a priori unknown) quadratic function. Our
second result (which is really just an observation) is that the

following operators all commute with each other:

{eiC ′
1/d1 , . . . ,eiC ′

I /dI ,eiC ′
I+1 , . . . ,eiC ′

2I ,C ′
2I+1, . . . ,C

′
M}. (17)

Furthermore, these operators commute with the occupation
number operators {a†

1a1, . . . ,a
†
KaK}. Therefore, we can simul-

taneously diagonalize (17) along with {a†
kak}. We denote the

simultaneous eigenstates by

|θ1, . . . ,θI ,ϕ1, . . . ,ϕI ,x
′
I+1, . . . ,x

′
M−I ,n1, . . . ,nK〉

or, in more abbreviated form, |θ,ϕ,x′,n〉. Here, the different
quantum numbers are defined by

eiC ′
i /di |θ ,ϕ,x′,n〉 = eiθi |θ,ϕ,x′,n〉, i = 1, . . . ,I,

eiC ′
i |θ,ϕ,x′,n〉 = eiϕi−I |θ ,ϕ,x′,n〉, i = I + 1, . . . ,2I,

C ′
i |θ ,ϕ,x′,n〉 = 2πx ′

i−I |θ,ϕ,x′,n〉, i = 2I + 1, . . . ,M,

a
†
kak|θ ,ϕ,x′,n〉 = nk|θ,ϕ,x′,n〉, k = 1, . . . ,K, (18)

where 0 � θi,ϕi < 2π , while x ′
i is real valued and nk ranges

over non-negative integers.
By construction the |θ,ϕ,x′,n〉 states form a complete basis

for the Hilbert spaceH. Our third result is that a subset of these
states form a complete basis for the effective Hilbert spaceHeff.
This subset consists of all |θ ,ϕ,x′,n〉 for which

(1) θ = (2πα1/d1, . . . ,2παI/dI ) with αi = 0,1, . . . ,

di − 1.
(2) ϕ = (0,0, . . . ,0).
(3) (x ′

I+1, . . . ,x
′
M−I ) = (q1, . . . ,qM−2I ) for some

integers qi .
We will denote this subset of eigenstates by {|α,q,n〉}.
Putting this together, we can see from Eqs. (16) and (18)

that the |α,q,n〉 are eigenstates of Heff, with eigenvalues

E =
K∑

k=1

nkEk + F (2πq1, . . . ,2πqM−2I ). (19)

We therefore have the full eigenspectrum of Heff—up to the
determination of the function F . With a bit more work, one can
go further and compute the function F (see Appendix B 3) but
we will not discuss this issue here because in many cases of
interest it is more convenient to find F using problem-specific
approaches.

To see examples of this diagonalization procedure, we refer
the reader to Sec. III. As for the general derivation of this
procedure, see Appendix B.

C. Degeneracy

One implication of Eq. (19), which is worth mentioning
is that the energy E is independent of the quantum numbers
α1, . . . ,αI . Since αi ranges from 0 � αi < di − 1, it follows
that every eigenvalue of Heff has a degeneracy of (at least)

D =
I∏

i=1

di. (20)

In the special case where Zij is nondegenerate (i.e., the case
where M = 2I ), this degeneracy can be conveniently written
as

D =
√

det(Z) (21)

075118-4



FORMALISM FOR THE SOLUTION OF QUADRATIC . . . PHYSICAL REVIEW B 93, 075118 (2016)

since

det(Z) = det(Z ′) =
I∏

i=1

d2
i .

For an example of this degeneracy formula, consider the
Hamiltonian (9) discussed in Sec. II A. In this case, C1 = dp

while C2 = 2πx so

Zij = 1

2πi
[Ci,Cj ] =

(
0 −d

d 0

)
.

Thus the above formula predicts that the degeneracy for this
system is D = √

det(Z) = d, which is consistent with our
previous discussion.

D. Finite U corrections

We now discuss our last major result. To understand this
result, note that while Heff gives the exact low-energy spectrum
of H in the infinite U limit, it only gives approximate results
when U is large but finite. Thus, to complete our picture, we
need to understand what types of corrections we need to add
to Heff to obtain an exact effective theory in the finite U case.

It is instructive to start with a simple example: H = p2

2m
+

Kx2

2 − U cos(2πx). As we discussed in Sec. II A, the low-
energy effective Hamiltonian in the infinite U limit is Heff =
Kx2

2 , while the low-energy Hilbert space Heff is spanned by
position eigenstates {|q〉}, where q is an integer.

Let us consider this example in the case where U is large but
finite. In this case, we expect that there is some small amplitude
for the system to tunnel from one cosine minima x = q to
another minima, x = q − n. Clearly, we need to add correction
terms to Heff that describe these tunneling processes. But what
are these correction terms? It is not hard to see that the most
general possible correction terms can be parameterized as

∞∑
n=−∞

einp εn(x), (22)

where εn(x) is some unknown function, which also depends
on U . Physically, each term einp describes a tunneling process
|q〉 → |q − n〉 since einp|q〉 = |q − n〉. The coefficient εn(x)
describes the amplitude for this process, which may depend on
q in general. (The one exception is the n = 0 term, which does
not describe tunneling at all, but rather describes corrections
to the on-site energies for each minima.)

Having developed our intuition with this example, we are
now ready to describe our general result. Specifically, in the
general case, we show that the finite U corrections can be
written in the form∑

m

ei
∑M

j=1 mj 	j · εm({ak,a
†
k,C

′
2I+i}) (23)

with the sum running over M component integer vectors
m = (m1, . . . ,mM ). Here, the εm are unknown functions of
{a1, . . . ,ak,a

†
1, . . . ,a

†
k,C2I+1′ , . . . ,C ′

M} which also depend on
U . We give some examples of these results in Sec. III. For a
derivation of the finite U corrections, see Appendix C.

E. Splitting of ground-state degeneracy

One application of Eq. (23) is to determining how the
ground-state degeneracy of Heff splits at finite U . Indeed,
according to standard perturbation theory, we can find the
splitting of the ground-state degeneracy by projecting the
finite U corrections onto the ground-state subspace and then
diagonalizing the resulting D × D matrix. The details of this
diagonalization problem are system dependent, so we cannot
say much about it in general. However, we would like to
mention a related result that is useful in this context. This
result applies to any system in which the commutator matrix
Zij is nondegenerate. Before stating the result, we first need
to define some notation: let �1, . . . ,�M be operators defined
by

�i =
∑

j

(Z−1)jiCj . (24)

Note that, by construction, the �i operators obey the commu-
tation relations

[Ci,�j ] = 2πiδij , [ak,�j ] = [a†
k,�j ] = 0. (25)

With this notation, our result is that

〈α′|ei
∑M

j=1 mj 	j · εm|α〉 = um · 〈α′|ei
∑M

j=1 mj �j |α〉, (26)

where |α〉,|α′〉 are ground states and um is some unknown
proportionality constant. This result is useful because it is

relatively easy to compute the matrix elements of ei
∑M

j=1 mj �j ;
hence the above relation allows us to compute the matrix
elements of the finite U corrections (up to the constants um)
without much work. We derive this result in Appendix C.

III. EXAMPLES

In this section, we illustrate our formalism with some
concrete examples. These examples involve a class of two
dimensional electron systems in which the spin-up and spin-
down electrons form ν = 1/k Laughlin states with opposite
chiralities [21]. These states are known as “fractional quantum
spin Hall insulators.” We will be primarily interested in the
edges of fractional quantum spin Hall (FQSH) insulators [22].
Since the edge of the Laughlin state can be modeled as a single
chiral Luttinger liquid, the edge of a FQSH insulator consists
of two chiral Luttinger liquids with opposite chiralities—one
for each spin direction (Fig. 1).

The examples that follow will explore the physics of the
FQSH edge in the presence of impurity-induced scattering.

FQSH

FIG. 1. The fractional quantum spin Hall edge consists of two
counter-propagating chiral Luttinger liquids—one for each spin
direction (↑,↓).
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More specifically, in the first example, we consider a FQSH
edge with a single magnetic impurity; in the second example,
we consider a FQSH edge with multiple magnetic impurities;
in the last example, we consider a FQSH edge with alternating
magnetic and superconducting impurities. In all cases, we
study the impurities in the infinite scattering limit, which
corresponds to U → ∞ in (1). Then, in the last section, we
discuss how our results change when the scattering strength U

is large but finite.
We emphasize that the main purpose of these examples is to

illustrate our formalism rather than to derive interesting results.
In particular, many of our findings regarding these examples
are known previously in the literature in some form.

Of all the examples, the last one, involving magnetic
and superconducting impurities, is perhaps most interesting:
we find that this system has a ground-state degeneracy that
grows exponentially with the number of impurities. This
ground-state degeneracy is closely related to the previously
known topological degeneracy that appears when a FQSH
edge is proximity coupled to alternating ferromagnetic and
superconducting strips [23–27].

Before proceeding, we need to explain what we mean by
“magnetic impurities” and “superconducting impurities.” At
a formal level, a magnetic impurity is a localized object that
scatters spin-up electrons into spin-down electrons. Likewise,
a superconducting impurity is a localized object that scatters
spin-up electrons into spin-down holes. More physically, a
magnetic impurity can be realized by placing the tip of
a ferromagnetic needle in proximity to the edge, while a
superconducting impurity can be realized by placing the tip
of a superconducting needle in proximity to the edge.

A. Review of edge theory for clean system

As discussed above, the edge theory for the ν = 1/k

fractional quantum spin Hall state consists of two chiral
Luttinger liquids with opposite chiralities—one for each spin
direction (Fig. 1). The purpose of this section is to review the
Hamiltonian formulation of this edge theory [3,4,22]. More
specifically, we will discuss the edge theory for a disk geometry
where the circumference of the disk has length L. Since we will
work in a Hamiltonian formulation, in order to define the edge
theory, we need to specify the Hamiltonian, the set of physical
observables, and the canonical commutation relations.

We begin with the set of physical observables. The
basic physical observables in the edge theory are a col-
lection of operators {∂yφ↑(y),∂yφ↓(y)} along with two ad-
ditional operators φ↑(y0), φ↓(y0), where y0 is an arbi-
trary, but fixed, point on the boundary of the disk. The
{∂yφ↑(y),∂yφ↓(y),φ↑(y0),φ↓(y0)} operators can be thought of
as the fundamental phase space operators in this system,
i.e., the analogues of the {x1, . . . ,xN ,p1, . . . ,pN } operators
in Sec. II. Like {x1, . . . ,xN ,p1, . . . ,pN }, all other physi-
cal observables can be written as functions/functionals of
{∂yφ↑(y),∂yφ↓(y),φ↑(y0),φ↓(y0)}. Two important examples
are the operators φ↑(y) and φ↓(y), which are defined by

φσ (y) ≡ φσ (y0) +
∫ y

y0

∂xφσ dx, σ = ↑,↓, (27)

where the integral runs from y0 to y in the clockwise direction.

The physical meaning of these operators is as follows: the
density of spin-up electrons at position y is given by ρ↑(y) =

1
2π

∂yφ↑ while the density of spin-down electron is ρ↓(y) =
1

2π
∂yφ↓. The total charge Q and total spin Sz on the edge are

given by Q = Q↑ + Q↓ and Sz = 1/2(Q↑ − Q↓) with

Qσ = 1

2π

∫ L/2

−L/2
∂yφσ dy, σ = ↑,↓.

Finally, the spin-up and spin-down electron creation operators
take the form

ψ
†
↑ = eikφ↑ , ψ

†
↓ = e−ikφ↓ .

In the above discussion, we ignored an important subtlety:
φ↑(y0) and φ↓(y0) are actually compact degrees of freedom
which are only defined modulo 2π/k. In other words, strictly
speaking, φ↑(y0) and φ↓(y0) are not well-defined operators:
only eikφ↑(y0) and eikφ↓(y0) are well-defined. [Of course, the same
also goes for φ↑(y) and φ↓(y), in view of the above definition.]
Closely related to this fact, the conjugate “momenta” Q↑ and
Q↓ are actually discrete degrees of freedom, which can take
only integer values.

The compactness of φ↑(y0),φ↓(y0) and discreteness of
Q↑,Q↓ is inconvenient for us since the machinery discussed
in Sec. II is designed for systems in which all the phase space
operators are real-valued, rather than systems in which some
operators are angular valued and some are integer valued. To
get around this issue, we will initially treat φ↑(y0) and φ↓(y0)
and the conjugate momenta Q↑, Q↓ as real valued operators.
We will then use a trick (described in the next section) to
dynamically generate the compactness of φ↑(y0),φ↓(y0) as
well as the discreteness of Q↑,Q↓.

Let us now discuss the commutation relations for the
{∂yφ↑(y),∂yφ↓(y),φ↑(y0),φ↓(y0)} operators. Like the usual
phase space operators {x1, . . . ,xN ,p1, . . . ,pN }, the commuta-
tors of {∂yφ↑(y),∂yφ↓(y),φ↑(y0),φ↓(y0)} are c numbers. More
specifically, the basic commutation relations are

[∂xφ↑(x),∂yφ↑(y)] = 2πi

k
∂xδ(x − y),

[∂xφ↓(x),∂yφ↓(y)] = −2πi

k
∂xδ(x − y),

(28)

[φ↑(y0),∂yφ↑(y)] = 2πi

k
δ(y − y0),

[φ↓(y0),∂yφ↓(y)] = −2πi

k
δ(y − y0)

with the other commutators vanishing:

[φ↑(y0),∂yφ↓(y)] = [φ↓(y0),∂yφ↑(y)] = 0,

[φ↑(y0),φ↓(y0)] = [∂xφ↑(x),∂yφ↓(y)] = 0.

Using these basic commutation relations, together with the
definition of φσ (y) (27), one can derive the more general
relations

[φ↑(x),∂yφ↑(y)] = 2πi

k
δ(x − y),

[φ↓(x),∂yφ↓(y)] = −2πi

k
δ(x − y), (29)

[φ↑(x),∂yφ↓(y)] = 0,
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as well as

[φ↑(x),φ↑(y)] = πi

k
sgn(x,y),

[φ↓(x),φ↓(y)] = −πi

k
sgn(x,y), (30)

[φ↑(x),φ↓(y)] = 0,

where the sgn function is defined by sgn(x,y) = +1 if y0 <

x < y and sgn(x,y) = −1 if y0 < y < x, with the ordering
defined in the clockwise direction. The latter commutation
relations (29) and (30) will be particularly useful to us in the
sections that follow.

Having defined the physical observables and their com-
mutation relations, the last step is to define the Hamiltonian
for the edge theory. The Hamiltonian for a perfectly clean,
homogeneous edge is

H0 = kv

4π

∫ L/2

−L/2
[(∂xφ↑(x))2 + (∂xφ↓(x))2]dx, (31)

where v is the velocity of the edge modes.
At this point, the edge theory is complete except for one

missing element: we have not given an explicit definition
of the Hilbert space of the edge theory. There are two
different (but equivalent) definitions that one can use. The
first, more abstract, definition is that the Hilbert space
is the unique irreducible representation of the operators
{∂yφ↑,∂yφ↓,φ↑(y0),φ↓(y0)} and the commutation relations
(28). (This is akin to defining the Hilbert space of the
1D harmonic oscillator as the irreducible representation
of the Heisenberg algebra [x,p] = i.) The second defini-
tion, which is more concrete but also more complicated,
is that the Hilbert space is spanned by the complete or-
thonormal basis {|q↑,q↓,{np↑},{np↓}〉} where the quantum
numbers q↑,q↓ range over all integers [28], while np↑,np↓
range over all nonnegative integers for each value of p =
2π/L,4π/L, . . . . These basis states have a simple physical
meaning: |q↑,q↓,{np↑},{np↓}〉 corresponds to a state with
charge q↑ and q↓ on the two edge modes, and with np↑ and
np↓ phonons with momentum p on the two edge modes.

B. Example 1: Single magnetic impurity

With this preparation, we now proceed to study a fractional
quantum spin Hall edge with a single magnetic impurity in a
disk geometry of circumference L [Fig. 2(a)]. We assume
that the impurity, which is located at x = 0, generates a
backscattering term of the form U

2 (ψ†
↑(0)ψ↓(0) + H.c.). Thus,

in the bosonized language, the system with an impurity is
described by the Hamiltonian

H = H0 − U cos(C), C = k(φ↑(0) + φ↓(0)), (32)

where H0 is defined in Eq. (31). Here, we temporarily ignore
the question of how we regularize the cosine term; we will
come back to this point below.

Our goal is to find the low-energy spectrum of H in the
strong backscattering limit, U → ∞. We will accomplish this
using the results from Sec. II. Note that, in using these results,
we implicitly assume that our formalism applies to systems

FQSH

(b)(a)

FQSH

FIG. 2. (a) A magnetic impurity on a fractional quantum spin Hall
edge causes spin-up electrons to backscatter into spin-down electrons.
(b) In the infinite backscattering limit, the impurity effectively
reconnects the edge modes.

with infinite dimensional phase spaces, even though we only
derived it in the finite dimensional case.

First we describe a trick for correctly accounting for the
compactness of φ↑(y0),φ↓(y0) and the quantization of Q↑,Q↓.
The idea is simple: we initially treat these variables as if
they are real valued, and then we introduce compactness
dynamically by adding two additional cosine terms to our
Hamiltonian:

H = H0 − U cos(C) − U cos(2πQ↑) − U cos(2πQ↓).
(33)

These additional cosine terms effectively force Q↑ and Q↓
to be quantized at low energies, thereby generating the
compactness that we seek [29]. We will include all three cosine
terms in our subsequent analysis.

The next step is to calculate the low-energy effective
Hamiltonian Heff and low-energy Hilbert space Heff. Instead
of working out the expressions in Eqs. (2) and (5), we will skip
this computation and proceed directly to finding creation and
annihilation operators for Heff using Eq. (11). [This approach
works because Eq. (11) does not require us to find the explicit
form of Heff.]

According to Eq. (11), we can find the creation and
annihilation operators for Heff by finding all operators a such
that (1) a is a linear combination of our fundamental phase
space operators {∂yφ↑,∂yφ↓,φ↑(y0),φ↓(y0)} and (2) a obeys

[a,H0] = Ea + λ[C,H0] + λ↑[Q↑,H0] + λ↓[Q↓,H0],
(34)

[a,C] = [a,Q↑] = [a,Q↓] = 0

for some scalars E,λ,λ↑,λ↓ with E �= 0.
To proceed further, we note that the constraint [a,Q↑] =

[a,Q↓] = 0, implies that φ↑(y0),φ↓(y0) cannot appear in the
expression for a. Hence, a can be written in the general form

a =
∫ L/2

−L/2
[f↑(y)∂yφ↑(y) + f↓(y)∂yφ↓(y)]dy. (35)

Substituting this expression into the first line of Eq. (34), we
obtain the differential equations

−ivf ′
↑(y) = Ef↑(y) + λkivδ(y),

ivf ′
↓(y) = Ef↓(y) − λkivδ(y).

