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The Hubbard model, which augments independent-electron band theory with a single parameter to describe
electron-electron correlations, is widely regarded to be the “standard model” of condensed-matter physics. The
model has been remarkably successful at addressing a range of correlation phenomena in solids, but it neglects
many behaviors that occur in real materials, such as phonons, long-range interactions, and, in its simplest form,
multiorbital effects. Here, we use ab initio electronic structure methods to design a material whose Hamiltonian
matches as closely as possible that of the single-band Hubbard model. Our motivation is to compare the
measured properties of our new material to those predicted by reliable theoretical solutions of the Hubbard model
to determine the relevance of the model in the description of real materials. After identifying an appropriate
crystal class and several appropriate chemistries, we use density-functional theory and dynamical mean-field
theory to screen for the desired electronic band structure and metal-insulator transition. We then explore the
most promising candidates for structural stability and suitability for doping, and we propose specific materials
for subsequent synthesis. Finally, we identify a regime—that should manifest in our bespoke material—in which
the single-band Hubbard model on a triangular lattice exhibits exotic d-wave superconductivity.
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I. INTRODUCTION

Independent-electron band theory—in which interactions
between electrons are treated at a mean-field level—is a simple
yet often remarkably effective method for calculating the
behavior of electrons in solids. In its modern density-functional
implementation, its combination of an explicit description of
crystal structure and chemistry with computational affordabil-
ity has led to many successes. These successes range from
early predictions of phase stability and lattice dynamics in
technologically important materials such as semiconducting
silicon [1], through a description of the structure and elec-
tronics of lattice defects [2], to modern predictions of new
physics and phenomena in complex materials such as nano-
and heterostructures [3].

By construction, however, independent-electron theories do
not include explicit correlations between individual electrons,
and so they are often inappropriate for describing or predicting
the properties of so-called strongly correlated materials, in
which these interactions dominate the physics. Its classic fail-
ure is the inability to predict an insulating state for a half-filled
band, which will always be metallic within the conventional
band theory formalism. Here model Hamiltonians with explicit
electron-electron interaction terms have an advantage, at the
expense of a loss of computational tractability and chemical
information. In particular, Hubbard introduced the modern
form of the model that now bears his name in a series of
papers beginning in 1963 [4–6] specifically to “set up the
simplest possible model containing the necessary ingredients.”
(We note that the first hints of the Hubbard model can be
found in the quantum chemistry literature of the 1950s [7–9],
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with Anderson also suggesting an early variation [10], and the
standard form also independently proposed by Gutzwiller [11]
and Kanamori [12].) The Hubbard Hamiltonian is

H = −t
∑

〈i,j〉σ
(c†i,σ cj,σ + c

†
j,σ ci,σ ) + U

N∑

i=1

ni↑ni↓. (1)

Here the first term is the kinetic-energy term of standard
band theory, with 〈i,j 〉 indicating summation over all pairs of
lattice sites (usually nearest neighbors), σ indicating the spin
degree of freedom, and t denoting the hopping matrix element
between states i and j . c

†
i and ci are the usual creation and

annihilation operators, and the number operator ni = c
†
i ci . The

second term introduces explicit electron-electron correlations
through the Coulomb repulsion, of magnitude U , between two
electrons occupying the same lattice site. We illustrate both
terms schematically in Fig. 1.

For small values of U and large values of t (the weak-
correlation limit), Eq. (1) yields metallic solutions for partially
filled bands and can successfully describe, for example, itiner-
ant magnetism in transition metals. Importantly, increasing the
ratio of U/t (the strong-correlation limit) causes a crossover to
an insulating solution, allowing the description of, for exam-
ple, the antiferromagnetic insulating state of transition-metal
oxides. Modern studies can incorporate (non-self-consistent)
information about crystal structure and chemistry via density-
functional calculations of the t and U parameters, and an
increasing range of materials from Mott insulators to high-Tc

superconductors is currently being addressed [13–16]. While it
is not obvious why a single-band picture is relevant in the case
of systems with degenerate d orbitals or strong hybridization
with s or p states, several works show that the single-band
picture does indeed successfully describe low-energy charge
and spin excitations in a realistic manner [17,18].
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FIG. 1. Cartoon of a triangular lattice illustrating the two param-
eters that enter the Hubbard model: the intersite hopping, t , and the
on-site repulsion, U .

