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Many metals display resistivity saturation—a substantial decrease in the slope of the resistivity as a function
of temperature that occurs when the electron scattering rate τ−1 becomes comparable to the Fermi energy EF /�

(the Mott-Ioffe-Regel limit). At such temperatures, the usual description of a metal in terms of ballistically
propagating quasiparticles is no longer valid. We present a tractable model of a large number N of electronic
bands coupled to N 2 optical phonon modes, which displays a crossover behavior in the resistivity at temperatures
where τ−1 ∼ EF /�. At low temperatures, the resistivity obeys the familiar linear form, while at high temperatures,
the resistivity still increases linearly, but with a modified slope (that can be either lower or higher than the low-
temperature slope, depending on the band structure). The high-temperature non-Boltzmann regime is interpreted
by considering the diffusion constant and the compressibility, both of which scale as the inverse square root of
the temperature.

DOI: 10.1103/PhysRevB.93.075109

Introduction. Many materials, especially transition metals
and transition-metal compounds, display resistivity satura-
tion [1–4]—a substantial decrease in the slope of the resistivity
as a function of temperature. This reduction in slope occurs
in the regime where the experimentally measured lifetime,
deduced from the Drude form of the conductivity, approaches
the bound τ (T ) ∼ �/EF (where EF is the Fermi energy). The
resistivity often levels off at a value close to the Mott-Ioffe-
Regel (MIR) limit [5], ρMIR ∼ h/e2kF , where kF is the Fermi
momentum, and the crossover occurs at temperatures of a few
hundred kelvins. This phenomenon is believed to be intimately
linked to the existence, or lack, of coherent quasiparticles.
Despite theoretical progress (for a review, see Refs. [6,7]), a
simple and general explanation is still lacking.

In systems which exhibit long-lived quasiparticles, i.e., the
quasiparticle lifetime obeys τ � �/EF , the conductivity is
well described by the semiclassical Drude theory, resulting
in [8]

σ ∝ e2EF τkd−2
F (1)

with −e the electron charge, kF the Fermi momentum, and
d the dimensionality, and we set � = kB = 1 throughout.
However, strong interactions (e.g., electron-phonon scattering)
may decrease the lifetime τ such that the quasiparticles are
no longer well defined, and the semiclassical theory is not
applicable. This regime is often discussed in the context
of the so-called “bad metals” [9]. The absence of an
alternative, well-controlled theoretical description has made
further progress difficult. Numerical studies and theoretical
arguments [3,6,10–19] indicate that for electron-phonon
systems, the resistivity may saturate under certain conditions.

In this work, we present a simple, tractable electron-phonon
model displaying a crossover behavior in the resistivity
at temperature where EF τ ∼ 1. At the corresponding
temperature, the low-T quasiparticle transport crosses over to
a distinctly non-Boltzmann behavior.

Some transition metals that display resistivity saturation,
such as the A15 compounds [2,11,18], are characterized by
strong electron-phonon coupling. In these systems, all the
5d orbitals participate in the electronic states near the Fermi
energy.

Motivated by these features, we introduce a model of
N identical electronic bands interacting with N2 flavors of
optical phonons, with an interaction strength parametrized by
a dimensionless coupling constant c; this model is analytically
solvable in the limit N → ∞. Our main result appears in
Fig. 1, showing the resistivity as a function of temperature to
lowest order in 1

N
.

At low temperatures, T � EF /c, the resistivity obeys
the simple Drude formula ρ = 2π

e2
cT

νv2
F

, with ν the density of
states at the Fermi energy and vF the Fermi velocity. As the
temperature becomes of the order of EF /c, the resistivity
starts to deviate from this linear law. Asymptotically, at
temperatures much higher than �

c
(in the vicinity of the MIR

limit), with � the bandwidth, the resistivity is again linear
in the temperature, but the slope is modified by a factor of

v2
F

2〈v2〉 , where 〈v2〉 is the average of the velocity squared over

the entire band. Thus, for v2
F � 〈v2〉, this model displays

resistivity saturation (i.e., there is a substantial decrease in the
slope as the resistivity approaches the MIR limit), while for
v2