(The λ↑,λ↓ terms drop out of these equations since Q↑,Q↓
commute with H0.) These differential equations can be solved
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straightforwardly. The most general solution takes the form

f↑(y) = eipy[A1�(−y) + A2�(y)],
(36)

f↓(y) = e−ipy[B1�(−y) + B2�(y)],

where p = E/v, and

A2 = A1 − λk,B2 = B1 − λk. (37)

Here, � is the Heaviside step function defined as

�(x) =
{

0 −L/2 � x � 0

1 0 � x � L/2
.

[Note that the above expressions (36) for f↑,f↓ do not
obey periodic boundary conditions at x = ±L/2; we will
not impose these boundary conditions until later in our
calculation.] Eliminating λ from (37), we see that

A2 − A1 = B2 − B1. (38)

We still have to impose one more condition on a, namely,
[a,C] = 0. This condition leads to a second constraint on
A1,A2,B1,B2, but the derivation of this constraint is somewhat
subtle. The problem is that if we simply substitute (35) into
[a,C] = 0, we find

f↑(0) = f↓(0). (39)

It is unclear how to translate this relation into one involving
A1,A2,B1,B2 since f↑,f↓ are discontinuous at x = 0 and
hence f↑(0),f↓(0) are ill-defined. The origin of this puzzle
is that the cosine term in Eq. (32) contains short-distance
singularities and hence is not well-defined. To resolve this
issue, we regularize the argument of the cosine term, replacing
C = k(φ↑(0) + φ↓(0)) with

C →
∫ L/2

−L/2
k(φ↑(x) + φ↓(x))δ̃(x)dx, (40)

where δ̃ is a narrowly peaked function with
∫

δ̃(x)dx = 1.
Here, we can think of δ̃ as an approximation to a δ function.
Note that δ̃ effectively introduces a short-distance cutoff and
thus makes the cosine term nonsingular. After making this
replacement, it is straightforward to repeat the above analysis
and solve the differential equations for f↑,f↓. In Appendix
G, we work out this exercise, and we find that with this
regularization, the condition [a,C] = 0 leads to the constraint

A1 + A2

2
= B1 + B2

2
. (41)

Combining our two constraints on A1,B1,A2,B2 [(38) and
(41)], we obtain the relations

A1 = B1, A2 = B2. (42)

So far, we have not imposed any restriction on the
momentum p. The momentum constraints come from the
periodic boundary conditions on f↑,f↓:

f↑(−L/2) = f↑(L/2), f↓(−L/2) = f↓(L/2),

Using the explicit form of f↑,f↓, these boundary conditions
give

A1e
−ipL/2 = A2e

ipL/2, B1e
ipL/2 = B2e

−ipL/2,

from which we deduce

e2ipL = 1, A2 = A1e
−ipL. (43)

Putting this all together, we see that the most general possible
creation/annihilation operator for Heff is given by

ap = A1

∫ L/2

−L/2
(eipy∂yφ↑ + e−ipy∂yφ↓)�(−y)

+ e−ipL(eipy∂yφ↑ + e−ipy∂yφ↓)�(y)dy,

where p is quantized as p = ±π/L, ± 2π/L, . . . and Ep =
vp. (Note that p = 0 does not correspond to a legitimate
creation/annihilation operator according to the definition given
above, since we require E �= 0.)

Following the conventions from Sec. II B, we will refer
to the operators with Ep > 0—or equivalently p > 0—as
“annihilation operators” and the other operators as “creation
operators.” Also, we will choose the normalization constant A1

so that [ap,a
†
p′ ] = δpp′ for p,p′ > 0. This gives the expression

ap =
√

k

4π |p|L
∫ L/2

−L/2
(eipy∂yφ↑ + e−ipy∂yφ↓)�(−y)

+ e−ipL(eipy∂yφ↑ + e−ipy∂yφ↓)�(y)dy. (44)

The next step is to compute the commutator matrix
Zij . In the case at hand, we have three cosine terms
{cos(C1), cos(C2), cos(C3)}, where

C1 = C, C2 = 2πQ↑, C3 = 2πQ↓.

Therefore Zij is given by

Zij = 1

2πi
[Ci,Cj ] =

⎛
⎜⎝

0 1 −1

−1 0 0

1 0 0

⎞
⎟⎠.

To proceed further we need to find an appropriate change of
variables of the form C ′

i = ∑3
j=1 VijCj + χi . Here, V should

an integer matrix with determinant ±1 with the property that
Z ′

ij = 1
2πi

[C ′
i ,C

′
j ] is in skew-normal form, while χ should be

a real vector satisfying Eq. (15). It is easy to see that the
following change of variables does the job:

C ′
1 = C1, C ′

2 = −2πQ↑, C ′
3 = 2πQ↑ + 2πQ↓.

Indeed, for this change of variables, it is easy to check that

Z ′ =

⎛
⎜⎝

0 −1 0

1 0 0

0 0 0

⎞
⎟⎠.

We can see that this is indeed in the canonical skew normal
form shown in Eq. (14), with the parameters M = 3, I = 1,
d1 = 1.

We are now in a position to write down the low-energy
effective Hamiltonian Heff: according to Eq. (16), Heff must
take the form

Heff =
∑
p>0

vpa†
pap + F (C ′

3)2, (45)

where F is some (as yet unknown) constant. To determine the
constant F , we make two observations. First, we note that the

075118-8



FORMALISM FOR THE SOLUTION OF QUADRATIC . . . PHYSICAL REVIEW B 93, 075118 (2016)

first term in Eq. (45) can be rewritten as
∑

p �=0
v|p|

2 (a−pap).
Second, we note that C ′

3 = 2πQ is proportional to ap=0. Given
these observations, it is natural to interpret the F (C ′

3)2 term as
the missing p = 0 term in the sum. This suggests that we can
fix the coefficient F using continuity in the p → 0 limit. To
this end, we observe that

lim
p→0

v|p|
2

a−pap = vk

8πL
(C ′

3)2.

We conclude that F = vk
8πL

. Substituting this into (45), we
derive

Heff =
∑
p>0

vpa†
pap + vk

8πL
(C ′

3)2, (46)

where the sum runs over p = π/L,2π/L, . . . .
In addition to the effective Hamiltonian, we also need

to discuss the effective Hilbert space Heff in which this
Hamiltonian is defined. According to the results of Sec. II B,
the effective Hilbert space Heff is spanned by states {|q,{np}〉}
where |q,{np}〉 is the unique simultaneous eigenstate of the
form

eiC ′
1 |q,{np}〉 = |q,{np}〉,

eiC ′
2 |q,{np}〉 = |q,{np}〉,

C ′
3|q,{np}〉 = 2πq|q,{np}〉,

a†
pap|q,{np}〉 = np|q,{np}〉.

Here, np runs over non-negative integers, while q runs over
all integers. Note that we do not need to label the {|q,{np}〉}
basis states with α quantum numbers since d1 = 1 so there is
no degeneracy.

Having derived the effective theory, all that remains is to
diagonalize it. Fortunately, we can accomplish this without
any extra work: from (46) it is clear that the {|q,{np}〉} basis
states are also eigenstates of Heff with energies given by

E =
∑
p>0

vpnp + πvk

2L
q2. (47)

We are now finished: the above equation gives the complete
energy spectrum of Heff, and thus the complete low-energy
spectrum of H in the limit U → ∞.

To understand the physical interpretation of this energy
spectrum, we can think of np as describing the number of
phonon excitations with momentum p, while q describes
the total charge on the edge. With these identifications, the
first term in (47) describes the total energy of the phonon
excitations—which are linearly dispersing with velocity v—
while the second term describes the charging/capacitative
energy of the edge.

It is interesting that at low energies, our system has only one
branch of phonon modes and one charge degree of freedom,
while the clean edge theory (31) has two branches of phonon
modes and two charge degrees of freedom—one for each spin
direction. The explanation for this discrepancy can be seen in
Fig. 2(b): in the infinite U limit, the impurity induces perfect
backscattering which effectively reconnects the edges to form
a single chiral edge of length 2L.

(b)

FQSH

(a)

x

x

1
x2

N

x3

FQSH

FIG. 3. (a) A collection of N magnetic impurities on a fractional
quantum spin Hall edge. The impurities are located at positions
x1, . . . ,xN . (b) In the infinite backscattering limit, the impurities
effectively reconnect the edge modes, breaking the edge into N

disconnected components.

C. Example 2: Multiple magnetic impurities

We now consider a fractional quantum spin Hall edge in a
disk geometry with N magnetic impurities located at positions
x1, . . . ,xN [Fig. 3(a)]. Modeling the impurities in the same way
as in the previous section, the Hamiltonian is

H = H0 − U

N∑
i=1

cos(Ci), Ci = k(φ↑(xi) + φ↓(xi)), (48)

where H0 is defined in Eq. (31).
As in the single-impurity case, our goal is to understand

the low-energy physics of H in the limit U → ∞. We can
accomplish this using the same approach as before. The first
step is to take account of the compactness of φ↑,φ↓ and the
discrete nature of Q↑,Q↓ by adding two additional cosine
terms to our Hamiltonian:

H = H0 − U

N∑
i=1

cos(Ci) − U cos(2πQ↑) − U cos(2πQ↓).

Next, we find the creation and annihilation operators for
Heff using Eq. (11). That is, we search for all operators a such
that (1) a is a linear combination of our fundamental phase
space operators {∂yφ↑,∂yφ↓,φ↑(y0),φ↓(y0)} and (2) a obeys

[a,H0] = Ea +
N∑

i=1

λi[Ci,H0] + λ↑[Q↑,H0] + λ↓[Q↓,H0],

[a,Cj ] = [a,Q↑] = [a,Q↓] = 0 (49)

for some E,λi,λ↑,λ↓ with E �= 0.
Given that [a,Q↑] = [a,Q↓] = 0, we know that

φ↑(y0),φ↓(y0) cannot appear in the expression for a. Hence
a can be written in the general form

a =
∫ L/2

−L/2
[f↑(y)∂yφ↑(y) + f↓(y)∂yφ↓(y)]dy.

Substituting these expressions into the first line of Eq. (49),
we obtain

−ivf ′
↑(y) = Ef↑(y) + kiv

N∑
j=1

λjδ(y − xj ),

ivf ′
↓(y) = Ef↓(y) − kiv

N∑
j=1

λjδ(y − xj ).
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Solving these differential equations gives

f↑(y) =
N∑

j=1

Aje
ipy�(xj−1 < y < xj )],

f↓(y) =
N∑

j=1

Bje
−ipy�(xj−1 < y < xj )],

where p = E/v and where

Aj+1 = Aj − λjke−ipxj , Bj+1 = Bj − λjkeipxj .

Here, �(a < y < b) is defined to take the value 1 if y is in
the interval [a,b] and 0 otherwise. Also, we use a notation in
which x0 is identified with xN . Eliminating λj , we derive

(Aj+1 − Aj )eipxj = (Bj+1 − Bj )e−ipxj . (50)

We still have to impose the condition [a,Cj ] = 0, which
gives an additional set of constraints on {Aj ,Bj }. As in the
single impurity case, we regularize the cosine terms to derive
these constraints. That is, we replace C = k(φ↑(xj ) + φ↓(xj ))
with

C →
∫ L/2

−L/2
k(φ↑(x) + φ↓(x))δ̃(x − xj )dx, (51)

where δ̃ is a narrowly peaked function with
∫

δ̃(x)dx = 1, i.e.,
an approximation to a delta function. With this regularization,
it is not hard to show that [a,Cj ] = 0 gives the constraint

1
2 (Aj + Aj+1)eipxj = 1

2 (Bj + Bj+1)e−ipxj . (52)

Combining (50) and (52), we derive

Aje
ipxj = Bje

−ipxj , Aj+1e
ipxj = Bj+1e

−ipxj . (53)

Our task is now to find all {Aj,Bj ,p} that satisfy (53). For
simplicity, we will specialize to the case where the impurities
are uniformly spaced with spacing s, i.e., xj+1 − xj = s =
L/N for all j . In this case, Eq. (53) implies that e2ips = 1, so
that p is quantized in integer multiples of π/s. For any such
p, Eq. (53) has N linearly independent solutions of the form

Bj = Aj = 0 for j �= m,

Bj = Aje
2ipxj �= 0 for j = m

with m = 1, . . . ,N . Putting this all together, we see that the
most general possible creation/annihilation operator for Heff

is given by

apm =
√

k

4π |p|s
∫ L/2

−L/2
[(eipy∂yφ↑ + e2ipxme−ipy∂yφ↓)

×�(xm−1 < y < xm)]dy

with Epm = vp. Here the index m runs over m = 1, . . . ,N

while p takes values ±π/s, ± 2π/s, . . . . (As in the single
impurity case, p = 0 does not correspond to a legitimate
creation/annihilation operator, since we require that E �= 0.)

Following the conventions from Sec. II B, we will refer
to the operators with E > 0—or equivalently p > 0—as
“annihilation operators” and the other operators as “creation
operators.” Note that we have normalized the a operators so
that [apm,a

†
p′m′] = δpp′δmm′ for p,p′ > 0.

The next step is to compute the commutator matrix
Zij = 1

2πi
[Ci,Cj ]. Let us denote the N + 2 cosine terms

as {cos(C1), . . . , cos(CN+2)} where CN+1 = 2πQ↑, CN+2 =
2πQ↓. Using (30), we find that Zij takes the form

Zij =

⎛
⎜⎜⎜⎜⎜⎜⎝

0 · · · 0 1 −1
...

...
...

...
...

0 · · · 0 1 −1

−1 · · · −1 0 0

1 · · · 1 0 0

⎞
⎟⎟⎟⎟⎟⎟⎠

.

To proceed further we need to find an appropriate change of
variables of the form C ′

i = ∑N+2
j=1 VijCj + χi . Here, V should

be chosen so that Z ′
ij = 1

2πi
[C ′

i ,C
′
j ] is in skew-normal form,

while χ should be chosen so that it obeys Eq. (15). It is easy
to see that the following change of variables does the job:

C ′
1 = C1, C ′

2 = −2πQ↑, C ′
3 = 2πQ↑ + 2πQ↓,

C ′
m = Cm−2 − Cm−3, m = 4, . . . ,N + 2.

Indeed, it is easy to check that

Z ′
ij = 1

2πi
[C ′

i ,C
′
j ] =

⎛
⎜⎜⎜⎜⎜⎜⎝

0 −1 0 · · · 0

1 0 0 · · · 0

0 0 0 · · · 0
...

...
...

...
...

0 0 0 · · · 0

⎞
⎟⎟⎟⎟⎟⎟⎠

.

We can see that this is indeed in the canonical skew-normal
form shown in Eq. (14), with the parameters M = N + 2,
I = 1, d1 = 1.

We are now in a position to write down the low-energy
effective Hamiltonian Heff: according to Eq. (16), Heff must
take the form

Heff =
N∑

m=1

∑
p>0

vpa†
pmapm + F (C ′

3, . . . ,C
′
N+2), (54)

where the sum runs over p = π/s,2π/s, . . . and where F

is some quadratic function of N variables. To determine F ,
we first need to work out more concrete expressions for C ′

m.
The m = 3 case is simple: C ′

3 = 2πQ. On the other hand, for
m = 4, . . . ,N + 2, we have

C ′
m = k(φ↑(xm−2) + φ↓(xm−2)) − k(φ↑(xm−3) + φ↓(xm−3))

= k

∫ xm−2

xm−3

(∂yφ↑ + ∂yφ↓)dy,

where the second line follows from the definition of φ↑,φ↓ (27)
along with the assumption that the impurities are arranged in
the order y0 < x1 < · · · < xN in the clockwise direction.

With these expressions we can now find F . We use the same
trick as in the single impurity case: we note that the first term
in Eq. (54) can be rewritten as as

∑
m

∑
p �=0

v|p|
2 (a−pmapm),

and we observe that

lim
p→0

v|p|
2

a−pmapm = v

8πks
(C ′

m+2)2
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for m = 2, . . . ,N , while

lim
p→0

v|p|
2

a−p1ap1 = v

8πks

(
kC ′

3 −
N+2∑
m=4

Cm′

)2

.

Assuming that F reproduces the missing p = 0 piece of the
first term in Eq. (54), we deduce that

F (C ′
3, . . . ,C

′
N+2) = v

8πks

N+2∑
m=4

(C ′
m)2

+ v

8πks

(
kC ′

3 −
N+2∑
m=4

C ′
m

)2

. (55)

In addition to the effective Hamiltonian, we also need to
discuss the effective Hilbert space Heff. Applying the results
of Sec. II B, we see that Heff is spanned by states {|q,{npm}〉}
where |q,{npm}〉 is the unique simultaneous eigenstate of the
form

eiC ′
1 |q,{npm}〉 = |q,{npm}〉,

eiC ′
2 |q,{npm}〉 = |q,{npm}〉,

C ′
i |q,{npm}〉 = 2πqi−2|q,{npm}〉, i = 3, . . . ,N + 2,

a†
pmapm|q,{npm}〉 = npm|q,{npm}〉.

Here, npm runs over non-negative integers, while q is an N

component vector, q = (q1, . . . ,qN ) where each component
qi runs over all integers. As in the single-impurity case, we do
not need to label the {|q,{npm}〉} basis states with α quantum
numbers since d1 = 1 and thus there is no degeneracy.

Now that we have derived the effective theory, all that
remains is to diagonalize it. To do this, we note that the
{|q,{npm}〉} basis states are also eigenstates of Heff with
energies given by

E =
N∑

m=1

∑
p>0

vpnpm + πv

2ks

N∑
m=2

q2
m

+ πv

2ks
(kq1 − q2 − · · · − qN )2. (56)

The above equation gives the complete low-energy spectrum
of H in the limit U → ∞.

Let us now discuss the physical interpretation of these
results. As in the single-impurity case, when U → ∞, the
impurities generate perfect backscattering, effectively recon-
necting the edge modes. The result, as shown in Fig. 3(b), is
the formation of N disconnected chiral modes living in the N

intervals, [xN,x1],[x1,x2], . . . ,[xN−1,xN ].
With this picture in mind, the npm quantum numbers have

a natural interpretation as the number of phonon excitations
with momentum p on the mth disconnected component of
the edge. Likewise, if we examine the definition of qm, we
can see that qm/k is equal to the total charge in the mth
component of the edge, i.e., the total charge in the interval
[xm−1,xm], for m = 2, . . . ,N . On the other hand, the quantum
number q1 is slightly different: q1 is equal to the total charge
on the entire boundary of the disk [−L/2,L/2]. Note that
since qm is quantized to be an integer for all m = 1, . . . ,N , it
follows that the charge in each interval [xm−1,xm] is quantized

in integer multiples of 1/k while the total charge on the whole
edge is quantized as an integer. These quantization laws are
physically sensible: indeed, the fractional quantum spin Hall
state supports quasiparticle excitations with charge 1/k, so it
makes sense that disconnected components of the edge can
carry such charge, but at the same time we also know that the
total charge on the boundary must be an integer.