Despite the simplicity of Eq. (1), the general Hubbard
model is in fact computationally intractable, and much current
research activity is aimed at obtaining the Hubbard model
phase diagram. Exact solutions are possible in one dimension
[19], where a transition from a metal to a Mott insulator
occurs at half-filling when U > t [20]. Away from exactly
half-filling, the solution is always metallic for either hole
or electron doping. In two dimensions, numerically exact
solutions can be found in the ground state only for either
very small lattices of at most about 20 sites [21], or on
so-called ladder models consisting of coupled chains for
around 100 sites using the density-matrix renormalization-
group algorithm [22]. For arbitrary dimension and large
lattices, however, approximations must be used to investigate
the phase diagram. Analytical methods such as slave-boson
mean-field theory and the Gutzwiller approximation have been
applied extensively [23–25], and numerical techniques such
as the dynamical cluster approximation (DCA) and dynamical
mean-field theory (DMFT) have had some success [14,26–28].
The rapid scaling of the computational resources required with
the system size has hampered efforts to simulate large systems,
however. Despite this profusion of computational approaches,
consensus has yet to be reached on the exact nature of the phase
diagram throughout the entire phase space, although diverse
numerical methods start to agree on some properties of the
two-dimensional (2D) Hubbard model [29,30]. Much less is
known in three dimensions, where simulations have mainly
been performed using quantum Monte Carlo at relatively high
temperatures of the order of the Néel temperature [31–36].

Substantial interest has been raised by the possibility of
realizing the Hubbard model in optical lattices [37–39], in
which experimental simulations are performed using ultracold
atoms [40], which take the role of the electrons in the
conventional Hubbard model. The atoms are trapped in a
potential created by interfering laser beams, and since the
lasers are highly controllable, a vast range of potentials can
be created using different interference effects. The simulated
lattice model is therefore highly tunable both in terms of the
lattice geometry and dimensionality, and in the value of t/U .
In particular, a metal-insulator transition, accompanied by a
suppression of doubly occupied sites, a drop in compressibility,
and an excitation gap, has been demonstrated in a gas of

cold fermionic atoms by tuning the strength of their mutual
repulsion [41,42], and short-range magnetic correlations have
been observed [43,44]. While proposals have been made to
cool below the Néel temperature (see, for example, Ref. [34]),
experimental progress has been slow and challenging in efforts
to achieve long-range magnetic order and adiabatically prepare
d-wave superconducting phases [45].

In this work, we use ab initio electronic structure methods,
at the band theory and dynamical mean-field theory levels, to
design a real material whose Hamiltonian matches as closely as
possible that of the single-band Hubbard model. A condensed-
matter realization of the Hubbard model, even if not as tunable
as ultracold quantum gases, is immediately interesting as it will
allow much lower temperatures to be reached. In addition, our
designer material will provide a model system for determining
the deviations from ideal behavior that occur in all real
materials, and therefore it offers a means to determine the
most important corrections that are required for models to be
relevant in materials science.

II. DESIGN OF A SINGLE-BAND
HUBBARD MODEL MATERIAL

A. Candidate crystal structures and chemistries

Since we seek a material described by a single-band
Hubbard model, we begin by engineering a nondegenerate
d-manifold using crystal-field considerations. Crystal-field
splittings with single nondegenerate d bands are obtained for
a variety of ionic geometries, such as pentagonal bipyramidal,
square antiprismatic, square planar, square pyramidal, and trig-
onal bipyramidal (Fig. 2). In this work, we choose the trigonal
bipyramidal coordination, in which the fivefold degeneracy
is broken into two doubly degenerate orbital levels (dxz,dyx

and dxy,dx2−y2 ) and a single orbital (dz2 ) for its combination
of a large energetic separation of the single-band state and
geometric simplicity. For trigonal bipyramidal coordination
with shorter apical than in-plane ligand distances, the isolated
d2

z band is the highest energy level, and so it becomes half-filled
for a d9 electron configuration.