F > 2〈v2〉 the resistivity slope increases.
Model. We investigate a system of N � 1 electron flavors

interacting with N2 � N optical, dispersionless phonon
modes. In this type of large-N expansion, inspired by the
work of Fitzpatrick et al. [20], the phonon modes act as a
momentum and energy bath for the electrons. The Lagrangian
of the system is given by

L =
∑
a,n

∫
ddk

(2π )d
c†a(iνn,k)(iνn − ξk)ca(iνn,k)

+ 1

2

∑
n

∑
a,b

∫
ddk

(2π )d
(
K + Mω2

n

)|Xab(ωn,k)|2

+ λ√
N

∑
a,b,n,m

∫
ddk

(2π )d
ddq

(2π )d
Xab(ωn,q) ×

× [c†a(iνm,k)cb(iνm + iωn,k + q) + a ↔ b], (2)

where c
†
a(iνn,k) creates an electron of flavor a = 1 . . . N with

momentum k and Matsubara frequency iνn, with an energy
ξk = εk − μ, with εk ∈ [0,�] being an even function of k, and
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FIG. 1. Resistivity as a function of cT /�, where � is the
bandwidth, for a two-dimensional tight-binding model on a square
lattice. The resistivities are calculated for filling n = 1/80,1/40,1/3
per electronic flavor. The red lines are fits to the low-temperature
linear behavior. The n = 1/3 resistivity continues to rise linearly
throughout the shown temperature regime, and crosses over to
nonlinear behavior only at temperatures comparable to �/c, as shown
in the inset.

μ is the chemical potential. In our calculations, we have used
a two-dimensional tight-binding model on a square lattice,
with dispersion ε(k) = −2t[cos(kx) + cos(ky) − 2] where t =
�/8. X†(ωn,k) is the Fourier transform of an N × N symmet-
ric matrix of phonon displacement operators, with spring con-
stant K = Mω2

0 and mass M . λ/
√

N is the coupling constant
between the displacement of a single phonon and the electrons.

We consider temperatures much larger than the phonon
frequency, T � ω0, and our results are accurate to lowest
order in ω0

T
. While much larger than the phonon energy scales,

the temperature is still much lower than the Fermi energy, T �
EF , so that the Fermi occupation numbers are well described
by the Heaviside function.

We define the dimensionless electron-phonon coupling as

c = λ2ν

Mω2
0

(3)

with ν the density of states at the Fermi level. c may be large, so
that although T � EF , cT may be larger than EF . We are thus
able to access the regime where the quasiparticle scattering
rate is larger than its energy, while keeping the electrons
degenerate. Note that although c may be large, the coupling to
individual phonon modes is scaled by a factor of 1/

√
N [see

Eq. (2)]. Strong-coupling effects, such as lattice instabilities
and polaron formation, are thus suppressed in the large-N limit
(see discussion below). Therefore, the large-N limit allows
us to access the regime of strong scattering, EF τ � 1, while
avoiding lattice instabilities.

Results. Taking the limit N → ∞ allows us to solve the
model (2) order by order in 1/N . Just as in [20], the full set
of rainbow diagrams, depicted in Fig. 2, contributes to the
electron self-energy to lowest order in 1/N . This results in a

FIG. 2. To lowest order in 1/N , the full set of rainbow diagrams
contributes to the electron self-energy, denoted by the filled square.
The arrows represent bare electron propagators, squiggly lines
phonon propagators, and the thick arrow the fully dressed electron
propagator.

self-consistent Dyson’s equation for the fermion self-energy:

�(ω) = −cT

ν

∫
ddk

(2π )d
1

−ω + ξk + �(ω)
. (4)

Note that, because of the momentum-independent electron-
phonon coupling in our model, the self-energy is momentum
independent.