Putting this all together, we see that the first term in (56)
can be interpreted as the energy of the phonon excitations,
summed over all momenta and all disconnected components
of the edge. Similarly, the second term can be interpreted as
the charging energy of the disconnected components labeled
by m = 2, . . . ,N , while the third term can be interpreted as
the charging energy of the first component labeled by m = 1.

So far, in this section, we have considered magnetic
impurities, which backscatter spin-up electrons into spin-down
electrons. These impurities explicitly break time-reversal
symmetry. However, one can also consider nonmagnetic impu-
rities, which preserve time-reversal symmetry and backscatter
pairs of spin-up electrons into pairs of spin-down electrons.
When the scattering strength U is sufficiently strong these
impurities can cause a spontaneous breaking of time-reversal
symmetry, leading to a twofold degenerate ground state
[22,30,31]. This physics can also be captured by an appropriate
toy model and we provide an example in Appendix H.

D. Example 3: Multiple magnetic and superconducting
impurities

We now consider a fractional quantum spin Hall edge
in a disk geometry of circumference L with 2N alternating
magnetic and superconducting impurities. We take the mag-
netic impurities to be located at positions x1,x3, . . . ,x2N−1

while the superconducting impurities are located at posi-
tions x2,x4, . . . ,x2N [Fig. 4(a)]. We assume that the mag-
netic impurities generate a backscattering term of the form
U
2 (ψ†

↑(0)ψ↓(0) + H.c.), while the superconducting impurities

(a) (b)

FQSH FQSH

x1

x2

x2N

x3

FIG. 4. (a) A collection of 2N alternating magnetic and su-
perconducting impurities on a fractional quantum spin Hall edge.
The magnetic impurities are located at positions x1,x3, . . . .,x2N−1,
while the superconducting impurities are located at positions
x2,x4, . . . ,x2N . The magnetic impurities scatter spin-up electrons
into spin-down electrons while the superconducting impurities scatter
spin-up electrons into spin-down holes. (b) In the infinite U limit, the
impurities effectively reconnect the edge modes, breaking the edge
into 2N disconnected components.
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generate a pairing term of the form U
2 (ψ†

↑(0)ψ†
↓(0) + H.c.).

The Hamiltonian is then

H = H0 − U

2N∑
i=1

cos(Ci), (57)

Ci = k(φ↑(xi) + (−1)i+1φ↓(xi)), (58)

where H0 is defined in Eq. (31).
As in the previous cases, our goal is to understand the

low-energy physics of H in the limit U → ∞. As before, we
take account of the compactness of φ↑,φ↓ and the discrete
nature of Q↑,Q↓ by adding two additional cosine terms to our
Hamiltonian:

H = H0 − U

2N∑
i=1

cos(Ci) − U cos(2πQ↑) − U cos(2πQ↓).

(59)
Next, we find the creation and annihilation operators for

Heff using Eq. (11). That is, we search for all operators a such
that (1) a is a linear combination of our fundamental phase
space operators {∂yφ↑,∂yφ↓,φ↑(y0),φ↓(y0)} and (2) a obeys

[a,H0] = Ea +
2N∑
i=1

λi[Ci,H0] + λ↑[Q↑,H0] + λ↓[Q↓,H0],

(60)
[a,Cj ] = [a,Q↑] = [a,Q↓] = 0

for some E,λi,λ↑,λ↓ with E �= 0.
As before, since [a,Q↑] = [a,Q↓] = 0, it follows that

φ↑(y0),φ↓(y0) cannot appear in the expression for a. Hence
a can be written in the general form

a =
∫ L/2

−L/2
[f↑(y)∂yφ↑(y) + f↓(y)∂yφ↓(y)]dy.

Substituting this expression into the first line of Eq. (60), we
obtain

−ivf ′
↑(y) = Ef↑ + kiv

∑
j

λj δ(y − xj ),

ivf ′
↓(y) = Ef↓ − kiv

∑
j

(−1)j+1λjδ(y − xj ).

Solving the above first-order differential equation, we get

f↑(y) =
N∑

j=1

Aje
ipy�(xj−1 < y < xj )],

f↓(y) =
N∑

j=1

Bje
−ipy�(xj−1 < y < xj )],

where p = E/v and where

Aj+1 = Aj − λjke−ipxj , Bj+1 = Bj − (−1)j+1λjkeipxj .

Here, �(a < y < b) is defined to take the value 1 if y is in
the interval [a,b] and 0 otherwise. Also, we use a notation in
which x0 is identified with xN . Eliminating λj , we derive

(Aj+1 − Aj )eipxj = (−1)j+1(Bj+1 − Bj )e−ipxj . (61)

We still have to impose the requirement [a,Cj ] = 0 and
derive the corresponding constraint on {Aj,Bj }. As in the
previous cases, the correct way to do this is to regularize the
cosine terms, replacing

Cj →
∫ L/2

−L/2
k(φ↑(x) + (−1)j+1φ↓(x))δ̃(x − xj )dx, (62)

where δ̃ is a narrowly peaked function with
∫

δ̃(x)dx = 1, i.e.,
an approximation to a delta function. With this regularization,
it is not hard to show that [a,Cj ] = 0 gives the constraint

1
2 (Aj + Aj+1)eipxj = 1

2 (−1)j+1(Bj + Bj+1)e−ipxj . (63)

Combining (61) and (63), we derive

Aje
ipxj = (−1)j+1Bje

−ipxj ,
(64)

Aj+1e
ipxj = (−1)j+1Bj+1e

−ipxj .

Our task is now to find all {Aj,Bj ,p} that satisfy (64). For
simplicity, we will specialize to the case where the impurities
are uniformly spaced with spacing s, i.e., xj+1 − xj = s =
L/N for all j . In this case, Eq. (53) implies that e2ips = −1,
so that p is quantized in half-odd-integer multiples of π/s. For
any such p, (53) has N linearly independent solutions of the
form

Bj = Aj = 0 for j �= m,

Bj = (−1)j+1Aje
2ipxj �= 0 for j = m

with m = 1, . . . ,2N .
Putting this all together, we see that the most general

possible creation/annihilation operator for Heff is given by

apm =
∫ L/2

−L/2
[(eipy∂yφ↑ + (−1)m+1e2ipxme−ipy∂yφ↓)

×�(xm−1 < y < xm)]dy

√
k

4π |p|s
with Epm = vp. Here, the index m runs over m = 1, . . . ,2N ,
while p takes values ±π/2s, ± 3π/2s, . . . . Note that we have
normalized the a operators so that [apm,a

†
p′m′] = δpp′δmm′ for

p,p′ > 0.
The next step is to compute the commutator matrix

Zij = 1
2πi

[Ci,Cj ]. Let us denote the 2N + 2 cosine terms
as {cos(C1), . . . , cos(C2N+2)}, where C2N+1 = 2πQ↑ and
C2N+2 = 2πQ↓. Using the commutation relations (30), we
find

Zij =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

0 k 0 k · · · 0 k 1 −1
−k 0 k 0 · · · k 0 1 1

0 −k 0 k · · · 0 k 1 −1
−k 0 −k 0 · · · k 0 1 1

...
...

...
...

...
...

...
...

...
0 −k 0 −k · · · 0 k 1 −1

−k 0 −k 0 · · · −k 0 1 1
−1 −1 −1 −1 · · · −1 −1 0 0

1 −1 1 −1 · · · 1 −1 0 0

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

.

To proceed further we need to find an appropriate change of
variables of the form C ′

i = ∑N+2
j=1 VijCj + χi . Here, V should
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be chosen so that Z ′
ij = 1

2πi
[C ′

i ,C
′
j ] is in skew-normal form,

while χ should be chosen so that it obeys Eq. (15). It is easy
to see that the following change of variables does the job:

C ′
m = C2m+1 − C2m−1, m = 1, . . . ,N − 1,

C ′
N = 2πQ↑ + 2πQ↓, C ′

N+1 = C1,

C ′
m = C2m−2N−2 − C2N, m = N + 2, . . . ,2N,

C ′
2N+1 = C2N − C1 − 2πkQ↑ + π, C ′

2N+2 = −2πQ↑,

Indeed, it is easy to check that

Z ′
ij = 1

2πi
[C ′

i ,C
′
j ] =

(
0N+1 −D
D 0N+1

)
,

where D is the N + 1 dimensional diagonal matrix

D =

⎛
⎜⎜⎜⎜⎝

2k 0 · · · 0 0
0 2k · · · 0 0
...

...
...

...
...

0 0 · · · 2 0
0 0 · · · 0 1

⎞
⎟⎟⎟⎟⎠.

We can see that this is in the canonical skew-normal form
shown in Eq. (14), with the parameters M = 2N + 2, I =
N + 1, and

d1 = · · · = dN−1 = 2k, dN = 2, dN+1 = 1.

With these results we can write down the low-energy
effective Hamiltonian Heff: according to Eq. (16), Heff must
take the form

Heff =
2N∑

m=1

∑
p>0

vpa†
pmapm, (65)

where the sum runs over p = π/2s,3π/2s, . . . . Notice that
Heff does not include a term of the form F (C ′

2I+1, . . . ,C
′
M ),

which was present in the previous examples. The reason that
this term is not present is that M = 2I in this case—that is,
none of the C ′

i terms commute with all the other C ′
j . This is

closely related to the fact that the momentum p is quantized
in half-odd integer multiples of π/2s so unlike the previous
examples, we cannot construct an operator apm with p = 0
(sometimes called a “zero mode” operator).

Let us now discuss the effective Hilbert space Heff.
According to the results of Sec. II B, the effective Hilbert
space Heff is spanned by states {|α,{npm}〉} where |α,{npm}〉
is the unique simultaneous eigenstate of the form

eiC ′
i /2k|α,{npm}〉 = eiπαi/k|α,{npm}〉, i = 1, . . . ,N − 1,

eiC ′
N/2|α,{npm}〉 = eiπαN |α,{npm}〉,

eiC ′
N+1 |α,{npm}〉 = |α,{npm}〉,
eiC ′

i |α,{npm}〉 = |α,{npm}〉, i = N + 2, . . . ,2N + 2,

a†
pmapm|α,{npm}〉 = npm|α,{npm}〉. (66)

Here, the label npm runs over non-negative integers, while
α is an abbreviation for the N component integer vector
(α1, . . . ,αN ), where αN runs over two values {0,1}, and the
other αi’s run over {0,1 . . . ,2k − 1}.

As in the previous cases, we can easily diagonalize the
effective theory: clearly the {|α,{npm}〉} basis states are also
eigenstates of Heff with energies given by

E =
N∑

m=1

∑
p>0

vpnpm. (67)

The above equation gives the complete low-energy spectrum
of H in the limit U → ∞.

An important feature of the above energy spectrum (67) is
that the energy E is independent of α. It follows that every
state, including the ground state, has a degeneracy of

D = 2 (2k)N−1 (68)

since this is the number of different values that α ranges over.
We now discuss the physical meaning of this degeneracy.

As in the previous examples, when U → ∞, the impuri-
ties reconnect the edge modes, breaking the edge up into
2N disconnected components associated with the intervals
[x2N,x1],[x1,x2], . . . ,[x2N−1,x2N ] [Fig. 4(b)]. The npm quan-
tum numbers describe the number of phonon excitations of
momentum p in the mth component of the edge. The α

quantum numbers also have a simple physical interpretation.
Indeed, if we examine the definition of α (66), we can see
that for i �= N , eiπαi/k = eiπqi , where qi is the total charge in
the interval [x2i−1,x2i+1], while eiπαN = eiπq where q is the
total charge on the edge. Thus, for i �= N , αi/k is the total
charge in the interval [x2i−1,x2i+1] modulo 2, while αN is the
total charge on the edge modulo 2. The quantum number αN

ranges over two possible values {0,1} since the total charge
on the edge must be an integer while the other αi’s range over
2k values {0,1, . . . ,2k − 1} since the fractional quantum spin
Hall state supports excitations with charge 1/k and hence the
charge in the interval [x2i−1,x2i+1] can be any integer multiple
of this elementary value.

It is interesting to compare our formula for the degen-
eracy (68) to that of Refs. [23–27]. Those papers studied
a closely related system consisting of a FQSH edge in
proximity to alternating ferromagnetic and superconducting
strips [Fig. 5(a)]. The authors found that this related system
has a ground-state degeneracy of D = (2k)N−1, which agrees
exactly with our result, since Refs. [23–27] did not include the

SC  

FQSH

(a) (b) (c)

FQSH FQSH

FIG. 5. (a) A fractional quantum spin Hall edge in proximity
to alternating ferromagnetic and superconducting strips. (b) and
(c) By shrinking the size of the ferromagnetic and superconduct-
ing strips while at the same time increasing the strength of the
proximity coupling, we can continuously deform the system into a
fractional quantum spin Hall edge with magnetic and superconducting
impurities.
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twofold degeneracy associated with fermion parity. In fact, it is
not surprising that the two systems share the same degeneracy
since one can tune from their system to our system by shrinking
the size of the ferromagnetic and superconducting strips while
at the same time increasing the strength of the proximity
coupling [see Figs. 5(b) and 5(c)].

Although our system shares the same degeneracy as the
one studied in Refs. [23–27], one should keep in mind that
there is an important difference between the two degeneracies:
the degeneracy in Refs. [23–27] is topologically protected
and cannot be split by any local perturbation, while our
degeneracy is not protected and splits at any finite value of
U , as we explain in the next section. That being said, if
we modify our model in a simple way, we can capture the
physics of a topologically protected degeneracy. In particular,
the only modification we would need to make is to replace
each individual magnetic impurity with a long array of many
magnetic impurities, and similarly we would replace each
individual superconducting impurity with a long array of many
superconducting impurities. After making this change, the
degeneracy would remain nearly exact even at finite U , with
a splitting which is exponentially small in the length of the
arrays.

E. Finite U corrections

In the previous sections, we analyzed the low-energy
physics of three different systems in the limit U → ∞. In
this section, we discuss how these results change when U is
large but finite.

1. Single magnetic impurity

We begin with the simplest case: a single magnetic impurity
on the edge of a ν = 1/k fractional quantum spin Hall state.
We wish to understand how finite U corrections affect the
low-energy spectrum derived in Sec. III B.

We follow the approach outlined in Sec. II D. According
to this approach, the first step is to construct the operator
	 which is conjugate to the argument of the cosine term,
C = k(φ↑(0) + φ↓(0)). To do this, we regularize C as in
Eq. (40), replacing C → ∫ L/2

−L/2 k(φ↑(x) + φ↓(x))δ̃(x)dx. For

concreteness, we choose the regulated δ function δ̃ to be

δ̃(x) =
{

1
b

|x| � b/2

0 |x| > b/2
.

With this regularization, we find

[C,H0] = kvi

b

∫ b/2

−b/2
(∂xφ↑ − ∂xφ↓)dx,

[C,[C,H0]] = −4πkv

b
,

so that

M = πb

kv
, 	 = 1

2

∫ b/2

−b/2
(∂xφ↑ − ∂xφ↓)dx.

According to Eq. (23), the low-energy theory at finite
U is obtained by adding terms to Heff (46) of the form∑n=∞

n=−∞ ein	εn({ap,a
†
p},C ′

3). Here, the εn are some unknown

functions whose precise form cannot be determined without
more calculation. We should mention that the εn functions also
depend on U—in fact, εn → 0 as U → ∞—but for notational
simplicity we have chosen not to show this dependence
explicitly. In what follows, instead of computing εn, we take a
more qualitative approach: we simply assume that εn contains
all combinations of ap,a

†
p,C ′

3 that are not forbidden by locality
or other general principles, and we derive the consequences of
this assumption.

The next step is to analyze the effect of the above terms
on the low-energy spectrum. This analysis depends on which
parameter regime one wishes to consider; here, we focus on
the limit where L → ∞, while U is fixed but large. In this
case, Heff (46) has a gapless spectrum, so we cannot use
conventional perturbation theory to analyze the effect of the
finite U corrections; instead we need to use a renormalization
group (RG) approach. This RG analysis has been carried out
previously [11,12] and we will not repeat it here. Instead, we
merely summarize a few key results: first, one of the terms
generated by finite U , namely, ei	, is relevant for k > 1
and marginal for k = 1. Second, the operator ei	 can be
interpreted physically as describing a quasiparticle tunneling
event where a charge 1/k quasiparticle tunnels from one side
of the impurity to the other. Third, this operator drives the
system from the U = ∞ fixed point to the U = 0 fixed point.

These results imply that when k > 1, for any finite U , the
low-energy spectrum in the thermodynamic limit L → ∞ is
always described by the U = 0 theory H0. Thus, in this case,
the finite U corrections have an important effect on the low-
energy physics. We note that these conclusions are consistent
with the RG analysis of magnetic impurities given in Ref. [32].

2. Multiple magnetic impurities

We now move on to consider a system of N equally spaced
magnetic impurities on an edge of circumference L. As in the
single impurity case, the first step in understanding the finite U

corrections is to compute the 	i operators that are conjugate
to the Ci’s. Regularizing the cosine terms as in the previous
case, a straightforward calculation gives

Mij = πb

kv
δij , 	i = 1

2

∫ xi+b/2

xi−b/2
(∂xφ↑ − ∂xφ↓)dx,

where i,j = 1, . . . ,N [33].
According to Eq. (23), the finite U corrections contribute

additional terms to Heff (54) of the form
∑

n ei
∑N

j=1 nj 	j εn

where n = (n1, . . . ,nN ) is an N -component integer vec-
tor. Here, εn is some unknown function of the operators
{apm,a

†
pm,C ′

m} which vanishes as U → ∞.
We now discuss how the addition of these terms affects the

low-energy spectrum in two different parameter regimes. First,
we consider the limit where L → ∞ with U and N fixed.
This case is a simple generalization of the single impurity
system discussed above, and it is easy to see that the same
renormalization group analysis applies here. Thus, in this limit,
the finite U corrections have a dramatic effect for k > 1 and
cause the low-energy spectrum to revert back to the U = 0
system for any finite value of U , no matter how large.