Such trigonal bipyramidal coordination is found in the well-
studied hexagonal manganite structure adopted by YMnO3 as
well as the manganites of the smaller rare-earth ions. The
structure is formed from layers of corner-sharing MnO5 trigo-
nal bipyramids alternating with planes of Y ions. Figures 3(a)
and 3(b) show the high-symmetry P 63/mmc variant that
occurs at high temperature; below around 1000 K, there is
a phase transition to a ferroelectric P 63cm structure, which
does not alter the coordination environment and hence does
not change the crystal-field splitting. In Fig. 3(c), we show
our calculated density of states for hexagonal YMnO3 in
the high-symmetry P 63/mmc reference structure, and with
the local moments on the Mn ions ferromagnetically aligned.
The 3d4 Mn3+ ions have a high-spin configuration, with the
up-spin dxz,dyx and dxy and dx2−y2 orbitals occupied, and
the spin-up dz2 forming the lowest energy state above the
Fermi level. The exchange-split spin-down states begin at
an energy of ∼4 eV above the Fermi level. While the d4

Mn3+ configuration is magnetic and does not yield a half-filled
single band, excluding it from consideration as our single-band
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FIG. 2. Common coordination environments for transition-metal ions that yield at least one singly degenerate crystal-field level. (a)
Pentagonal bipyramidal, (b) square antiprismatic, (c) square planar, (d) square pyramidal, and (e) trigonal bipyramidal.

Hubbard material, we see already that the d2
z orbitals form an

isolated band with little hybridization with the oxygen ligands,
confirming our intuition that this crystal class is promising.

Next we select ion combinations that have formal valence
states that should yield half-filling of the isolated d2

z band, and
will also likely allow for doping across the range from empty to
filled bands. As mentioned above, to half-fill the dz2 band, our
B-site cation should have a d9 configuration, suggesting Cu2+

as the most promising candidate. For oxides or sulfides, both
of which have divalent anions, the A-site cations should be
tetravalent, suggesting Zr or Sn as possibilities. For fluorides,
in which the anions are monovalent, the A sites should also
be monovalent, suggesting Li or Na. We take, therefore the
following as our initial list of trial compounds for further study:
ZrCuO3, SnCuO3; ZrCuS3, SnCuS3; LiCuF3, NaCuF3.

B. Computational details

Our electronic structure calculations were performed within
density-functional theory using the Vienna Ab Initio Simula-
tion Package (VASP) [46,47]. The electronic wave functions
and density were expanded using a plane-wave basis set,
and we used projector-augmented-wave (PAW) potentials

FIG. 3. (a) Side view of the hexagonal-manganite structure of
YMnO3. Layers of corner-shared MnO5 trigonal bipyramids are sep-
arated by layers of Y ions. (b) Top view of the hexagonal-manganite
structure showing the triangular lattice formed by the Mn ions, which
are connected via shared oxygen ions. (c) Calculated density of
states of hexagonal manganite YMnO3 in its high-symmetry reference
structure with the Mn ions ordered ferromagnetically. The orbitally
projected Mn d2

z states are shaded in purple, and the Fermi energy,
EF , is set to 0 eV. Majority (minority) spin states are shown on the
positive (negative) y axis.

[48] for core-valence separation. For the exchange-correlation
potential, we used the generalized gradient approximation
(GGA) [49,50], and strong correlation effects were treated
by means of the GGA+U scheme. Here we used the Dudarev
method [51] in which Ueff = U − J accounts for the on-site
U (Coulomb repulsion) and J (Hund’s rule exchange) on the
metal d states. To choose an appropriate Ueff for hypothetical
compounds (without spectroscopic data), we performed hybrid
functional calculations on LiCuF3 to select an appropriate
range by matching the DFT+U gap between the filled
valence manifold and the split-off single band with the hybrid
functional result. In the hybrid functional calculations, an HSE
functional consisting of 75% PBE and 25% exact Hartree-Fock
exchange was used [52]. This led us to choose a Ueff of 7 eV
on the Cu d states, which is similar to that used in previous
studies on cuprate materials [53]. [The calculated YMnO3