Equation (4) can be solved explicitly in two asymptotic
limits. In the limit of low temperature, cT � EF , the imagi-
nary part of the self-energy, �′′(0), coincides with the familiar
result, −�′′(0) ≡ 1/τ = πcT [21–23]. In the other extreme
limit, cT � �, the scattering rate approaches the asymptotic

form 1/τ =
√

cT 
ν

, with  = ∫
ddk/(2π )d . This result is

similar to that found numerically in Ref. [13] for an N = 1
electron-phonon system, using dynamical mean-field theory
(DMFT). The self-energy, obtained from solving Eq. (4), is
shown as a function of temperature in Fig. 3.
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FIG. 3. The imaginary part of the self-energy at the Fermi level.
At low temperatures, cT � EF , the self-energy increases linearly
with temperature, in accordance with the semiclassical result; the
linear red line represents a fit to the low-T behavior. At higher
temperatures, �′′(0) becomes proportional to

√
T ; the second red

line is proportional to
√

T , and almost exactly coincides with
the numerics. These results are calculated for a two-dimensional
tight-binding system at n = 0.51.
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FIG. 4. Diagrams contributing to the conductivity to lowest order
in 1/N . The dashed lines are phonon propagators, while the full
lines are fully dressed electron Green’s functions. The squiggly lines
represent the current operator, adding a factor of edε/dk.

Next, we calculate the current-current correlation function,
defined as

�(iωn,T ) =
∫

ddk

(2π )d
〈 �J (k,iωn) �J (−k, − iωn)〉, with

�J (k,iωn) = evk

β

∑
a,m

c†a(iνm,k)ca(iνm − iωn,k). (5)

Here, vk = ∂εk/∂k. To lowest order in 1/N , the conductivity
is composed of ladder diagrams of the form shown in
Fig. 4, consisting of noncrossing phonon propagators and
fully dressed electron Green’s functions. Since the electron
dispersion is an even function of momentum and the phonons
are dispersionless, all vertex corrections vanish to this order,
and we are left with

σ (T ) = lim
ω→0

Im �(ωn → ω + iδ,T )

ω

= lim
ω→0

e2N

βω
Im

∑
νn

∫
ddk

(2π )d
v2

k

×G(iνn,k)G(iνn + iωn,k)|iωn→ω+iδ

≈ e2N

∫
ddk

(2π )d
v2

k[A(k,ω = 0)]2. (6)

G(iνn,k) is the fully dressed electron Green’s function,
and A(k,ω) is the electron spectral function, A(k,ω) =
−2Im 1

ω−ξk−�(ω) . In the last line of Eq. (6), we have inserted
the spectral representation of the Green’s function, performed
the Matsubara summation over νn (see, e.g., [24]), and
used the fact that the Fermi occupation function nF obeys
dnF (ε)

dε
≈ −δ(ε) in the regime T � EF , assuming that A(k,ω)

changes slowly on the scale of T . This is justified because, at
low temperature, A(k,ω) varies on the scale of �′′(ω = 0,T �
EF /c) ∼ cT , assumed to be much larger than T . [Here we
have assumed that the density of states, and hence �′′(ω),
varies slowly around zero energy on the scale of T .] At
high temperature the spectral function varies on the scale

of �′′(ω = 0,T � �/c) ∼
√

cT 
ν

� T [see discussion below
Eq. (4)].

To find the conductivity as a function of temperature for a
fixed density of electrons (as appropriate for solids), we solve
Eq. (4) and the equation for the density per flavor

n = 1

N

∑
a

∫
ddk

(2π )2
〈c†a(k)ca(k)〉

≈
∫

ddk

(2π )2

∫ 0

−∞

dω

2π
A(k,ω) (7)

simultaneously for �(ω) and μ [where in the last line of
Eq. (7) we have used the fact that T � EF ]. We use Eq. (6) to

find the conductivity. The resulting resistivity vs T is plotted
in Fig. 1, for several values of the electronic density n. At
low temperature, ρ(T ) ∝ T ; at higher temperatures, where
T ∼ EF /c, the resistivity starts curving downward, although
it keeps increasing.

To understand this behavior, it is useful to analyze the
resistivity in the asymptotic limits of either low or high
temperatures. In the limit cT � EF , the Kubo formula gives
the familiar result

σ (T � EF /c) = N
e2

2π

νv2
F

cT
= N

e2

2π
kd−2
F EF τ. (8)

Note that when T ∼ EF /c, EF τ becomes of order unity; this
is the MIR limit.