The second parameter regime that we consider is where
L,N → ∞ with U and L/N fixed. The case is different from
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the previous one because Heff (54) has a finite energy gap in
this limit (of order v/s, where s = L/N). Furthermore, Heff

has a unique ground state. These two properties are stable
to small perturbations, so we conclude that the system will
continue to have a unique ground state and an energy gap for
finite but sufficiently large U .

The presence of this energy gap at large U is not surprising.
Indeed, in the above limit, our system can be thought of as
a toy model for a fractional quantum spin Hall edge that is
proximity coupled to a ferromagnetic strip. It is well known
that a ferromagnet can open up an energy gap at the edge if the
coupling is sufficiently strong [22,32], which is exactly what
we have found here.

3. Multiple magnetic and superconducting impurities

Finally, let us discuss a system of 2N equally spaced
alternating magnetic and superconducting impurities on an
edge of circumference L. As in the previous cases, the first
step in understanding the finite U corrections is to compute
the 	i operators that are conjugate to the Ci’s. Regularizing
the cosine terms as in the previous cases, a straightforward
calculation gives

Mij = πb

kv
δij ,

	i = 1

2

∫ xi+b/2

xi−b/2
(∂xφ↑ − (−1)i+1∂xφ↓)dx,

where i,j = 1, . . . ,2N .
As a first step towards understanding the finite U cor-

rections, we consider a scenario in which only one of the
impurities/cosine terms has a finite coupling constant U ,
while the others have a coupling constant which is infinitely
large. This scenario is easy to analyze because we only
have to include the corrections associated with a single
impurity. For concreteness, we assume that the impurity in
question is superconducting rather than magnetic and we
label the corresponding cosine term by cos(C2j ) (in our
notation the superconducting impurities are labeled by even
integers). Having made these choices, we can immediately
write down the finite U corrections: according to Eq. (23),
these corrections take the form

∞∑
n=−∞

ein	2j εn({apm,a†
pm}),

where the εn are some unknown functions which vanish as
U → ∞.

Our next task is to understand how these corrections affect
the low-energy spectrum. The answer to this question depends
on which parameter regime one wishes to study: here we will
focus on the regime where L,N → ∞ with L/N and U fixed.
In this limit, Heff (65) has a finite energy gap of order v/s

where s = L/N . At the same time, the ground state is highly
degenerate: in fact, the degeneracy is exponentially large in the
system size, growing as D = 2 · (2k)N−2. Given this energy
spectrum, it follows that at the lowest-energy scales, the only
effect of the finite U corrections is to split the ground-state
degeneracy.

To analyze this splitting, we need to compute the matrix
elements of the finite U corrections between different ground
states and then diagonalize the resulting D × D matrix. Our
strategy will be to use the identity (26), which relates the matrix
elements of the finite U corrections to the matrix elements of
eni�2j . Following this approach, the first step in our calculation
is to compute �2j . Using the definition (24), we find

�2j = 1

2k
(C2j+1 − C2j−1)

assuming j �= N . (The case j = N is slightly more com-
plicated due to our conventions for describing the periodic
boundary conditions at the edge, so we will assume j �= N in
what follows.)

The next step is to find the matrix elements of the operator
ein�2j between different ground states. To this end, we rewrite

�2j in terms of the C ′
i operators: �2j = C ′

j

2k
. The matrix

elements of ein�2j can now be computed straightforwardly
using the known matrix elements of C ′

j [see Eqs. (D7) and
(D8)]:

〈α′|ein�2j |α〉 = e
πinαj

k δα′α, (69)

where |α〉 denotes the ground state |α〉 ≡ |α,n = 0〉.
At this point, we apply the identity (26), which states that

the matrix elements of ein	2j εn({apm,a
†
pm}) are equal to the

matrix elements of un · ein�2j where un is some unknown
proportionality constant. Using this identity together with (69),
we conclude that the matrix elements of the finite U corrections
are given by

f

(
αj

k

)
δα′α,

where f (x) = ∑∞
n=−∞ une

πinx .
We are now in position to determine the splitting of the

ground states. To do this, we note that while we don’t know
the values of the un constants and therefore we don’t know
f (x), we expect that generically the function f will have a
unique minimum for αj ∈ {0,1, . . . ,2k − 1}. Assuming this
is the case, we conclude that the finite U corrections favor
a particular value of αj , say αj = 0. Thus these corrections
reduce the ground-state degeneracy from D to D/2k.

So far, we have analyzed the case where one of the su-
perconducting impurities is characterized by a finite coupling
constant U while the other impurities are at infinite coupling.
Next, suppose that all the superconducting impurities have
finite U , while all the magnetic impurities have infinite U .
In this case, similar analysis as above shows that the matrix
elements of the finite U corrections are of the following form
[34]: ⎡

⎣N−1∑
j=1

f

(
αj

k

)
+ f

⎛
⎝αN − 1

k

N−1∑
j=1

αj

⎞
⎠

⎤
⎦δα′α. (70)

To determine the splitting of the ground states, we need to
understand the eigenvalue spectrum of the above matrix. Let us
assume that f has a unique minimum at some αj = q—which
is what we expect generically. Then, as long as the system
size is commensurate with this value in the sense that Nq is a
multiple of k, we can see that the above matrix has a unique
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ground state |α〉 with α1 = · · · = αN−1 = q and αN = Nq/k

(mod 2). Furthermore, this ground state is separated from the
lowest excited states by a finite gap, which is set by the function
f . Thus, in this case, the finite U corrections completely split
the ground-state degeneracy leading to a unique ground state
with an energy gap.

Likewise, we can consider the opposite scenario where the
magnetic impurities have finite U , while the superconducting
impurities have infinite U . Again, similar analysis shows that
the corrections favor a unique ground state, which is separated
from the excited states by a finite gap. The main difference
from the previous case is that the matrix elements of the finite
U corrections are off-diagonal in the |α〉 basis so the ground
state is a superposition of many different |α〉 states.

To complete the discussion, let us consider the case
where all the impurities, magnetic and superconducting, have
finite U . If the magnetic impurities are at much stronger
coupling than the superconducting impurities or vice versa
then presumably the finite U corrections drive the system to
one of the two gapped phases discussed above. On the other
hand, if the two types of impurities have comparable values
of U , then the low-energy physics is more delicate since the
finite U corrections associated with the two types of impurities
do not commute with one other, i.e., [ei�2j ,ei�2j±1 ] �= 0. In this
case, a more quantitative analysis is required to determine the
fate of the low-energy spectrum.

IV. CONCLUSION

In this paper, we have presented a general recipe for
computing the low-energy spectrum of Hamiltonians of the
form (1) in the limit U → ∞. This recipe is based on the
construction of an effective Hamiltonian Heff and an effective
Hilbert space Heff describing the low-energy properties of our
system in the infinite U limit. The key reason that our approach
works is that this effective Hamiltonian is quadratic, so there
is a simple procedure for diagonalizing it.

While our recipe gives exact results in the infinite U limit,
it provides only approximate results when U is finite; in order
to obtain the exact spectrum in the finite U case, we need
to include additional (nonquadratic) terms in Heff. As part
of this work, we have discussed the general form of these
finite U corrections and how they scale with U . However, we
have not discussed how to actually compute these corrections.
One direction for future research would be to develop
quantitative approaches for obtaining these corrections—for
example, using the instanton approach outlined in Ref. [35].

Some of the most promising directions for future work
involve applications of our formalism to different physical
systems. In this paper, we have focused on the application
to Abelian fractional quantum Hall edges, but there are
several other systems where our formalism could be useful.
For example, it would be interesting to apply our methods
to superconducting circuits—quantum circuits built out of
inductors, capacitors, and Josephson junctions. In particular,
several authors have identified superconducting circuits with
protected ground-state degeneracies that could be used as
qubits [36–39]. The formalism developed here might be useful
for finding other circuits with protected degeneracies.
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APPENDIX A: DERIVATION OF LOW-ENERGY
EFFECTIVE THEORY

In this appendix, we derive an effective theory that describes
the low-energy spectrum of H (1) in the limit U → ∞. More
specifically, we show that the low-energy spectrum of H in the
infinite U limit is described by the effective Hamiltonian Heff

(2), which is defined within the effective Hilbert space Heff

(5). Before proving this result in generality, we first derive it
for two illustrative examples in Appendix A 1 and a special
case in Appendix A 2. Finally, after this preparation, we work
out the general case in Appendix A 3.

1. Two examples

a. Harmonic oscillator with a cosine term

To understand the basic ideas underlying the derivation,
it is helpful to consider some simple examples. We start by
studying a one-dimensional harmonic oscillator with a cosine
term:

H = p2

2m
+ Kx2

2
− U cos(2πx). (A1)

In the following, we derive an effective Hamiltonian Heff

and effective Hilbert space Heff that describe the low-energy
spectrum of H in the limit U → ∞.

To begin, we decompose H into two pieces, H = H1 + H2,
where

H1 = p2

2m
− U cos(2πx), H2 = Kx2

2
. (A2)

Our strategy is as follows: first, we show that when U is
large, H1 has a collection of nearly degenerate ground states,
which are separated from the lowest excited states by a large
gap. Next, we argue that we can treat H2 as a perturbation
which splits the ground-state degeneracy of H1. Finally,
using degenerate perturbation theory, we derive a low-energy
effective Hamiltonian for our system.

Following this plan, we start with the Hamiltonian H1. This
Hamiltonian describes a one dimensional particle moving in a
cosine potential. The low-energy physics of H1 is especially
simple when U is large. In this case, tunneling between the
different cosine minima is suppressed so that H1 has an infinite
set of nearly degenerate ground states—one for each cosine
minimum. We will label these states as {|ψq〉} where |ψq〉
is localized around the minimum x = q and q = 0, ± 1, ±
2, . . . .

We can estimate the energy gap of H1 by expanding
the cosine potential to quadratic order in x: U cos(2πx) ≈
U (1 − 2π2x2). In this approximation, the cosine potential
is equivalent to a harmonic oscillator with frequency ω =
2π

√
U/m. In particular, it follows that the ground states of

H1 are separated from the lowest excited states by an energy
gap � of order � ∼ √

U/m.
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Now let us imagine adding H2 to H1. We would like to know
how H2 splits the degeneracy between the ground states |ψq〉.
To answer this question, we will treat H2 as a perturbation to
H1 and then we will compute the associated energy splitting
using degenerate perturbation theory. However, before we do
this, we first need to check that such a perturbative approach
is justified in the infinite U limit. To this end, we need to
estimate the size of the matrix element 〈ψex |H2|ψq〉 where
|ψq〉 is an arbitrary ground state and |ψex〉 is an arbitrary
excited state of H1. For large U , we can approximate |ψq〉 by
a harmonic oscillator ground state centered at position x = q.
Similarly, we can approximate |ψex〉 by the nth excited state
of the harmonic oscillator centered at x = q. Within this
approximation, the matrix element 〈ψex |H2|ψq〉 reduces to

〈ψex |H2|ψq〉 ≈ 〈n|K(x + q)2|0〉, (A3)

where |0〉 and |n〉 are the ground state and nth excited state
of a harmonic oscillator with frequency ω = 2π

√
U/m,

centered at x = 0. The latter matrix element can be evaluated
easily with the result

〈n|K(x + q)2|0〉 ∼

⎧⎪⎪⎨
⎪⎪⎩

Kq

(mU )1/4 if n = 1

K√
mU

if n = 2

0 if n � 3

.

Combining this expression with our formula for the energy
gap �, we obtain∑

|ψex 〉

|〈ψex |H2|ψq〉|2
�

∼ K2q2

U
(A4)

in the large U limit. This estimate is significant because the
left-hand side of (A4) is proportional to the second-order
perturbative correction to the ground-state energies. Evidently,
this correction vanishes as U → ∞, so we conclude that
first-order perturbation theory gives exact results in this limit.

With this justification, we now proceed with the perturbative
calculation. According to first-order degenerate perturbation
theory, the energy splitting of the ground states can be
determined by diagonalizing the matrix 〈ψq ′ |H2|ψq〉. When
U is large, |ψq〉 can be approximated as a Gaussian wave
function, centered at x = q. The width of this Gaussian is
given by

(�x)2 ∼ 1

mω
∼ 1√

mU
.

We see that as U → ∞, (�x)2 → 0 so that |ψq〉 approaches
a position eigenstate: |ψq〉 → |x = q〉. We conclude that the
low-energy spectrum of H can be obtained by diagonalizing
the matrix 〈q ′|H2|q〉.

At this point, our calculation is essentially complete: the
matrix elements 〈q ′|H2|q〉 define our low-energy effective
Hamiltonian, while the ground-state subspace spanned by
{|q〉} defines our low-energy Hilbert space. In other words,
the low-energy effective Hamiltonian is given by

Heff = H2 = Kx2

2
, (A5)

while the low-energy effective Hilbert space Heff is the
subspace spanned by position eigenstates {|q〉} for q = 0, ±

1, ± 2 . . . . Clearly, this effective theory is valid for energies
smaller than the gap of H1, i.e., E < 2π

√
U/m.

Comparing these expressions with the effective Hamilto-
nian and Hilbert space from Sec. II A, we see that they agree
exactly. Thus we have successfully established Eqs. (2) and
(5) for this example.

b. Harmonic oscillator with two cosine terms

Another important illustrative example is given by a one-
dimensional harmonic oscillator with two cosine terms:

H = p2

2m
+ Kx2

2
− U cos(dp) − U cos(2πx). (A6)

Here, d is a positive integer.
Before analyzing H , we need to choose an appropriate

basis in which to represent it. Because the arguments of the
two cosine terms do not commute with one another, neither
the position basis nor the momentum basis are particularly
convenient choices. Instead, we find it helpful to work in
a third basis, which consists of simultaneous eigenstates of
the commuting operators eip,e2πix . We will denote these
simultaneous eigenstates by |θ,ϕ〉 where

eip|θ,ϕ〉 = eiθ |θ,ϕ〉, e2πix |θ,ϕ〉 = eiϕ |θ,ϕ〉. (A7)

Here, the labels θ,ϕ take values in 0 � θ,ϕ < 2π . The explicit
formula for |θ,ϕ〉 is

|θ,ϕ〉 = 1√
2π

∑
j

eijθ

∣∣∣∣j + ϕ

2π

〉
, (A8)

where |j + ϕ

2π
〉 denotes the position eigenstate at position x =

j + ϕ

2π
.

We now work out what the Hamiltonian H looks like in
the θ,ϕ representation. The first step is to express the x,p

operators in terms of θ,ϕ. To this end, we observe that

eiax |θ,ϕ〉 = eiaϕ/2π |θ + a,ϕ〉,
eiap|θ,ϕ〉 = |θ,ϕ − 2πa〉.

Differentiating these equations with respect to a, we derive

x|θ,ϕ〉 =
(

1

i

∂

∂θ
+ ϕ

2π

)
|θ,ϕ〉,

p|θ,ϕ〉 = −2π

i

∂

∂ϕ
|θ,ϕ〉.

From these equations, we deduce that

〈θ,ϕ|x|ψ〉 =
(

−1

i

∂

∂θ
+ ϕ

2π

)
〈θ,ϕ|ψ〉,

〈θ,ϕ|p|ψ〉 = 2π

i

∂

∂ϕ
〈θ,ϕ|ψ〉

for any state |ψ〉. We conclude that in the θ,ϕ representation,
the operators x,p take the form

x = −1

i

∂

∂θ
+ ϕ

2π
, p = 2π

i

∂

∂ϕ

or equivalently

x = −pθ + ϕ

2π
, p = 2πpϕ, (A9)

where pθ ≡ 1
i

∂
∂θ

and pϕ ≡ 1
i

∂
∂ϕ

.
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The next step is to find expressions for e2πix and eip in
terms of θ,ϕ. One way to do this is to exponentiate (A9):

e2πix = e−2πipθ +iϕ, eip = e2πipϕ .

We then make use of two operator identities, which we will
prove shortly:

e2πipθ = 1, e2πipϕ = eiθ . (A10)

With these identities, we can simplify the expressions for e2πix

and eip to

e2πix = eiϕ, eip = eiθ . (A11)

[Alternatively, we could also have derived (A11) directly from
(A7).] The proof of the identities (A10) relies on the following
observations:

e2πipθ |θ,ϕ〉 = |θ − 2π,ϕ〉, e2πipϕ |θ,ϕ〉 = |θ,ϕ − 2π〉
and

|θ − 2π,ϕ〉 = |θ,ϕ〉, |θ,ϕ − 2π〉 = eiθ |θ,ϕ〉.
Putting these together, we deduce that

e2πipθ |θ,ϕ〉 = |θ,ϕ〉, e2πipϕ |θ,ϕ〉 = eiθ |θ,ϕ〉.
Since these relations hold for all basis states, they imply the
operator identities (A10).

We now have all the ingredients to write the Hamiltonian
H in terms of θ,ϕ: combining (A9) and (A11), we derive

H = 4π2p2
ϕ

2m
+ K(pθ − ϕ/2π )2

2
−U cos(dθ ) − U cos(ϕ). (A12)

This Hamiltonian is defined on a Hilbert space consisting
of wave functions ψ(θ,ϕ) with 0 � θ,ϕ < 2π . To find the
boundary conditions for these wave functions, we use the
identities

|θ,2π〉 = e−iθ |θ,0〉, |2π,ϕ〉 = |0,ϕ〉,
which follow from the definition of |θ,ϕ〉. These identities im-
ply that our wave functions ψ satisfy the boundary conditions

ψ(θ,2π ) = eiθψ(θ,0), ψ(2π,ϕ) = ψ(0,ϕ). (A13)

So far, all we have done is derive the θ,ϕ representation
(A12) of the Hamiltonian and the Hilbert space (A13). We
now use this representation to find the low-energy spectrum
of H in the large U limit. To begin, we note that H can be
thought of as describing a particle on a torus parameterized
by θ,ϕ. This particle is coupled to a vector potential and two
cosine potentials. Now consider the limit where U is large.
In this limit, tunneling between the different cosine minima
is suppressed, so we conclude that H has a set of nearly
degenerate ground states, each of which is localized in a dif-
ferent minimum. There are d different cosine minima located
at positions (θ,ϕ) = (2πα/d,0), with α = 0,1, . . . ,d − 1, so
H has d ground states. We will label these states by |ψα〉.

To estimate the energy gap separating the ground states
from the lowest excited states, we expand the cosine potentials
to quadratic order. In this approximation, H reduces to a sum of
two decoupled harmonic oscillators with frequencies

√
U/m

and
√

UK . We conclude that the energy gap is of order � ∼
min(

√
U/m,

√
UK).