DOS shown in Fig. 3(c) was also obtained using a Ueff of 7
eV on the Mn d states, consistent with literature studies on
YMnO3.] A 10 × 10 × 4 �-centered k-point mesh was used
for Brillouin-zone integrations. The plane-wave cutoff was set
to 550 eV, and in performing the structural optimizations we
allowed the ions to relax until the Hellmann-Feynman forces
were less than 1 meV/Å−1.

To treat the electron-electron correlations in modeling the
metal-insulator transition, we used the DMFT approach [54].
We first constructed maximally localized Wanner functions for
the transition-metal d bands of the Kohn-Sham Hamiltonian
using the WANNIER90 code [55,56]. We then used these as
the noninteracting part H0 of a Hubbard Hamiltonian H =
H0 + Hint, where Hint is the local electron-electron interaction
comprising the intraorbital Coulomb interaction, UDMFT, and
Hund’s rule coupling, J . Here we used J = 0 eV since we
consider a single orbital, while we varied UDMFT from 0 to 4 eV.
We used a continuous-time hybridization expansion quantum
Monte Carlo solver [57] as implemented in the TRIQS 1.0 code
[58] to calculate the local Green’s function within DMFT at a
temperature T = 1/(kBβ) = 290 K (β = 40 eV−1).

III. RESULTS

A. Structural optimization

First we perform an initial band-structure screening of
our trial compounds within the high-temperature P 63/mmc
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TABLE I. Calculated structural parameters for hypothetical
oxides, fluorides, and sulfides in the centrosymmetric hexagonal
manganite structure with the P 63/mmc space group. The lattice
parameters a and c are given in the standard hexagonal setting with
two formula units per unit cell.

a c Cu-F (in-plane) (apical)
(Å) (Å) (Å) (Å)

ZrCuO3 3.75 9.33 2.16 1.81
SnCuO3 3.78 9.38 2.18 1.82
LiCuF3 3.47 11.13 2.00 1.85
NaCuF3 3.60 11.60 2.08 1.84
ZrCuS3 4.69 10.26 2.70 2.22
SnCuS3 4.72 10.94 2.71 2.36

structure. Our calculated lattice constants for all six com-
pounds are given in Table I. For the oxides and fluorides,
the transition-metal–apical-ligand distances are shorter than
the corresponding in-plane distances, which should yield the
highest-energy singly degenerate crystal-field state required in
our analysis. As expected from the larger atomic radius of Na,
the volume of NaCuF3 is slightly greater than that of LiCuF3,
although the apical Cu-F bonding distances are almost the
same in both compounds. Between the Zr and Sn oxides, the
volumes and Cu-O distances are almost identical, suggesting
similar crystal-field splittings in the two cases. Interestingly,
for the sulfides, the apical Cu-S bonding distances are longer
than the in-plane distances. This should place the singly
degenerate d2

z band in the lowest-energy position, which will

lead to its full application. Therefore, we exclude the sulfides
from our list of candidates for further consideration.

B. Electronic properties at the density-functional-theory level

Using our optimized structures, we next calculate the
electronic properties of the candidate materials at the density-
functional-theory level. Figure 4 shows the calculated elec-
tronic band structures and orbital-resolved densities of states
for (a) ZrCuO3, (b) SnCuO3, (c) LiCuF3, and (d) NaCuF3. For
both of the oxide compounds, the Fermi energy intersects
a band that is composed primarily of Cu dz2 states, with
some admixture from apical O pz states. The Cu dz2 band
is almost separated from the broad valence band composed
of the other four majority Cu d bands and oxygen, but the
separation is not complete due to its non-negligible bandwidth
of 1.2 eV. For the tin case, we also find Sn s states at EF

[Fig. 4(b)], which are undesirable for achieving a single-band
model.