Let us now translate these results into the language of
effective Hamiltonians. We have seen that H has d ground
states |ψα〉. We have also seen that these states are separated
from the excited states by a large gap �. Furthermore, it is
easy to see that when U → ∞, the width of |ψα〉 becomes
vanishingly small, so that |ψα〉 approaches the state |θ =
2πα
d

,ϕ = 0〉:

|ψα〉 →
∣∣∣∣θ = 2πα

d
,ϕ = 0

〉
.

Putting this all together, we conclude that the low-energy
spectrum of H is described by an effective Hamiltonian,
Heff = 0 defined within an effective d-dimensional Hilbert
space Heff spanned by the states |θ = 2πα

d
,ϕ = 0〉, with

α = 0,1, . . . ,d − 1. This effective description is valid for
energies E < �. (Here, the reason we use Heff = 0 rather than
Heff = const is that we only interested in energy differences
and therefore we are free to redefine the ground state energy to
be 0.) Comparing these results with the effective Hamiltonian
and Hilbert space from Sec. II A, we can see that there is exact
agreement.

2. Special case

We now generalize the example of Appendix A 1 a to a
Hamiltonian of the form

H = H0 − U

M∑
i=1

cos(2πxi), (A14)

defined on the 2N dimensional phase space
{x1, . . . ,xN ,p1, . . . ,pN } with [xi,pj ] = iδij . Here, H0

is an arbitrary positive semidefinite quadratic function of
{x1, . . . ,xN ,p1, . . . ,pN } with the only restriction being that
the M × M matrix

Nij = −[xi,[xj ,H0]] (A15)

is nondegenerate.
Following the same outline as in the previous sections, we

first derive an effective Hamiltonian and effective Hilbert space
that describe the low-energy spectrum of H in the infinite U

limit, and then we show that this effective theory agrees with
the general expressions from Eq. (2) and (5).

For the first step, we use the same strategy as in Appendix
A 1 a: we decompose the Hamiltonian into two pieces, H =
H1 + H2, where

H1 =
M∑

i,j=1

(M−1)ij
2

	i	j − U

M∑
i=1

cos(2πxi),

(A16)

H2 = H0 −
M∑

i,j=1

(M−1)ij
2

	i	j .

Here, Mij is an M × M scalar matrix defined by M = N−1

and 	1, . . . ,	M are operators defined by

	i = −i

M∑
j=1

Mij [xj ,H0]. (A17)
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After making this decomposition, we will treat H2 as a
perturbation to H1 and then derive an effective Hamiltonian
using first-order degenerate perturbation theory.

Before executing this plan, we first make some preliminary
observations. One observation is that

[xi,	j ] = iδij , i = 1, . . . ,M. (A18)

Another observation is that we can assume without loss of
generality that

[xi,	j ] = [pi,	j ] = 0, i = M + 1, . . . ,N. (A19)

The reason why we can assume (A19) is that we can always
redefine the position and momentum operators xi,pi for i =
M + 1, . . . ,N according to

xi → xi +
M∑

k=1

aikxk, pi → pi +
M∑

k=1

bikxk,

where aik = i[xi,	k] and bik = i[pi,	k]. After this redefini-
tion, Eq. (A19) is automatically satisfied. A final observation
is that 	j can be written in the form

	j = pj + Aj , (A20)

where Aj is a linear combination of {x1, . . . ,xM}. Indeed, this
result follows immediately from (A18) and (A19).

With these observations in mind, we now study the low-
energy spectrum of H1. To begin, we note that (A20) implies
that H1 can be written in the form

H1 =
M∑

i,j=1

(M−1)ij
2

(pi + Ai)(pj + Aj ) − U

M∑
i=1

cos(2πxi),

where Aj is a linear function of {x1, . . . ,xM}. Next, we note
that [xi,H1] = 0 for i = M + 1, . . . ,N , which implies that
H1 can be diagonalized separately for each value of x⊥ =
(xM+1, . . . ,xN ). Once we fix x⊥, the Hamiltonian H1 describes
an M dimensional particle with coordinates (x1, . . . ,xM ),
moving in a periodic potential −U

∑M
i=1 cos(xi) and coupled

to a vector potential A that depends linearly on {x1, . . . ,xM}.
Let us consider the low-energy physics of this M dimensional
particle when U is large. In this case, we can neglect tunneling
between the different minima of the cosine potential, and treat
each minimum in isolation. At the same time, it is easy to
see that the energy spectra associated with different cosine
minima and different values of x⊥ are all identical since H1 has
discrete (magnetic) translational invariance in the x1, . . . ,xM

directions as well as continuous translational invariance in
the xM+1, . . . ,xN directions. Putting these facts together, we
conclude that the Hamiltonian H1 has an infinite set of nearly
degenerate ground states—one ground state for each cosine
minimum and each value of x⊥. We label these ground states
as |ψq,x⊥〉 where q = (q1, . . . ,qM ) is an M component integer
vector describing the position of the cosine minimum and
x⊥ = (xM+1, . . . ,xN ) is an N − M component real vector
describing the position in the orthogonal directions.

We can estimate the energy gap between the ground states
and excited states of H1 by expanding the cosine potential
to quadratic order in x. In this approximation, the cosine
potential reduces to a multidimensional quadratic potential.
Diagonalizing this potential gives a collection of harmonic

oscillators with frequencies ωi = √
U/mi where mi are the

eigenvalues of the matrix Mij . The energy gap is determined
by the smallest frequency and thus the largest eigenvalue mi .
We conclude that H1 has an energy gap � ∼ √

U/m, where
m is the maximum eigenvalue of Mij .

We now imagine adding H2 to H1, and we ask how the
low-energy spectrum changes. As in Appendix A 1 a, we
will answer this question using a perturbative expansion in
H2. However, before we perform this calculation, we need
to check that this perturbative approach is valid when U

is large. To this end, we need to estimate the size of the
matrix elements 〈ψex |H2|ψq,x⊥〉, where |ψq,x⊥〉 and |ψex〉 are
arbitrary ground and excited states of H1, respectively. The
first step is to observe that H2 has a special property: for any
i = 1, . . . ,M , we have

[xi,H2] = [xi,H0] − i

M∑
j=1

(M−1)ij 	j

= [xi,H0] − [xi,H0]

= 0.

It follows that the momentum operators p1, . . . ,pM do not
appear in H2. Thus H2 is a sum of three types of terms: xixj ,
pkpl , and xipk , where i,j are arbitrary and k,l � M + 1. We
need to estimate the matrix elements corresponding to each
of these terms. We can do this using the same argument as in
Appendix A 1 a. First, we note that when U is large, the states
|ψq,x⊥〉 and |ψex〉 can be approximated as harmonic oscillator
eigenstates centered at some appropriate positions in space.
The matrix elements of interest can then be related to harmonic
oscillator matrix elements as in Eq. (A3). Omitting details, a
straightforward calculation shows that all three types of matrix
elements fall off like U−1/4 or faster as U → ∞. Combining
this scaling law with the expression for �, we see that∑

|ψex 〉

|〈ψex |H2|ψq〉|2
�

= O

(
1

U

)
.

As in Appendix A 1 a, this estimate implies that the
second-order perturbative corrections to the ground-state
energies vanish in the limit U → ∞. Therefore first-order
perturbation theory is exact in this limit.

We now proceed with the perturbative calculation. Ac-
cording to first-order degenerate perturbation theory, the
energy splitting of the ground states can be determined by
diagonalizing the matrix 〈ψq ′,x′

⊥ |H2|ψq,x⊥〉. These matrix
elements are easy to compute. Indeed, for large U , the ground
states |ψq,x⊥〉 can be approximated as harmonic oscillator
ground states with a width of order (�x)2 ∼ 1√

mU
. In the

limit U → ∞, the width �x → 0 so |ψq,x⊥〉 approaches a
position eigenstate: |ψq,x⊥〉 → |q,x⊥〉 where |q,x⊥〉 denotes
the position eigenstate located at x = (q,x⊥). Thus, in this
limit, the matrix we need to diagonalize is 〈q ′,x′

⊥|H2|q,x⊥〉.
Our calculation is now complete: we have shown that the

low-energy spectrum of H in the limit U → ∞ can be obtained
by diagonalizing the operator H2 within the subspace spanned
by {|q,x⊥〉}. In other words, the effective Hamiltonian for our
system is

Heff = H2 = H0 −
M∑

i,j=1

(M−1)ij
2

	i	j , (A21)
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while the effective Hilbert space Heff is spanned by position
eigenstates {|q,x⊥〉} for which the first M components
q1, . . . ,qM are integers and the last N − M components
xM+1, . . . ,xN are real valued. This effective theory is valid
for energies E �

√
U/m.

Comparing the above effective Hamiltonian and Hilbert
space with the general expressions from Eqs. (2) and (5), we
can see that they match exactly. This completes our proof of
Eqs. (2) and (5) for the special case (A14).

3. General case

To complete the derivation of equations (2) and (5), we now
consider the most general case:

H = H0 − U

M∑
i=1

cos(Ci), Ci =
N∑

j=1

(γij xj + γ ′
ijpj + δi).

(A22)

Here, H is defined on a 2N dimensional phase space
{x1, . . . ,xN ,p1, . . . ,pN } with [xi,pj ] = iδij . The first term
H0 is a positive semidefinite quadratic function of
{x1, . . . ,xN ,p1, . . . ,pN } and γij ,γ

′
ij ,δi are arbitrary real num-

bers with the only constraints being that (1) {C1, . . . ,CM} are
linearly independent, (2) [Ci,Cj ] is an integer multiple of 2πi

for all i,j so that the different cosine terms commute with one
another, and (3) the matrix

Nij = − 1

4π2
[Ci,[Cj ,H0]] (A23)

is nondegenerate. Our task is to derive an effective Hamiltonian
and effective Hilbert space that describes the low-energy
spectrum of H in the limit U → ∞. We will then show that this
effective theory is exactly the one defined in Eqs. (2) and (5).

Our basic strategy is simple: we will map H onto the
Hamiltonian studied in the previous section and then we will
derive the effective theory using our previous results. While
this is a simple plan at a conceptual level, there are some
technical obstacles that make it difficult to define the desired
mapping in one step. Therefore we will build up the mapping
in stages by making several successive changes of variables.

In the first change of variables, we replace xi,pi by new
coordinates x ′

i ,p
′
i , which are chosen so that the constraints Ci

can be written as integer linear combinations of 2πx ′
i and p′

i .
To this end, it is helpful to consider the M × M matrix Zij

defined by

Zij = 1

2πi
[Ci,Cj ]. (A24)

Clearly, the matrix Zij is integer and skew-symmetric. There-
fore there exists an integer matrix V with determinant ±1 such
that VZVT = Z ′, where Z ′ is in skew-normal form [19]:

Z ′ =
⎛
⎝0I −D 0
D 0I 0
0 0 0M−2I

⎞
⎠, D =

⎛
⎜⎜⎝

d1 0 . . . 0
0 d2 . . . 0
...

...
...

...
0 0 . . . dI

⎞
⎟⎟⎠.

(A25)

Here, 0 � I � M/2 and 0I denotes an I × I matrix of zeros,
and similarly for 0M−2I . Let

C ′
i =

M∑
j=1

VijCj + χi. (A26)

where

χi = π ·
∑
j<k

VijVikZjk (mod 2π ) (A27)

By construction, [C ′
i ,C

′
j ] = 2πiZ ′

ij . Furthermore, because we
chose the offset χi of the above form, we have the identity

eiC ′
i =

M∏
j=1

eiVij Cj (A28)

as one can check using the Campbell-Baker-Hausdorff for-
mula. Equivalently, using the fact that Vij is an integer matrix
with determinant ±1, the above identity can be inverted and
rewritten as

eiCi =
M∏

j=1

eiV−1
ij C ′

j (A29)

The two identities (A28) and (A29) will be useful below.
We are now in a position to construct the new variables

x ′
i ,p

′
i that we seek. Specifically, we define

p′
i = 1

di

C ′
i for i = 1, . . . ,I,

x ′
i = 1

2π
C ′

i+I for i = 1, . . . ,M − I,

and we define p′
I+1, . . . ,p

′
N and x ′

M−I+1, . . . ,x
′
N to be some

arbitrary linear combination of xi,pi with the only constraint
being that they obey the correct commutation relations. In the
new variables, the Hamiltonian takes the form

H = H0 − U

M∑
i=1

cos

⎛
⎝ M∑

j=1

(V−1)ij [C ′
j − χj ]

⎞
⎠.

Note that the argument of the cosines are now integer linear
combinations of 2πx ′

i and p′
i , just as we wanted.

In the next step, we find an alternative representation of
H in which the arguments of the cosine terms all commute
with each other. We accomplish this by working in an
unusual basis, which is similar to the one discussed in
Appendix A 1 b. Specifically, let us consider the basis of
simultaneous eigenstates of the N + I commuting operators

{eip′
1 , . . . ,eip′

I ,e2πix ′
1 , . . . ,e2πix ′

I ,x ′
I+1, . . . ,x

′
N }.

We denote these simultaneous eigenstates by

|θ,ϕ,x′〉 ≡ |θ1,..,θI ,ϕ1, . . . ,ϕI ,x
′
I+1, . . . ,x

′
N 〉

with

eip̂′
i |θ ,ϕ,x′〉 = eiθi |θ ,ϕ,x′〉, i = 1, . . . ,I ,

e2πix̂ ′
i |θ ,ϕ,x′〉 = eiϕi |θ ,ϕ,x′〉, i = 1, . . . ,I ,

x̂ ′
i |θ ,ϕ,x′〉 = x ′

i |θ ,ϕ,x′〉, i = I + 1, . . . ,N.
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Here, 0 � θi,ϕi < 2π while x ′
i can be arbitrary real numbers.

The formal definition of |θ,ϕ,x′〉 is

|θ,ϕ,x′〉 = 1

(2π )I/2

∑
ki

ei
∑I

i=1 kiθi

×
∣∣∣k1 + ϕ1

2π
, . . . ,kI + ϕI

2π
,x ′

I+1, . . . ,x
′
N

〉
, (A30)

where the ket on the right-hand side denotes a position
eigenstate localized at position x ′

1 = k1 + ϕ1

2π
, . . . , etc.

We now reexpress the Hamiltonian H in the θ ,ϕ,x′
representation. The first step is to find expressions for the
x ′

i ,p
′
i operators in terms of θi,ϕi . Following the same logic as

in Appendix A 1 b, it is easy to show that x ′
i ,p

′
i take the form

x ′
i = −1

i

∂

∂θi

+ ϕi

2π
, p′

i = 2π

i

∂

∂ϕi

(A31)

for i = 1, . . . ,I . Equivalently, we can write this as

x ′
i = −pθi

+ ϕi

2π
, p′

i = 2πpϕi
, (A32)

where pθi
≡ 1

i
∂

∂θi
and pϕi

≡ 1
i

∂
∂ϕi

Likewise, when i � I + 1,

it is easy to see that x ′
i ,p

′
i take the usual form, i.e., p′

i = 1
i

∂
∂x ′

i

,
etc.

In addition to x ′
i ,p

′
i , we also need expressions for e2πix ′

i

and eip′
i for i = 1, . . . ,I . We can obtain these expressions by

exponentiating (A32):

e2πix ′
i = e−2πipθi

+iϕi , eip′
i = e2πipϕi .

As in Appendix A 1 b, these equations can be simplified to

e2πix ′
i = eiϕi , eip′

i = eiθi (A33)

using the operator identities

e2πipθi = 1, e2πipϕi = eiθi .

(For an explanation of where these identities come from, see
the discussion in Appendix A 1 b.)

With this preparation, we are now ready to express the
Hamiltonian H in terms of θ ,ϕ,x′. Using (A33) together with
the identity (A29), we can rewrite the cosine terms as

cos

⎛
⎝ M∑

j=1

(V−1)ij [C ′
j − χj ]

⎞
⎠ = cos

⎛
⎝2π

M∑
j=1

(V−1)ij ξj

⎞
⎠,

where

(ξ1, . . . ,ξM )

=
(
d1θ1

2π
, . . . ,

dI θI

2π
,
ϕ1

2π
, . . . ,

ϕI

2π
,x ′

I+1, . . . ,x
′
M−I

)
. (A34)

Similarly, using (A32) we can write the quadratic term
H0 as a function of {θ1, . . . ,θI ,ϕ1, . . . ϕI ,x

′
I+1, . . . ,x

′
N } and

{pθ1 , . . . ,pθI
,pϕ1 , . . . ,pϕI

,p′
I+1, . . . ,p

′
N }. Thus, all together,

the Hamiltonian is given by

H = H0 − U

M∑
i=1

cos

⎛
⎝2π

M∑
j=1

(V−1)ij ξj

⎞
⎠. (A35)

This Hamiltonian is defined on a Hilbert space consist-
ing of wave functions ψ(θ,ϕ,x′) with 0 � θi,ϕi < 2π and

x ′
I+1, . . . ,x

′
N arbitrary real numbers. As in Appendix A 1 b,

these wave functions obey boundary conditions of the form

ψ |ϕi=2π = eiθi ψ |ϕi=0,
(A36)

ψ |θi=2π = ψ |θi=0 for i = 1, . . . ,I .

To proceed further, we make an approximation in which we
temporarily ignore the periodic boundary conditions on ϕi,θi .
That is, we treat the Hamiltonian (A35) as if it were defined
in a Hilbert space consisting of wave functions ψ(θ,ϕ,x′)
where θi,ϕi range over −∞ < θi,ϕi < ∞. Then, at the very
end of our calculation, we will reincorporate the fact that
θi,ϕi are actually angular variables which range from 0 to 2π .
The justification for this approximation is that the low-energy
eigenstates of H are localized near the minima of the cosine
potential and are therefore insensitive to the global boundary
conditions in the large U limit. Thus the only effect of the
periodic boundary conditions on the low-energy theory is to
identify certain states in the low-energy Hilbert spaceHeff—an
effect we can take account of at the end of our derivation.

Once we make this approximation, the variables
θi,ϕi and x ′

I+1, . . . ,x
′
N are all on an equal footing.

Our Hamiltonian is then defined in a 2N + 2I dimen-
sional phase space consisting of the (real valued) po-
sition variables {θ1, . . . ,θI ,ϕ1, . . . ϕI ,x

′
I+1, . . . ,x

′
N } together

with their canonically conjugate (real valued) momenta
{pθ1 , . . . ,pθI

,pϕ1 , . . . ,pϕI
,p′

I+1, . . . ,p
′
N }. This completes the

second step of our derivation: we have successfully rewritten
the Hamiltonian in a form (A35) in which the arguments of
the cosine terms commute with one another.