We find a more promising situation in the fluorides
[Figs. 4(c) and 4(d)], both of which show a completely split-off
half-filled Cu dz2 band. The reduced anion hybridization in
these more ionic compounds gives a smaller bandwidth of
∼1 eV and makes the fluorides more single-band-like. (Note
that our calculation is for a two-formula-unit unit cell, and
the two Cu ions are slightly symmetry-inequivalent so two Cu
d2

z bands are shown.) The electronic structures of LiCuF3 and
NaCuF3 are remarkably similar in the region surrounding the
Fermi level since there is no contribution from the A sites in
either case in this region. The only clear difference is that the

FIG. 4. Calculated band structures and total and orbital-projected densities of states (DOSs) for (a) ZrCuO3, (b) SnCuO3, (c) LiCuF3, and
NaCuF3, all in the hexagonal manganite structure. (Note that NaCuF3 exists experimentally in a P1 structure [75].) The Fermi level is set to
0 eV and is marked by the dashed line in each of the plots.
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FIG. 5. (a) Maximally localized Wannier function in LiCuF3

obtained from projection of the dz2 band for one Cu site. (b) Calculated
DMFT spectral function for a range of U values (in eV) as a function
of frequency ω. The Fermi energy is indicated to 0 eV, and filled
orbitals are shaded.

crystal-field gap between the split-off band and the other Cu d

states is slightly larger in NaCuF3(∼0.3 eV) than in LiCuF3

(∼0.2 eV).
In summary, we find from density-functional calculations

that the cuprates of Zn and Sn, and the copper fluorides of Li
and Na, are promising candidate single-band Hubbard model
materials when in the hexagonal manganite structure, with
the fluorides having the more desirable properties. Next we
continue with one of the fluoride representatives—LiCuF3—
and we investigate the effect of explicit electron correlations
at the dynamical mean-field-theory level.

C. Electronic structure at the dynamical mean-field-theory level

To study the effect of explicit electron-electron correlations
on the d2

z band, we next calculate the spectrum of LiCuF3 using
DMFT. We first construct the maximally localized Wannier
function [Fig. 5(a)] on a Cu site for the energy window
corresponding to the isolated Cu dz2 band using the WANNIER90

code [56]. As expected, the Wannier function has primarily
Cu dz2 character with small F p–symmetry “tails” extending
onto the neighboring fluorine ions.

Using this Wannier function as a basis, we next calculate the
spectral function, A(ω) within DMFT, by analytic continuation
using the maximum entropy method [59]. Our results are
shown in Fig. 5(b) for UDMFT values ranging from 0 to
1.5 eV. We see that the system is metallic at U = 0 eV.
As the interaction parameter U is increased, the spectral
weight gradually shifts from the quasiparticle peak at ω =
0 eV to the upper and lower Hubbard bands. Eventually a
classic Mott transition occurs when the electron interactions
are strong enough to cause the quasiparticle peak to disappear
completely and a gap to form. Consistent with our Tr G(β/2)
data (not shown), the system gaps above UDMFT = 1.25 eV. We
comment briefly on the apparent inconsistency introduced by
our use of a nonzero U value in our original DFT calculations,
combined with a second U in the DMFT study. To address this
issue, we repeated our DFT calculations in the GGA (U = 0)
limit and found the band structure and bandwidths to be very
similar to the GGA + U case, with the DFT + U treatment
acting as a scissors operator to isolate the dz2 orbital. Therefore,

we expect only small quantitative changes in the UDMFT value
at the metal-insulator transition if the initial Wannier functions
were constructed from results of the U = 0 GGA calculation;
construction of the Wannier functions would be complicated,
however, by the poorly isolated bands.

D. Structural stability

Our prediction of LiCuF3 as a new compound of course
reflects the fact that it does not currently exist. Indeed,
hypothetical ternary compounds in the Li-Cu-F system are
likely unstable with respect to LiF + Cu metal + F2 gas,
or, possibly under high-pressure conditions, to LiF + CuF2.
In addition, Cu2+ most commonly occurs in square planar
or distorted octahedral coordination in oxides and fluorides,
rather than the trigonal bipyramidal coordination we require
here. As a first step to assessing the feasibility of synthesizing
our proposed compounds, and in particular to address the latter
issue, we calculate the relative structural stabilities of a range
of structural isomorphs of LiCuF3. We consider the following
crystal structures, all of which are known to exist for com-
pounds with ABX3 chemistry: high-temperature hexagonal
manganite (P 63/mmc), low-temperature ferroelectric hexago-
nal manganite (P 63cm), low-temperature nonpolar hexagonal
manganite (P 3̄c), cubic perovskite (Pm3̄m), ilmenite (R3̄),
the “NaCuF3” structure (which corresponds to the ambient
experimental ground state, P 1̄), the “CoGeO3” structure
(C2/c), and two noncentrosymmetric structural variants—
rhombohedral (R3m) and tetragonal (P 4/mmm)—found in
BaTiO3. We apply both positive and negative hydrostatic pres-
sure by scaling the lattice parameters, keeping the fractional
internal coordinates of the ions fixed for each calculation to
ensure that the original symmetry group is maintained.

FIG. 6. Calculated total energy as a function of volume for
the three calculated lowest-energy LiCuF3 isomorphs. The NaCuF3

structure (blue shaded region and inset) is the most stable structure
for small volumes, and the hexagonal manganite becomes the lowest
energy structure for volumes greater than 63 Å3 (green shaded region).
Finally, for very large volumes the CoGeO3 structure is stabilized
(shown in orange inset).
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Figure 6 shows the resulting calculated energies as a
function of volume for the various structural isomorphs
of LiCuF3 that were lowest in energy over the range of
volumes studied. We find that the lowest-energy structure
is the “NaCuF3” structure, however for an 8% increase in
volume (corresponding to a 2% increase in lattice constant) the
hexagonal manganite structure is the ground state, suggesting
that it might be possible to achieve it using tensile strain.
At much larger lattice constants, the C2/c CoGeO3 structure
becomes stable.

E. Doping

Finally, we explore routes to electron- and hole-doping
LiCuF3 so that the entire range of band filling can be accessed.
First we artificially add (remove) up to one electron per formula
unit without changing the ion configuration, using a compen-
sating background positive (negative) charge to prevent elec-
trostatic divergence. As expected, the Fermi level shifts down-
ward (upward) as electrons are removed (added), giving a com-
pletely unfilled Cu dz2 band when 1 e− per formula unit is re-
moved, and a completely filled Cu dz2 band when 1 e− per for-
mula unit is added. No qualitative change apart from the rigid
shift in the Fermi level is found over the entire doping range;
in particular, the split-off single-band character is retained.

An experimentally accessible possibility for hole doping
is to substitute fluorine (which forms F−, with one negative
charge per atom) by oxygen (which forms O2−, with two). Re-
placing one fluorine atom per unit cell with oxygen yields the
chemical formula Li2Cu2F5O1, which corresponds to remov-
ing half an electron per formula unit. We calculated the relative
energies of the substitutional sites for the oxygen by replacing
each of the two inequivalent fluorine ions with an oxygen ion,
performing a full structural relaxation, then comparing the final
energies. We found that in-plane substitution is lower in energy
by ∼0.3 eV per formula unit than apical substitution; this is
favorable for our Hubbard material design, as the in-plane ions
have minimal hybridization with the split-off single band. The
resulting DOS for in-plane oxygen substitution is plotted in
Fig. 7(b) (left panel), with the orbital projected O p states

shown in pink. Note that the electronic structure in the region
of the Fermi level is remarkably similar to that obtained by
removing electrons in our first doping calculations.