In the final step, we make yet another change of variables,
defining new position operators x̃1, . . . ,x̃N+I and new mo-
menta p̃1, . . . ,p̃N+I , which are linear combinations of the
previous position and momenta operators. The goal of this
transformation is to simplify the arguments of the cosine terms
even further. More specifically, we define

x̃i =
M∑

j=1

(V−1)ij ξj , i = 1, . . . ,M (A37)

and we define x̃M+1, . . . x̃N+I and p̃1, . . . ,p̃N+I arbitrarily as
long as they obey the canonical commutation relations. After
this change of variables, our Hamiltonian takes the form

H = H0 − U

M∑
i=1

cos (2πx̃i). (A38)

At this point, we have achieved the desired mapping: we can
see that the above Hamiltonian (A38) is of the same form as
(A14). This is very convenient because it means we can write
down a low-energy effective theory in the limit U → ∞ using
our previous results without doing additional work. Indeed,
according to Eq. (A21), we have

Heff = H0 −
M∑

i,j=1

(M̃−1)ij
2

	̃i	̃j , (A39)

where M̃ij and 	̃i are defined by

M̃ = Ñ−1, Ñij = −[x̃i ,[x̃j ,H0]],
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and

	̃i = −i

M∑
j=1

M̃ij [x̃j ,H0].

To complete the derivation, we need to express the effective
Hamiltonian (A39) in terms of the original variables xi,pi . We
will do this by relating the commutator [x̃i ,H0] to [Ci,H0]. To
this end, we make a few observations. First, we note that

[2πpϕi
− θi,H0] = 0, (A40)[

pθi
,H0

] = 0. (A41)

Here, the first commutator vanishes because ϕi only appears
in H0 in the combination (−pθi

+ 1
2π

ϕi), while the second
commutator vanishes because θi doesn’t appear in H0 at all
(see (A32)). Next, we observe that

[θi,H0] = 2π [pϕi
,H0] = [p′

i ,H0], (A42)

where the first equality follows from (A40) and the second
equality follows from (A32). Similarly, we have

1

2π
[ϕi,H0] =

[
− pθi

+ 1

2π
ϕi,H0

]
= [x ′

i ,H0], (A43)

where the first equality follows from (A41) and the second
equality follows from (A32). If we now multiply (A43) by 2π

and (A42) by di , we derive

2π [ξi,H0] = [C ′
i ,H0]

for i = 1, . . . ,M . It follows that

2π [x̃i ,H0] = [Ci,H0]. (A44)

With the help of (A44), it is now straightforward to rewrite
Heff in terms of xi,pi . First, we take the commutator of (A44)
with x̃j , and apply the Jacobi identity to derive Ñ = N where
N is defined in Eq. (A23). Likewise, we have M̃ = M, where
M = N−1. Substituting these relations into (A39), we see that
our effective Hamiltonian can be equivalently written as

Heff = H0 −
M∑

i,j=1

(M−1)ij
2

	i	j , (A45)

where

	i = 1

2πi

M∑
j=1

Mij [Cj ,H0].

Here, we think of H0,	i , etc, as functions of the original
variables xi,pi .

So far, we have focused on the low-energy effective
Hamiltonian Heff, but we also need to discuss the low-energy
effective Hilbert space Heff in which this Hamiltonian is
defined. If we apply the results of the previous section, we
see that Heff consists of all states satisfying x̃i = (integer)
for i = 1, . . . ,M . Let us try to translate this back into our
original variables. First, from Eq. (A37), we see that Heff

can be equivalently described as consisting of all states with
ξi = (integer) for i = 1, . . . ,M (here we use the fact that Vij

is an integer matrix with determinant ±1). Next, we convert
to the θ ,ϕ,x′ description, using the definition (A34). In the

θ ,ϕ,x′ language, Heff consists of all states |θ ,ϕ,x′〉 with θi =
2π/di × (integer), ϕi = 2π × (integer), and x ′

i = (integer) for
i = I + 1, . . . ,M − I .

It is at this point, we should remember that θi and ϕi are
actually angular variables [see the discussion below (A36)];
that is we should identify θi + 2π with θi and ϕi + 2π with
ϕi . Thus the basis states |θ,ϕ,x′〉 for the Hilbert space Heff can
be parameterized in a nonredundant fashion by fixing ϕi = 0
and letting θi range over the values θi = 2παi/di where αi =
0,1, . . . ,di − 1. Meanwhile, since x ′

i is not angular valued,
it can range over arbitrary integers for i = I + 1, . . . ,M − I

and arbitrary real numbers for i = M − I + 1, . . . ,N .
The above description in terms of the θ ,ϕ,x′ variables is

perhaps the most explicit way to parametrize the low-energy
effective Hilbert space Heff. However, it is also useful to
describe Heff in terms of our original variables xi,pi . One
way to do this is to note that the above basis states |θ ,ϕ,x′

⊥〉
are precisely the states that satisfy the constraints cos(Ci) = 1
for all i. Thus we can equivalently describe Heff as the set of
states satisfying cos(Ci) = 1 for all i.

This completes our derivation: we can see that our effective
Hamiltonian Heff and effective Hilbert space Heff exactly
match the expressions in Eqs. (2) and (5). Thus we have derived
these results in complete generality.

APPENDIX B: DIAGONALIZING THE EFFECTIVE
THEORY

In this appendix, we derive a general recipe for diagonal-
izing the effective Hamiltonian Heff (2). This recipe is the one
outlined in Sec. II B. Our analysis can be divided into three
steps.

1. Step 1: Creation and annihilation operators

In general, the key to diagonalizing quadratic Hamiltonians
is to find appropriate creation and annihilation operators.
For the case of Heff, this can be accomplished by search-
ing for all operators a that are linear combinations of
{x1, . . . ,xN ,p1, . . . ,pN } and that satisfy

[a,Heff] = Ea, (B1)

for some scalar E �= 0, as well as

[a,Ci] = 0, i = 1, . . . ,M. (B2)

While the first condition (B1) is the usual definition of
creation and annihilation operators, the second condition is
less standard; the motivation for this condition originates from
the fact that Heff obeys

[Ci,Heff] = 0, i = 1, . . . ,M.

(One can verify this identity with straightforward algebra.)
As a result, we can restrict to a operators that commute with
the Ci’s, and we will still have enough quantum numbers to
completely diagonalize Heff.

We will call the a operators with E > 0, “annihilation
operators,” and those with E < 0 “creation operators.” We
will denote the annihilation operators by a1, . . . ,aK , the
creation operators by a

†
1, . . . ,a

†
K , and the corresponding E’s

by E1, . . . ,EK (Ei > 0).
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The creation and annihilation operators have several impor-
tant properties. To explain these properties, we need to recall
some notation from Sec. II A. There, we argued that there
exists a change of variables C ′

i = ∑
j VijCj + χi , with V an

integer matrix with determinant ±1 and χ defined by (15),
such that the M × M matrix of commutators [C ′

i ,C
′
j ] takes the

form

[C ′
i ,C

′
j ] = 2πi

⎛
⎜⎝

0I −D 0

D 0I 0

0 0 0M−2I

⎞
⎟⎠, (B3)

with

D =

⎛
⎜⎜⎜⎝

d1 0 . . . 0

0 d2 . . . 0
...

...
...

...
0 0 . . . dI

⎞
⎟⎟⎟⎠. (B4)

Here, I is an integer with 0 � I � M/2 and 0I denotes an
I × I matrix of zeros, and similarly for 0M−2I .

With this notation, we can state the first property of
the creation/annihilation operators: the number of linearly
independent annihilation operators is exactly

K = N − M + I, (B5)

where I is defined as above. The second property of these
operators is that they can always be chosen so that

[ak,a
†
k′] = δkk′ , [ak,ak′ ] = [a†

k,a
†
k′ ] = 0. (B6)

The third property of these operators (which is a consequence
of the previous two) is that each of the {x1, . . . ,xN ,p1, . . . ,pN }
operators can be written as a linear combination of
{a1, . . . ,aK,a

†
1, . . . ,a

†
K,C ′

2I+1, . . . ,C
′
M,	1,..,	M}.

In Appendix E, we show that the above properties are guar-
anteed to hold provided that we make one (rather technical)
assumption: we assume that there is no operator R which is
a linear combination of {x1, . . . ,xN ,p1, . . . ,pN }, is linearly
independent from {C1, . . . ,CM}, and satisfies

[R,Heff] = [R,Ci] = 0 (B7)

for all i. To understand the physical meaning of this assump-
tion, note that if such an R operator existed, that would imply
the existence of a continuous real-valued quantum number
that we could use to label the low-energy eigenstates of H .
Such continuous quantum numbers cannot occur in finite-sized
systems (and they do not occur in any of the examples
discussed in this paper) so we do not sacrifice much generality
in making this assumption.

Using these properties we can derive an important result:
the Hamiltonian Heff can be written in the form

Heff =
K∑

k=1

Eka
†
kak + F (C ′

2I+1, . . . ,C
′
M ), (B8)

where F is some quadratic function. One way to prove this
result is to observe that (Heff − ∑

k Eka
†
kak) commutes with

many other operators. For example,[
ak′ ,Heff −

∑
k

Eka
†
kak

]
= 0, (B9)

as one can see from the commutation relations between the ak

operators and Heff. Likewise, one can see that[
a
†
k′ ,Heff −

∑
k

Eka
†
kak

]
= 0. (B10)

At the same time, we have[
Cj ,Heff −

∑
k

Eka
†
kak

]
= 0 (B11)

since [Cj ,Heff] = [Cj ,ak] = [Cj ,a
†
k] = 0. To derive the con-

sequences of these identities, we use the fact that the xi,pi

operators can be written as a linear combination of ak,a
†
k,	j ,

and C ′
2I+1, . . . ,C

′
M . Clearly, this result implies that (Heff −∑

k Eka
†
kak) can be written as a quadratic function of these

operators. Examining the commutators (B11) we see that this
quadratic function cannot contain any 	j operators since these
would make the commutators with Cj nonzero. Similarly,
from (B9) and (B10), we can see that this quadratic function
cannot contain any ak,a

†
k operators since these would make

the commutators with a
†
k and ak nonzero. We conclude that

(Heff − ∑
k Eka

†
kak) must depend only on C ′

2I+1, . . . ,C
′
M . The

expansion in Eq. (B8) follows immediately.

2. Step 2: Occupation number basis

In the next step, we construct a basis for the Hilbert spaceH
that is analogous to the conventional occupation number basis
for a harmonic oscillator. To this end, we note that the following
operators all commute with each other [see Eq. (B3)]:

{eiC ′
1/d1 , . . . ,eiC ′

I /dI ,eiC ′
I+1 , . . . ,eiC ′

2I ,C ′
2I+1, . . . ,C

′
M}. (B12)

Furthermore, these operators commute with the occupation
number operators {a†

1a1, . . . ,a
†
KaK}. Therefore we can simul-

taneously diagonalize (B12) along with {a†
kak}. We denote the

simultaneous eigenstates by

|θ1, . . . ,θI ,ϕ1, . . . ,ϕI ,x
′
I+1, . . . ,x

′
M−I ,n1, . . . ,nK〉

or in more abbreviated form, |θ ,ϕ,x′,n〉. Here, the quantum
numbers are defined by

eiC ′
i /di |θ ,ϕ,x′,n〉 = eiθi |θ,ϕ,x′,n〉, i = 1, . . . ,I,

eiC ′
i |θ,ϕ,x′,n〉 = eiϕi−I |θ ,ϕ,x′,n〉, i = I + 1, . . . ,2I,

C ′
i |θ ,ϕ,x′,n〉 = 2πx ′

i−I |θ,ϕ,x′,n〉, i = 2I + 1, . . . ,M,

a
†
kak|θ ,ϕ,x′,n〉 = nk|θ,ϕ,x′,n〉, k = 1, . . . ,K, (B13)

where 0 � θi,ϕi < 2π , while x ′
i is real valued and ni ranges

over non-negative integers. Importantly, one can show that
there is exactly one simultaneous eigenstate |θ,ϕ,x′,n〉 for
each choice of θ ,ϕ,x′,n so our labeling scheme is well-defined
(see Appendix F for a proof). By construction the |θ ,ϕ,x′,n〉
states form a complete orthonormal basis for the Hilbert space
H: these are the basis states that we seek.

In fact, not only do the |θ ,ϕ,x′,n〉 states form a basis for
H, but a subset of these states form a basis for the low-energy
Hilbert space Heff. To see this, recall that Heff consists of all
states |ψ〉 that satisfy cos(Ci)|ψ〉 = |ψ〉 for all i. Applying the
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two identities (A28) and (A29), we can see that Heff can be
equivalently defined as the set of all states |ψ〉 satisfying

cos(C ′
1)|ψ〉 = · · · = cos(C ′

M )|ψ〉 = |ψ〉. (B14)

Substituting |θ,ϕ,x′,n〉 into the above definition we see that
|θ ,ϕ,x′,n〉 belongs to Heff if and only if

θ = (2πα1/d1, . . . ,2παI/dI ),

for some αi = 0,1, . . . ,di − 1, and

ϕ = (0, . . . ,0), x′ = (q1, . . . ,qM−2I )

with the qi’s being integers. It follows that the above states
form a basis for Heff. We will denote these states using the
abbreviated notation {|α,q,n〉}, where α and q are defined
above, and n = (n1, . . . ,nK ) is the usual set of occupation
numbers.

3. Step 3: Eigenstates and energies

We now have everything we need to diagonalize Heff.
Indeed, we’ve already seen that the |α,q,n〉 states form a basis
for the low-energy Hilbert space Heff. At the same time, from
Eq. (B8) we can see that the |α,q,n〉 states are eigenstates of
Heff with energies

E(α,q,n) =
K∑

k=1

nkEk + F (2πq1, . . . ,2πqM−2I ). (B15)

We therefore have found all the eigenstates and energies of
Heff.

Now that we have the energy spectrum, we should point out
one of its most important features: the energy E is independent
of the quantum numbers α = (α1, . . . ,αI ). Since αi ranges
from 0 � αi < di − 1, it follows that every eigenvalue of Heff

has a degeneracy of at least

D =
I∏

i=1

di. (B16)

Before concluding, there is one more issue we need to
discuss: we haven’t yet explained how to determine the
quadratic function F . One approach for computing F is to
define a new set of operators �2I+1, . . . ,�M by

�i =
M∑

j=1

wij	j +
K∑

k=1

(xikak + x∗
ika

†
k), (B17)

where the coefficients wij and xik are defined by wij =
−(V−1)ji , and xik = ∑M

j=1(V−1)ji · [	j,a
†
k]. These coeffi-

cients have been chosen so that the �i operators have simple
commutators with other key operators. In particular, they have
been chosen so that

[�i,C
′
j ] = 2πiδij , [�i,ak] = [�i,a

†
k] = 0. (B18)

Thus the �2I+1, . . . ,�M are conjugate variables to
C ′

2I+1, . . . ,C
′
M .

Once we have defined these operators, we can compute F

by considering the commutators [�i,Heff] and [�i,[�j,Heff]].

Indeed, from the expression (B8), we derive

[�i,Heff] = 2πi
∂F

∂qi

[�i,[�j,Heff]] = −4π2 ∂2F

∂qi∂qj

(B19)

These relations completely determine F since it is a quadratic
function of the qi’s. (Alternatively, one can often compute F

using problem-specific approaches, as in Sec. III.)

4. Another method for finding creation
and annihilation operators

We have seen that one of the key steps in computing the
energy spectrum of Heff is finding creation and annihilation
operators a—that is, finding solutions to Eqs. (B1) and (B2).
Here, we point out that there is another, more convenient, way
to formulate these equations. In this alternative formulation,
we search for all operators a that obey

[a,H0] = Ea +
M∑

j=1

λj [Cj ,H0], (B20)

[a,Ci] = 0, i = 1, . . . ,M (B21)

for some scalars E,λj with E �= 0. Here, the λj can be thought
of as a kind of Lagrangian multiplier. We will show below
that the above equations are mathematically equivalent to
the previous equations (B1) and (B2) in the sense that every
solution to (B20) and (B21) is a solution to (B1) and (B2) and
vice versa. The above equations are often more convenient
than (B1) and (B2) because they are written in terms of H0

and thus do not require us to compute Heff.
To prove the equivalence between the two approaches, let

us suppose that a obeys (B20) and (B21) for some E,λj . We
wish to show that a also obeys (B1). To prove this, we take the
commutator of (B20) with Ci . The result is

[Ci,[a,H0]] =
M∑

j=1

λj [Ci,[Cj ,H0]].

We deduce that

λj = − 1

4π2

M∑
i=1

Mji[Ci,[a,H0]]

= − 1

4π2

M∑
i=1

Mji[a,[Ci,H0]], (B22)

where in the second step, we used the Jacobi identity.
Substituting the above formula for λj into (B20), we derive

[a,H0] + 1

4π2

M∑
j,i=1

Mji[Cj ,H0] [a,[Ci,H0]] = Ea,

which can be rewritten as

[a,H0] −
M∑

j,i=1

M−1
ji 	j [a,	i] = Ea.
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This is exactly (B1). Conversely, one can check that any
solution to (B1) and (B2) provides a solution to (B20) with
λj given by Eq. (B22).

APPENDIX C: FINITE U CORRECTIONS

When U is large but finite, Heff only gives the approximate
low-energy spectrum of H . It is natural to wonder: what kinds
of corrections do we need to add to Heff if we want to obtain
the exact effective theory at finite U? The goal of this appendix
is to address this question.

1. Simple example

We begin by discussing the example from Sec. II A: H =
p2

2m
+ Kx2

2 − U cos(2πx). For this example, the low-energy

effective Hamiltonian in the infinite U limit is Heff = Kx2

2
while the low-energy Hilbert space Heff is spanned by position
eigenstates {|q〉}, where q is an integer.

To understand the finite U case, let us imagine repeating
the derivation of Heff from appendix A 1 a, but without taking
the limit U → ∞ or making any other approximations. In
such a hypothetical exact calculation, we would first write H

as a sum H = H1 + H2 where H1 = p2

2m
− U cos(2πx) and

H2 = Kx2

2 . Next, we would find find the exact eigenstates and
energies of H1. According to Bloch’s theorem, these states
can be labeled as |k,n〉 where n = 0,1, . . . is the band index
and k is the crystal momentum, −π � k � π . To complete
the calculation, we would construct a low-energy effective
theory describing the energy spectrum of H below the first
band gap by treating H2 as a perturbation to H1, and including
terms to all orders in perturbation theory. In this way, we
can imagine deriving an effective Hamiltonian Heff giving the
exact low-energy spectrum of H in the finite U case. This
effective Hamiltonian Heff would be defined in an effective
Hilbert space Heff spanned by the states in the lowest band,
{|k,0〉}. Equivalently, we can describe the effective Hilbert
space, Heff as the span of the Wannier states {|q〉} defined by
|q〉 = ∫ π

−π
e−ikq |k,0〉dk. Here, |q〉 denotes the Wannier state

localized near the cosine minimum at x = q.
Although we will not perform the above calculation, we

can still make some qualitative statements about the structure
of the final result. Indeed, from our analysis of the infinite U

limit, we know that the resulting Heff must take the form

Heff =
∑

q

Kq2

2
|q〉〈q| +

∑
qq ′

εqq ′ |q〉〈q ′|, (C1)

where εqq ′ → 0 as U → ∞. Furthermore, we can estimate
the size of εqq ′ for finite U . There are two cases to
consider: q �= q ′ and q = q ′. When q �= q ′, we expect that

εqq ′ ∼
√

U
m

e−const.·√mU since these off-diagonal terms are
generated by tunneling between different cosine minima of
H1. As for the q = q ′ case, these terms can be estimated as
εqq ∼ K2q2

U
since the leading order contribution to εqq comes

from the second-order terms in the perturbative expansion in
H2, computed in Eq. (A4).