Possible routes to electron doping LiCuF3 are to replace
some Li with Be (although the toxicity of Be renders this
option unattractive in practice) or to introduce F vacancies
(which is challenging while maintaining the same structure).
Substituting one Li ion with a Be ion introduces half an
extra electron per formula unit with the chemical formula
LiBeCu2F6. The influence of Be substitution on the electronic
structure is shown in Fig. 7(b) (right panel), where we have
plotted the Cu dz2 band separately from the other Cu d

states. While no Be states appear near the Fermi level, the
substitution causes an orbital reordering whereby the region
next to the Fermi level now comprises contributions from
the full d manifold. Removing one fluorine atom per unit
cell to give the chemical formula Li2Cu2F5 also corresponds
to adding half an electron per formula unit. We calculated
the relative energy of vacancy sites by removing the fluorine
ion from each of the two inequivalent fluorine in turn and
performing a full internal relaxation. We found that apical
fluorine vacancies are lower in energy than in-plane vacancies
by ∼0.1 eV per formula unit; the resulting density of states
for apical vacancies is plotted in Fig. 7(e) (right panel). Unlike
the Be substitution case, the region surrounding the Fermi
level retains its Cu dz2 character and behaves more like the
rigid-band model of electron addition.

F. Exotic superconductivity

Since their discovery in the 1980s [60], the cuprate
superconductors have remained one of the most studied
classes of materials, as well as one of the most elusive in
revealing a comprehensive understanding of their behavior
[61,62]. In particular, while they have the highest critical
temperatures of all known superconductors, the details of the
pairing mechanism are still unknown. The relevant features
for high-Tc superconductivity in the cuprates appear to be
the quasi-two-dimensional electronic structure, the parent

FIG. 7. Left: (a) Density of states of LiCuF3 with half an electron removed per formula unit. (b) Density of states for oxygen-substituted
Li2Cu2F5O1. Right: (c) Density of states of LiCuF3 with half an electron added per formula unit. (d) Calculated DOS for Be-substituted LiCuF3.
(e) Calculated DOS for LiCuF3 with a fluorine vacancy. In all cases, the Fermi level is set to 0 eV, and orbital-projected DOSs are shown for
the relevant atoms.
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antiferromagnetic compound with a range of accessible dop-
ings, the spin- 1

2 magnetic moment, and the single band at
the Fermi level. For example, the La2CuO4 cuprate parent
compound contains 3d9 octahedrally coordinated Cu2+ ions.
A strong Jahn-Teller distortion lifts the energy of the two eg

orbitals yielding a nondegenerate half-filled Cu dx2−y2 band,
which is, however, strongly hybridized with the px and py

states on the neighboring oxygens [17]. The ground state is
antiferromagnetic and insulating due to the combined effects of
exchange splitting and Mott electron repulsion. Recognition of
these characteristics has led to attempts to design new materials
that might enhance exotic superconductivity. A particularly
clever suggestion was to use geometric engineering to crystal-
field-split the degenerate eg orbitals rather than relying on
the Jahn-Teller distortion [63]. A proposed candidate system
was a layered superlattice of (LaNiO3/LaAlO3) in which
the symmetry and strain of the superlattice would lift the
degeneracy of the Ni eg states. While an intriguing idea,
in experiment charge-transfer physics has been found to
dominate the behavior and suppress superconductivity.

Our bespoke single-band Hubbard material, LiCuF3, ex-
hibits all the necessary ingredients for exotic superconduc-
tivity. In particular, the single band at the Fermi level is
strongly two-dimensional, and Cu2+ ions are spin- 1

2 with
antiferromagnetic interactions. The triangular lattice might
lead to additional exotic behavior. Therefore, as a final
analysis, we investigate whether a superconducting transition
might occur in this compound and provide a prediction
of its critical temperature. For this we use a variant of
the dynamical cluster approximation (DCA) [64], which
is the cluster extension of the DMFT [54]. In this method, the
original infinite lattice problem is transformed into solution
of a finite-sized cluster with periodic boundary conditions,
embedded in a self-consistent mean field. This transformation
is achieved via a coarse-graining procedure of the Green’s
function, in which the Brillouin zone is divided into Nc patches
on which the self-energy is assumed to be constant. The DCA is
able to treat all short-range correlations between the electrons
in the cluster exactly, while long-range correlations outside the
cluster are taken into account by the embedding self-consistent
mean field. We recently extended the method [65–67] to
allow determination of the critical temperature for large
clusters at a strong interaction strength and to treat continuous
lattice self-energies and vertex functions in momentum space,
giving a more accurate description and allowing a more
stringent investigation of the superconducting gap function in
momentum space [67]. We use this new DCA+ method here.

DCA has previously been used to investigate the pairing
mechanism of the Cooper pairs in the high-Tc cuprates
[26,28,67–71]. In addition, Chen et al. [72] recently investi-
gated the superconducting transition on a triangular lattice and
discovered two divergent pairing susceptibilities, one with dxy

symmetry and one with dx2−y2 symmetry, for a cluster of size 6
and U = 8.5t . Furthermore, their phase diagram suggests that
the critical temperature rises as the doping is decreased, up to
a possible Tc ≈ 0.06t (with t being the hopping parameter).
This further motivates our study, as our LiCuF3 compound has
a half-filled band.

We use the DCA+ method at U = 8t to solve a 16-site
cluster, which has been used in earlier papers investigating

FIG. 8. The leading eigenvalue λ of the matrix �χ . A supercon-
ducting transition occurs when this leading eigenvalue λ crosses 1
since the pairing susceptibility χ = χ0/(1 − �χ ) will diverge. Inset:
A log-log plot of the leading eigenvalue vs temperature. The linearity
of the plot suggests that λ behaves as λ ∝ α (T − Tc)γ . This behavior
indicates that we are in the mean-field regime. This allows us to
extrapolate λ and find a Tc equal to ∝ 0.08.

the high-Tc cuprate superconductors to allow for a direct
comparison with these earlier calculations. We restrict our
model to a nearest-neighbor hopping term that we choose
based on our DFT calculation to be t = 0.1 eV. In Fig. 8, we
show our calculated leading eigenvalue λ of the matrix �χ . If
this leading eigenvalue λ crosses 1, the pairing susceptibility
χ = χ0/(1 − �χ0) diverges and a superconducting transition
occurs. As in Ref. [72], we find two diverging superconducting
modes, one with dxy and one with dx2−y2 symmetry. In the inset,
we show our finding that the leading eigenvalues are linear on
a log-log plot, which indicates that the eigenvalue behaves as
λ ∝ α (T − Tc)γ and is thus in the mean-field regime. This
allows us to extrapolate to lower temperatures and find a
Tc ≈ 0.08 by solving the equation λ = 1. To understand why
the dxy superconducting mode is favored over dx2−y2 , one can
look at their corresponding gap functions 
, defined as the
corresponding eigenvector, in momentum space. In Fig. 9, we
show the momentum-space structure of the gap function at
the lowest Matsubara frequency for, respectively, the dxy and
dx2−y2 superconducting modes as well as a cut of the supercon-
ducting gaps along the Fermi surface. (Note that we extract the
symmetry of the pairing above Tc from the eigenvector of the
largest eigenvalue. Since the symmetry of the eigenvector does
not change through the transition, this allows us to determine
the symmetry of the superconducting gap above the transition
temperature to the superconducting state.) We see that the
amplitude of the dxy mode is larger than that of the dx2−y2

mode, which leads to a larger λ and critical temperature.

IV. SUMMARY

We have identified a class of materials with the hexagonal
manganite structure whose low-energy behavior reflects the
single-band Hubbard Hamiltonian, and we propose LiCuF3
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FIG. 9. The momentum-space structure of the leading superconducting gap functions 
dx y (left) and 

d
x2−y2 (middle) at the lowest

Matsubara frequency. By looking at their projections on the Fermi surface (right), we can understand why 

d
x2−y2 has a lower critical

temperature. Its gap is simply not as big as the gap of 
dx y in the negative region. Since the critical temperature is proportional to the size of
the gap, one would expect a lower Tc for 


d
x2−y2 than for 
dx y .

and NaCuF3 as promising candidates. We used density-
functional theory, dynamical mean-field theory, and the dy-
namical cluster approximation to characterize LiCuF3 in detail,
and we showed that it displays the expected Mott transition
as well as exotic d-wave superconductivity. We hope that our
work will motivate experimental synthesis and characteriza-
tion of this and related compounds [73,74], as well as an ex-
ploration of bespoke materials with other model Hamiltonians.
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