It is instructive to rewrite the above expression (C1) for Heff

in terms of the operators x,p. In this language, we have

Heff = Kx2

2
+

∞∑
n=−∞

einp εn(x), (C2)

where εn is a function satisfying εn(q ′) = ε(q ′−n)q ′ for all
integers q ′. Here, the equivalence between (C1) and (C2)
follows from the fact that einp|q ′〉 = |q ′ − n〉. Translating our
results about εqq ′ into this alternative language, we see that εn

has an exponential dependence on
√

U for n �= 0, and scales
like 1/U for n = 0.

Equations (C1) and (C2) give the qualitative structure of
Heff in the finite U case. To obtain more quantitative results,
we would need to explicitly compute the coefficients εqq ′ or
the function εn(x) as a function of U,K,m. In principle it
should be possible to compute these quantities in a large
U expansion—for example, using the instanton approach
outlined in Sec. 7.2.3 of Ref. [35].

2. General case

We now discuss the finite U corrections for more general
systems. First, we consider a scenario in which only one of the
cosine terms has a finite coefficient while the others are taken to
be infinitely large. In other words, we consider Hamiltonians
of the form H = H0 − U cos(Ci) − U ′ ∑

j �=i cos(Cj ) in the
limit where U is finite but U ′ → ∞. In this case, the finite
U corrections only generate tunneling processes of the form
Ci → Ci − 2πn; other tunneling processes, Cj → Cj − 2πn,
are suppressed by U ′. It follows that the finite U corrections
must commute with {C1, . . . ,Ci−1,Ci+1, . . . ,CM} but don’t
have to commute with Ci . At the same time, we know that
the most general low-energy operator is of the form shown in
Eq. (D10). Combining these two facts, we conclude that the
finite U corrections can be written in the form

∞∑
n=−∞

ein	i · εn({ak,a
†
k,C

′
2I+i}) (C3)

for some functions εn(a1, . . . ,ak,a
†
1, . . . ,a

†
k,C2I+1′ , . . . ,C ′

M ).
Note that these terms are generalizations of the finite U

corrections (C2) that we discussed for the above example. As
in the example, the functions εn have a U dependence which
we have not shown explicitly. In particular, the εn with n �= 0
vanish exponentially in

√
U as U → ∞ since these terms

are generated by (nonperturbative) instanton effects, while ε0

vanishes like 1/U since this term originates from perturbative
corrections.

Next, we consider the case where all the cosine terms have
finite coefficients. In this case, all tunneling processes Ci →
Ci − 2πmi are allowed so the finite U corrections take the
form ∑

m

ei
∑M

j=1 mj 	j · εm({ak,a
†
k,C

′
2I+i}) (C4)

with the sum running over M component integer vectors m =
(m1, . . . ,mM ). As above, the εm are unknown functions of
{a1, . . . ,ak,a

†
1, . . . ,a

†
k,C2I+1′ , . . . ,C ′

M}, which also depend on
U . The εm with m �= 0 vanish exponentially in

√
U as U →
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∞, while ε0 vanishes like 1/U . In principle, it should be
possible to compute εm using instanton methods [35], but we
will not discuss this computation here.

3. Splitting of ground-state degeneracy

One application of this formalism is that we can use
it to analyze how the D-fold ground-state degeneracy of
Heff splits at finite U . Indeed, according to the lowest-order
perturbation theory, we can determine the splitting of the
ground-state degeneracy by projecting the finite U corrections
onto the ground-state subspace and then diagonalizing the
resulting D × D matrix. This diagonalization problem is
system dependent so we cannot say much about it in general,
but we would like to mention a result that is useful for setting up
the computation. This result applies to any system in which the
commutator matrix Zij is nondegenerate, i.e., it applies to the
case where M = 2I . The result states that the matrix elements
of the finite U corrections are proportional to the matrix

elments of ei
∑M

j=1 mj �j (where �j is defined as in Eq. (24)):
that is,

〈α′|ei
∑M

j=1 mj 	j · εm|α〉 = um · 〈α′|ei
∑M

j=1 mj �j |α〉, (C5)

where |α〉,|α′〉 are ground states and um is some unknown
proportionality constant. Although this relation does not tell
us the value of um, it is still useful since it tells us the form of
the matrix that we need to diagonalize.

To derive equation (C5), consider the difference 	j − �j .
This difference is a linear function of xi’s and pi’s so we
know it can be written as a linear combination of {ak,a

†
k,C

′
i}

as in Eq. (D5) [40]. At the same time, it is easy to see that
	j − �j commutes with the Ci operators and hence also the
C ′

i operators. It follows that the expansion of 	j − �j in terms
of {ak,a

†
k,C

′
i} cannot contain any C ′

i operators: that is,

	j = �j + (linear combination of ak and a
†
k).

If we exponentiate this relation, Eq. (C5) follows easily. Note
that the constant prefactor um comes from the ak and a

†
k

operators appearing in this expression.

APPENDIX D: MATRIX ELEMENTS AND OPERATORS

1. Matrix elements

If we wish to have a complete low-energy theory, we
need to do more than just find the energies of the low-lying
states: we also need to be able to compute matrix elements of
operators between these states. To address this issue, we now
outline a general procedure for computing matrix elements
〈α,q,n|O|α,q,n〉.

Our basic strategy is as follows: suppose we are
given a general operator O, which is some function of
{x1, . . . ,xN ,p1, . . . ,pN }. What we will do is express O as
a function of the operators ak,a

†
k,Ci,	i , etc. Then we will use

the known matrix elements of ak,a
†
k,Ci,	i , etc to compute the

matrix elements of O.
We now demonstrate how this approach works in more

detail. We focus on two cases which are particularly important:
(1) O = A and (2) O = eiA where A is some linear combina-
tion of xi’s and pi’s. We begin with the first case, O = A. In

this case, our strategy will be to express A as a linear combi-
nation of {a1, . . . ,aK,a

†
1, . . . ,a

†
K,C ′

2I+1, . . . ,C
′
M,	1,..,	M}:

A =
K∑

k=1

(κkak + λka
†
k) +

M∑
i=2I+1

μiC
′
i +

M∑
i=1

νi	i. (D1)

We know such an expression must exist, since the xi’s and pi’s
can be written as linear combinations of these operators, as
shown in Appendix B 1.

Our task is now to find the expansion coefficients,
κk,λk,μi,νi . This can be accomplished by considering appro-
priate commutators. For example, if we take the commutator
of Eq. (D1) with Cj , we derive νj = − i

2π
[Cj ,A]. Similarly,

taking the commutator with a
†
k and ak , we derive

κk = −[a†
k,A] +

M∑
i=1

νi[a
†
k,	i],

λk = [ak,A] −
M∑
i=1

νi[ak,	i].

Finally, taking the commutator with 	j , we find

−2πi

M∑
i=1

Vijμi = [	j,A] −
K∑

k=1

κk[	j,ak]

−
K∑

k=1

λk[	j,a
†
k]) −

M∑
i=1

νi[	j,	i],

which we can invert to find μi .
Once we have the expansion (D1), our problem reduces

to finding the matrix elements of the operators ak,a
†
k,	i

and C ′
2I+1, . . . ,C

′
M . The matrix elements for ak,a

†
k,C

′
i can be

written down without any work:

ak|α,q,n〉 = √
nk|α,q,n − ei 〉,

(D2)
a
†
k|α,q,n〉 =

√
nk + 1|α,q,n + ei 〉,

C ′
i |α,q,n〉 = 2πqi−2I |α,q,n〉, i = 2I + 1, . . . ,M. (D3)

Here, ei denotes the K-component vector ei =
(0, . . . ,1, . . . ,0) with a “1” in the ith entry and 0 everywhere
else; thus the first two equations encode the fact that the ak,a

†
k

act as raising and lower operators in the occupation numbers
n. As for the last equation, this follows from the definition of
|α,q,n〉 in Sec. II B.

All that remains are the 	i operators. We now argue that
the matrix elements of these operators vanish identically [41]:

〈α′,q ′,n′|	i |α,q,n〉 = 0. (D4)

The derivation of Eq. (D4) follows from two observations.
First, we recall from our derivation of Heff that the low-energy
states |α,q,n〉 are degenerate ground states of the Hamiltonian

H1 = ∑M
i,j=1

(M−1)ij
2 · 	i	j − U

∑M
i=1 cos(Ci) in the limit

U → ∞. Thus we know that H1|α,q,n〉 = E|α,q,n〉 for some
scalar E. Second, we note that 	i = 1

2πi

∑M
j=1 Mij [Cj ,H1],

so in particular 	i is a linear combination of commutators
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[Cj ,H1]. Equation (D4) now follows from the identity

〈α′,q ′,n′|[Cj ,H1]|α,q,n〉
= 〈α′,q ′,n′|CjE − ECj |α,q,n〉 = 0.

Putting together Eqs. (D1)–(D4), our task is complete: we can
compute matrix elements of any operator A that is a linear
combination of {x1, . . . ,xN ,p1, . . . ,pN }.

We now move on to the second case: operators of the form
eiA, where A is a linear combination of xi’s and pi’s. For this
case, our strategy is to express A as a linear combination
of the operators {a1, . . . ,aK,a

†
1, . . . ,a

†
K,C ′

1, . . . ,C
′
M} along

with �2I+1, . . . ,�M [where the �i operators are defined in
Eq. (B17)]:

A =
K∑

k=1

(κkak + λka
†
k) +

M∑
i=2I+1

μi�i +
M∑
i=1

νiC
′
i . (D5)

We know such an expression must exist because (1) the above
set contains 2N operators, as can be seen from Eq. (B5), and
(2) these operators are linearly independent, as one can show
using the same arguments as in Appendix E.

Just as in the previous case, we can find the expansion coef-
ficients κk,λk,μi,νi by taking appropriate commutators. After
finding the coefficients, our problem reduces to computing
the matrix elements of eiκkak ,eiλka

†
k ,eiμi�i ,eiνiC

′
i . The matrix

elements of eiκkak ,eiλka
†
k can be found straightforwardly using

(D2). As for eiμi�i , one can show, using the commutation
relations (B18), that ei�i acts as

e±i�i |α,q,n〉 = |α,q ± ei−2I ,n〉 (D6)

for i = 2I + 1, . . . ,M . Thus e±i�i act as raising and lowering
operators on the q quantum numbers.

Finally, we need to discuss the matrix elements of eiνiC
′
i .

There are three cases, each of which needs to be treated
differently: (1) 1 � i � I , (2) I + 1 � i � 2I , and (3)
2I + 1 � i � M . For the first case, Eq. (B13) implies that

e±iC ′
i /di |α,q,n〉 = e±2πiαi/di |α,q,n〉, i = 1, . . . ,I. (D7)

For the second case, one can show using the commutation
relations [C ′

i ,C
′
j ] = 2πiZ ′

ij that

e±iC ′
i /di−I |α,q,n〉 = |α ± ei−I ,q,n〉, i = I + 1, . . . ,2I,

(D8)

where the addition is performed modulo di . Note that
Eqs. (D7) and (D8) imply that the operators e±iC ′

i /di act
like “clock” matrices for i = 1, . . . ,I , while the operators
e±iC ′

i /di−I act like “shift” matrices for i = I + 1, . . . ,2I ; thus
these operators generate a generalized Pauli algebra. Finally,
for the third case, the matrix elements of eiνiC

′
i can be obtained

by exponentiating Eq. (D3).
The above equations tell us everything we need to compute

〈α′,q ′,n′|eiA|α,q,n〉 for the special case where the coefficient
μi in (D5) is an integer for every i, and νi is an integer
multiple of 1/di for i = 1, . . . ,I , and a multiple of 1/di−I for
i = I + 1, . . . ,2I . To complete the story we need to explain
how to evaluate matrix elements if the μi and νi coefficients
aren’t quantized in this manner. To understand this case,
suppose that μi is not an integer. It then follows that the
commutator [A,C ′

i] is not an integer multiple of 2πi, which

implies that the state eiA|α,q,n〉 is an eigenstate of C ′
i with

noninteger eigenvalue. However, this means that eiA|α,q,n〉
is orthogonal to the low-energy Hilbert space, Heff so that all
the matrix elements 〈α′,q ′,n′|eiA|α,q,n〉 vanish identically.
Similar reasoning shows that these matrix elements also vanish
identically if the νi coefficients are not quantized as above.
Hence the above special case is actually the only case where
the matrix elements are nonzero.

2. Low-energy operators

We now turn to the question of how to describe the
most general operators in the low-energy theory—that is,
the most general operators that act within the low-energy
Hilbert space Heff. The simplest way to do this is to write
the operators as linear combinations of outer products of the
form |α′,q ′,n′〉〈α,q,n|. This approach is straightforward, but
it can be unwieldy since many operators look complicated in
this representation.

Alternatively, we can represent any operator O in the low-
energy theory as an infinite power series in the operators

{a1, . . . ,aK,a
†
1, . . . ,a

†
K},

{C ′
2I+1, . . . ,C

′
M,e±i�2I+1 , . . . ,e±i�M },

{e±iC ′
1/d1 , . . . ,e±iC ′

I /dI ,e±iC ′
I+1/d1 , . . . ,e±iC ′

2I /dI }.
That is,

O = f ({ak,a
†
k,C

′
2I+i ,e

±i�2I+i ,e±iC ′
i /di ,e±iC ′

I+i /di }) (D9)

for some function f that can be expanded as a power series.
Indeed, to prove this result, we need to establish two facts:
(1) we need to show that the above operator O maps Heff →
Heff, and (2) we need to show that the functional form for O is
sufficiently general that it can reproduce any linear map from
Heff → Heff. The first fact is easy to prove: we can see that
all of the operators {ak,a

†
k,C

′
2I+i ,,e

±i�2I+i ,e±iC ′
i /di ,e±iC ′

I+i /di }
commute with {cos(C1), . . . , cos(CM )} and therefore O also
has this property. The second fact is harder to prove, but
can be established straightforwardly by examining the matrix
elements for {ak,a

†
k,C

′
2I+i ,e

±i�2I+i ,e±iC ′
i /di ,e±iC ′

I+i /di } given in
Eqs. (D2), (D3), (D6), (D7), and (D8).

To get more intuition about the above representation, we
note that the operators {ak,a

†
k,e

i�2I+i ,C ′
2I+i ,e

iC ′
i /di ,eiC ′

I+i /di }
have a natural interpretation in terms of the phase space of
the low-energy theory: the {ak,a

†
k} operators are conjugate vari-

ables that describe real degrees of freedom at low energies; the
{ei�2I+i } operators describe angular-valued degrees of freedom
and the {C ′

2I+i} describe the corresponding conjugate discrete
degrees of freedom; finally, the {eiC ′

i /di ,eiC ′
I+i /di } operators are

conjugate variables that describe the finite discrete degrees of
freedom. The latter operators can be thought of as generalized
Pauli operators, similar to σ z,σ x .

In fact, there is yet another way to parametrize the low-
energy operators which is often more convenient to use: every
low-energy operator O can be written as an infinite power
series in {ak,a

†
k}, {C ′

2I+1, . . . ,C
′
M} and {e±i	1 , . . . ,e±i	M }.

That is,

O = f ({ak,a
†
k,C

′
2I+i ,e

±i	i }). (D10)
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To derive this parametrization, it suffices to show that we
can express the operators {e±i�i }, {e±iC ′

i /di } and {e±iC ′
I+i /di }

in this fashion; once we establish this property then this
parametrization follows immediately from the previous one
(D9). To derive the latter property, we use the definition of
�i (B17) which states that �i is a linear combination of the
	j,ak,a

†
k operators. Importantly, if we examine this expansion,

we can see that the coefficients of the 	j ’s are integers.
Therefore, if we exponentiate (B17), we immediately see that
e±i�i can be written as a monomial in {e±i	1 , . . . ,e±i	M }
multiplying a power series in {ak,a

†
k}. Identical reasoning

shows that e±iC ′
i /di and e±iC ′

I+i /di can also be written in this
way; this completes the proof.

3. Ground-state operators

So far we have focused on operators acting within the low-
energy Hilbert space Heff. However, in some cases we may be
interested in even lower-energy scales in which we will need to
think about the D-dimensional subspace spanned by the set of
degenerate ground states. In our notation, these ground states
take the form |α,q,n〉 with n = q = 0. We will label them by
|α〉 ≡ |α,0,0〉.

Once we consider the ground-state subspace, we face a
similar question: how do we describe the operators that act
within this subspace? The simplest way to do this is to write
the operators as linear combinations of outer products, |α′〉〈α|
but this representation is not always the most convenient one.

Another way to represent the operators O that act within
the ground-state subspace is to write them as polynomials in

{e±iC ′
1/d1 , . . . ,e±iC ′

I /dI ,e±iC ′
I+1/d1 , . . . ,e±iC ′

2I /dI }.
That is,

O = f ({e±iC ′
i /di ,e±iC ′

I+i /di }) (D11)

for some polynomial function f . Indeed, to prove this result,
we need to establish two facts: (1) we need to show that the
above operator O maps the ground-state subspace to itself,
and (2) we need to show that the functional form for O
is sufficiently general that it can reproduce any linear map
from the ground-state subspace to itself. To prove the first
fact we note that the operators {e±iC ′

i /di ,e±iC ′
I+i /di } commute

with {cos(C1), . . . , cos(CM ),Heff} and therefore O also has
this property. The second fact is harder to prove but can be
established straightforwardly using the matrix elements for
{e±iC ′

i /di ,e±iC ′
I+i /di } given in Eqs. (D7) and (D8).

There is also a third way to parametrize the ground-state
subspace operators which applies to the case where the
commutator matrix Zij = 1

2πi
[Ci,Cj ] is nondegenerate. This

alternative parametrization involves the operators �1, . . . ,�M ,
defined in Eq. (24). More specifically, this parametrization
states that general ground-state operators O can be written as
polynomials in {e±i�1 , . . . ,e±i�M }. That is,

O = f ({e±i�i }) (D12)

for some polynomial f . To derive this result, it suffices
to show that we can write e±iC ′

i /di and e±iC ′
i+I /di as such

polynomials; once we establish this fact, the parametrization
follows immediately from the previous one (D11). To prove the
latter property, we note that the operators e±iC ′

i /di and e±iC ′
i+I /di

can be equivalently written as exp(±i
∑M

j=1(Z ′−1)jiC
′
j ). We

then use the following identity, which can be derived easily
from the definition of C ′

j ,�j :

M∑
j=1

(Z ′−1)jiC
′
j =

M∑
j=1

(V−1)ji�j + (Z ′−1)jiχj .

The important point about this identity is that (V−1)ji is
an integer matrix, so we deduce that the left-hand side can
be written as a linear combination of �j ’s with integer
coefficients. It follows that exp(±i

∑M
j=1(Z ′−1)jiC

′
j ) can be

written as a monomial in e±i�1 , . . . ,e±i�M , which is of course
a special kind of polynomial. This completes the proof.

APPENDIX E: PROPERTIES OF CREATION
AND ANNIHILATION OPERATORS

In this appendix, we derive three properties of cre-
ation/annihilation operators that were used in Appendix B 1.
These properties are guaranteed hold as long as we assume
that there is no operator R, which is a linear combination
of {x1, . . . ,xN ,p1, . . . ,pN }, is linearly independent from
{C1, . . . ,CM}, and satisfies

[R,C1] = · · · = [R,CM ] = [R,Heff] = 0. (E1)

(See Appendix B 1 for more discussion about this assumption.)
The first property that we will derive is that the number K

of linearly independent annihilation operators is exactly

K = N − M + I. (E2)

We prove this result by establishing two opposing inequalities:
K � N − M + I and K � N − M + I . We start by showing
the inequality K � N − M + I .

To begin, consider the set of all operators that are linear
combinations of {x1, . . . ,xN ,p1, . . . ,pN } and that commute
with {C1, . . . ,CM}. This set forms a vector space since it is
closed under addition and scalar multiplication. We will call
this vector space V .

Next, observe that if A is an operator that belongs to V ,
then the commutator [A,Heff] also belongs to V : to see this,
it suffices to show that [Ci,A] = 0 implies [Ci,[A,Heff]] = 0.
The latter result is a simple application of the Jacobi identity:

[Ci,[A,Heff]] = −[A,[Heff,Ci]] − [Heff,[Ci,A]] = 0,

where the second equality follows from the fact that
[Heff,Ci] = 0. In view of this property, we can think of the
commutator map A → [A,Heff] as defining a linear mapping
from V → V . We will denote this linear mapping by S.

In this language, the annihilation operators a correspond to
eigenvectors of S with positive eigenvalue. Our task is thus
to bound the number of these eigenvectors. To this end, we
note that the total dimension of V is 2N − M . At the same
time, we know that the operators C ′

2I+1, . . . ,C
′
M belong to the

space V and are eigenvectors of S with eigenvalue 0. It follows
by dimension counting that S has at most (2N − M) − (M −
2I ) = 2N − 2M + 2I linearly independent eigenvectors with
nonzero eigenvalues.

To complete the derivation of the first inequality, we note
that the eigenvectors of S with nonzero eigenvalues come in
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±E pairs: if [A,Heff] = E · A then [A†,Heff] = −E · A†. It
follows that S has at most N − M + I linearly independent
eigenvectors with positive eigenvalues. In other words, K �
N − M + I .

Now we prove the second inequality, i.e., K � N − M +
I . The first step is to observe that physical considerations
guarantee that Heff is positive semidefinite. It follows that we
can write Heff as

Heff =
L∑

i=1

B2
i

2
, (E3)

where each Bi is a real linear combination of
{x1, . . . ,xN ,p1, . . . ,pN }, and where each Bi is linearly inde-
pendent from the others. Here, L is some integer with L � N .

Next, we observe that the Bi operators have the property
that [Bi,Cj ] = 0 for all i,j : one way to derive this fact is to
expand the commutator [Cj ,Heff] as

∑L
i=1[Cj ,Bi]Bi , and then

use the fact that the Bi operators are linearly independent as
well as the fact that [Cj ,Heff] = 0.

To proceed further, consider the L × L matrix Yij =
[Bj ,Bi]. This matrix is imaginary and skew-symmetric,
which implies that it is diagonalizable. Thus we can find L

linearly independent eigenvectors v1, . . . ,vL with eigenvalues
E1, . . . ,EL. The corresponding operators ai ≡ ∑L

j=1 v
j

i Bj

obey [ai,Heff] = Eiai . Furthermore, we know that [ai,Cj ] = 0
since [Bi,Cj ] = 0 for all i,j .

Clearly the ai operators obey almost all of the conditions
for annihilation operators. All we have to show is that we can
find a subset of N − M + I linearly independent ai’s with
eigenvalues Ei > 0. To this end, consider the set of all oper-
ators that are linear combinations of {x1, . . . ,xN ,p1, . . . ,pN },
and commute with all the Ci and ai operators. This set is
a vector space since it is closed under addition and scalar
multiplication. We will call this vector space W . Let us try to
find the dimension of W . To do this, note that any operator in
W commutes with all the Bi operators, since the Bi operators
can be written as linear combinations of the ai’s. It then follows
that any operator in W must also commute with Heff. But by our
assumption (E1), the only operators that commute with both
Heff and the Ci operators can be written as linear combinations
of Ci , or equivalently, linear combinations of {C ′

2I+1, . . . ,C
′
M}.

We conclude that the dimension of W is at most M − 2I .
Given that the dimension of W is at most M − 2I , it

follows that there must be at least 2N − M + 2I linearly
independent ai,Ci operators. Hence, at least 2N − 2M + 2I

of the ai operators are linearly independent from the Ci

operators. It then follows from the assumption (E1) that at least
2N − 2M + 2I of the ai’s have Ei �= 0. At the same time, we
know that the Ei eigenvalues come in pairs of opposite sign
since Yij is skew-symmetric and imaginary, so we conclude
that at least N − M + I of the ai’s have positive eigenvalue.
This establishes that K � N − M + I and completes the proof
of Eq. (E2).

We now prove the second property of the creation and
annihilation operators. This property states that the ak’s can
always be chosen so that

[ak,a
†
k′] = δkk′, [ak,ak′] = [a†

k,a
†
k′] = 0. (E4)

We begin with the first relation. To prove this, we observe
that [ak,a

†
k′ ] = 0 unless Ek = E′

k . Indeed, this follows from
the Jacobi identity:

[ak,[a
†
k′ ,Heff]] = −[a†

k′ ,[Heff,ak]] − [Heff,[ak,a
†
k′]].

Now fix a particular Ek . There are two cases to consider: Ek

may be degenerate or nondegenerate. If Ek is nondegenerate
then we can simply normalize the corresponding ak such that
[ak,a

†
k] = 1; the vanishing of the commutators between ak and

other a
†
k′’s is guaranteed. On the other hand, if Ek has some

degeneracy, then we can use the Gram-Schmidt procedure to
choose the associated ak’s so that they obey [ak,a

†
k′] = δkk′ .

Again, all the other commutators vanish automatically. Thus,
in all cases, we can choose the ak operators to satisfy the
first relation. As for the second relation, this follows from the
Jacobi identity by similar reasoning.

Finally, we move on to prove the third property
of the creation and annihilation operators. This prop-
erty states that each of the {x1, . . . ,xN ,p1, . . . ,pN } op-
erators can be written as a linear combination of
{a1, . . . ,aK,a

†
1, . . . ,a

†
K,C ′

2I+1, . . . ,C
′
M,	1,..,	M}. To prove

this, we only need to show that the operators in this set
are linearly independent since (1) there are 2N of them all
together according to Eq. (E2), and (2) they are all linear
combinations of {x1, . . . ,xN ,p1, . . . ,pN }. The fact that they
are linearly independent can be seen as follows: suppose that

K∑
k=1

(κkak + λka
†
k) +

M∑
i=2I+1

μiC
′
i +

M∑
i=1

νi	i = 0

for some scalars κk,λk,μi,νi . Then, if we take the commutator
of both sides with Cj , we immediately see that νj = 0 since
[ak,Cj ] = [a†

k,Cj ] = [C ′
i ,Cj ] = 0 while [	i,Cj ] = δij . We

therefore have

K∑
k=1

(κkak + λka
†
k) +

M∑
i=2I+1

μiC
′
i = 0.

Next, we take the commutator of both sides with ak and we
deduce that λk = 0 since [ak,C

′
i] = 0 while [ak,a

†
k′] = δkk′ .

Similarly, taking the commutator with a
†
k shows that κk = 0.

Our relation now becomes

M∑
i=2I+1

μiC
′
i = 0.

Finally, we note that the C ′
i are all linearly independent by

construction, so all the μi’s must vanish. Hence all the coef-
ficients in our original expansion must vanish, which implies
that the above operators are linearly independent, as claimed.

APPENDIX F: UNIQUENESS OF SIMULTANEOUS
EIGENSTATES

In this appendix, we show that there is exactly one simulta-
neous eigenstate |θ,ϕ,x′,n〉 for each choice of θ ,ϕ,x′,n. Here,
θ ,φ are I component angular-valued vectors, while n is a K

component nonnegative integer vector, and x′ is a M − 2I

component real valued vector.
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To see that there is at least one eigenstate for each choice
of these quantum numbers, we observe that the explicit
formula in Eq. (A30) implies the weaker result that there is
at least one state for each choice of θ,ϕ,x′. Now consider
the subspace of states with fixed values of θ ,ϕ,x′. It is clear
that the creation and annihilation operators a

†
k,ak map this

subspace onto itself. Therefore, using the same arguments as in
the algebraic analysis of the harmonic oscillators, it is easy to
see that this subspace contains at least one state for each choice
of occupation number n.

Conversely, to see that there is at most one state |θ,ϕ,x′,n〉
for each choice of θ ,ϕ,x′,n, we recall that all the xi,pi

operators can be expressed as a linear combination of
{a1, . . . ,aK,a

†
1, . . . ,a

†
K,C ′

2I+1, . . . ,C
′
M,	1,..,	M}. One ap-

plication of these expressions is that we can use them
to compute the expectation value of any operator Oκ,λ of
the form Oκ,λ = exp(i

∑
i(κixi + λipi)) in any state with

quantum numbers θ ,ϕ,x′,n. This computation is completely
algebraic and depends only on the quantum numbers θ,ϕ,x′,n
as well as the parameters κ,λ. Thus we conclude that the
quantum numbers θ ,ϕ,x′,n completely fix the expectation
values of the Oκ,λ operators. However, the above operators
Oκ,λ are sufficiently general that any operator f (xi,pi) can
be constructed by taking an appropriate linear combination of
them. Hence, if two states share the same quantum numbers
θ ,ϕ,x′,n, then they must have the same expectation values
with respect to all operators in the Hilbert space and hence
must be equivalent to one another up to a phase.

APPENDIX G: REGULARIZING THE COSINE TERM

In this appendix, we revisit the problem of a fractional
quantum spin Hall edge with a single magnetic impurity:

H = H0 − U cos(C). (G1)

The new element in our discussion is that we regularize the
argument of the cosine term, replacing C = k(φ↑(0) + φ↓(0))
with

C =
∫ L/2

−L/2
k(φ↑(x) + φ↓(x))δ̃(x)dx,

where δ̃ is an approximation to a δ function—i.e., a narrowly
peaked function with

∫
δ̃(x)dx = 1. After making this re-

placement, we repeat the analysis in Sec. III B in which we
constructed creation and annihilation operators for the low
energy effective Hamiltonian Heff. Our main result is that we
find that when the cosine term is properly regularized, the
condition [a,C] = 0 translates to the constraint in Eq. (41);
otherwise the regularization doesn’t change much.

As in Sec. III B, our task is to find all a operators such that
(1) a is a linear combination of our fundamental phase space
operators {∂yφ↑,∂yφ↓,φ↑(y0),φ↓(y0)} and (2) a obeys

[a,H0] = Ea + λ[C,H0] + λ↑[Q↑,H0] + λ↓[Q↓,H0]
(G2)

[a,C] = [a,Q↑] = [a,Q↓] = 0

for some scalars E,λ,λ↑,λ↓ with E �= 0.
Given that [a,Q↑] = [a,Q↓] = 0, we deduce that

φ↑(y0),φ↓(y0) cannot appear in the expression for a. Hence

a can be written in the general form

a =
∫ L/2

−L/2
[f↑(y)∂yφ↑(y) + f↓(y)∂yφ↓(y)]dy. (G3)

Next, from the first line of Eq. (G2), we obtain the following
set of differential equations:

−ivf
′
↑(y) = Ef↑(y) + λkivδ̃(y),

ivf
′
↓(y) = Ef↓(y) − λkivδ̃(y).

(The λ↑,λ↓ terms drop out of these equations since Q↑,Q↓
commute with H0.) Solving these equations, we get

f↑(y) = eipy[A1(1 − �̃↑(y)) + A2�̃↑(y)], (G4)

f↓(y) = e−ipy[B1(1 − �̃↓(y)) + B2�̃↓(y)], (G5)

where p = E/v and

A2 = A1 − λk,B2 = B1 − λk, (G6)

and

�̃↑(y) =
∫ y

−L/2
e−ipx δ̃(x)dx,

�̃↓(y) =
∫ y

−L/2
eipx δ̃(x)dx.

Note that both �̃↑(x),�̃↓(x) reduce to the Heaviside step
function �(x) in the limit that δ̃(x) is a delta function.
Eliminating λ from (G6), we see that

A2 − A1 = B2 − B1. (G7)

So far, the regularization has not taught us anything new: all
of our results are similar to what we found in Eqs. (36)–(38),
when we analyzed the unregularized cosine term with C =
k(φ↑(0) + φ↓(0)). So why is the regularization important? The
reason is that it allows us to properly treat the constraint
[a,C] = 0, as we now demonstrate. The first step is to use
(G3) to translate the constraint to∫ L/2

−L/2
[f↑(y) − f↓(y)]δ̃(y)dy = 0.

Next, substituting our expressions for f↑,f↓ (G5), we derive∫ L/2

−L/2
(A1e

ipy − B1e
−ipy)δ̃(y)dy

+
∫ L/2

−L/2
((A2 − A1)eipy�̃↑(y))δ̃(y)dy

−
∫ L/2

−L/2
(B2 − B1)e−ipy�̃↓(y))δ̃(y)dy = 0. (G8)

While the constraint (G8) looks complicated, it simplifies
considerably in the low-energy, long-wavelength limit, i.e.,
the limit where pb � 1 where b is the width of the function δ̃.
In this limit, the first integral in (G8) evaluates to (A1 − B1),
but the second integral is a bit trickier. To compute this integral,
we use the identity

lim
pb→0

∫ L/2

−L/2
δ̃(y)�̃σ (y)e±ipy = 1

2
, (G9)
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where σ = ↑,↓. This identity can proved for the case σ =↑
by noting that

lim
pb→0

∫ L/2

−L/2
δ̃(y)�̃↑(y)e±ipydy

= lim
pb→0

∫ L/2

−L/2

∫ y

−L/2
δ̃(y)δ̃(x)e−ipx±ipydxdy

= lim
pb→0

∫ L/2

−L/2

∫ y

−L/2
δ̃(y)δ̃(x)dxdy

= lim
pb→0

1

2

∫ L/2

−L/2

∫ L/2

−L/2
δ̃(y)δ̃(x)dxdy = 1

2
.

The proof for the case σ =↓ is similar.
Applying the above identity (G9), the second integral

in (G8) evaluates to 1
2 [(A2 − A1) − (B2 − B1)] so that (G8)

becomes

(A1 − B1) + (A2 − A1) − (B2 − B1)

2
= 0.

Simplifying, we obtain

A1 + A2

2
= B1 + B2

2
. (G10)

This is precisely the constraint from Eq. (41).

APPENDIX H: DEGENERACY FROM SPONTANEOUSLY
BROKEN TIME-REVERSAL SYMMETRY

In this appendix, we consider a FQSH edge in a disk
geometry with N time-reversal invariant impurities located
at positions x1, . . . ,xN . We show that when U → ∞, the
ground state is twofold degenerate, which is consistent with
spontaneous time-reversal symmetry breaking.

Because we consider time-reversal-invariant impurities,
the dominant scattering process in this system involves two-
particle backscattering. Thus the Hamiltonian takes the form

H = H0 − U

N∑
i=1

cos(Ci), (H1)

Ci = 2k(φ↑(xi) + φ↓(xi)). (H2)

where H0 is defined in Eq. (31). Notice the factor of 2 in the
definition of Ci .

We can see that this system is identical to the magnetic
impurity system studied in Sec. III C except for the above
factor of 2. As a result, almost all of the results derived in
Sec. III C carry over to this case without change. In fact,
the only difference comes when we compute the commutator
matrix Zij = 1

2πi
[Ci,Cj ]. For the above case, Zij takes the

form

Zij =

⎛
⎜⎜⎜⎜⎜⎜⎝

0 · · · 0 2 −2
...

...
...

...
...

0 · · · 0 2 −2

−2 · · · −2 0 0

2 · · · 2 0 0

⎞
⎟⎟⎟⎟⎟⎟⎠

.

In order to transform the commutator matrix into canonical
form, we make the change of variables

C ′
1 = C1, C ′

2 = −2πQ↑, C ′
3 = 2πQ↑ + 2πQ↓,

C ′
m = Cm−2 − Cm−3, m = 4, . . . ,N + 2.

In this basis, we obtain

Z ′
ij = 1

2πi
[C ′

i ,C
′
j ] =

⎛
⎜⎜⎜⎜⎜⎜⎝

0 −2 0 · · · 0

2 0 0 · · · 0

0 0 0 · · · 0
...

...
...

...
...

0 0 0 · · · 0

⎞
⎟⎟⎟⎟⎟⎟⎠

.

We can see that Z ′
ij is in the canonical skew-normal form

shown in Eq. (14), with the parameters M = N + 2, I = 1,and
d1 = 2.

If we now compute the degeneracy using Eq. (20), we obtain
D = d1 = 2. We conclude that the ground state is twofold
degenerate (in fact, every state shares this degeneracy). This
degeneracy makes perfect sense physically since we expect
that the edge will exhibit spontaneous time-reversal symmetry
breaking in the limit of large U [22,30,31], and such symmetry
breaking naturally leads to a twofold degeneracy.
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