In the high-temperature regime, cT � �, the scattering

rate grows as |�′′(ω = 0)| ≈
√

cT 
ν

� �. In this regime, one
can solve Eqs. (4) and (7), as described in the Appendix. This
gives

μ(T ) = f0

√
cT

ν
, (9)

�(ω) = 1

2

(
ω + μ(T ) − i

√
4cT 

ν
− [ω + μ(T )]2

)

with f0 ∈ [−2,2] a dimensionless parameter obtained by
solving the equation n = 

∫ f0

−2
dy

2π

√
4 − y2. Inserting this

form of μ(T ) and �(ω) into Eq. (6), we obtain

σ (T � �/c) ≈ N
e2ν

(
1 − f 2

0
4

)
πcT 

∫
ddk

(2π )d
v2

k

= N
e2

2π

(
1 − f 2

0

4

)
2ν

〈
v2

k

〉
BZ

cT
, (10)

where 〈fk〉BZ ≡ 1


∫
ddk

(2π)d fk.
Thus, at low temperatures, the resistivity increases linearly

with temperature according to the familiar semiclassical result
ρ = 2π

Ne2
cT

νv2
F

; in the high-T regime, the resistivity is given by

ρ = ρ0 + 2π

Ne2

cT

2ν
〈
v2

k

〉
BZ

1

1 − f 2
0 /4

, (11)

with ρ0 calculated in the next order in �/cT to be

ρ0 = π

Ne2

〈
v2

kε
2
k

〉
BZ


〈
v2

k

〉2
BZ

f 2
0

1 − f 2
0 /4

. (12)

For a typical electronic dispersion, we get ρ0 ∝ 2π
Ne2 k

2−d
F ,

with a proportionality coefficient which is a number of
order unity (that depends on the particular band structure).
Therefore, within our model, the resistivity increases linearly
with temperature in both the low and high temperature regimes,
but a crossover to a different slope occurs when the resistivity
reaches a value of the order of the Mott-Ioffe-Regel limit.
Systems with v2

F � 〈v2〉BZ will exhibit a marked decrease
in slope, reminiscent of resistivity saturation. The high-T
system displays distinctly non-Boltzmann transport, without
well-defined quasiparticles.

The fact that well-defined quasiparticles no longer exist
in the high-T regime motivates a description of the transport
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in terms of a diffusion constant, utilizing the Einstein rela-
tion [25], which relates the conductivity to the compressibility
and to the diffusion constant. In order to find the diffusion
constant, we calculate the compressibility

χ = N
∂n

∂μ

= N

[∫
ddk

(2π )d
A(k,ω = 0)

+
∫

dεnF (ε)
∫

ddk

(2π )d
dA(k,ε)

dμ

]
. (13)

In the low-T limit, the compressibility is given by χ ∝ ν,
independently of temperature. In the high-T limit, using

Eq. (9), A(k,ω) = 4ν
cT 

√
cT 

ν
− (ω + μ)2, and we find that

χ ∼ N
√


c
ν
T

. Using the Einstein relations, we deduce

D = σ

χ
∼

⎧⎨
⎩

v2
F

cT
if cT � EF ,

〈v2〉√
c
ν
T

if cT � �.
(14)

The crossover between these results occurs at cT ∼ EF , as it
does for the conductivity.

Discussion. Our model exhibits a crossover from a low-
temperature regime where the transport can be thought of
in terms of long-lived ballistic quasiparticles, to a high-
temperature regime where the inverse lifetime of a momentum
state is comparable to its energy. In the high-temperature
regime, since the momentum of the electron system is not
even approximately conserved, the transport is most naturally
thought of in terms of charge diffusion [25]. The high-
temperature behavior of the diffusion constant, Eq. (14), can
be understood simply as follows. The physics of each site is
governed by an N × N Hamiltonian of phonon deformation
potentials operating in the Hilbert space of the N electron
flavors. The matrix element of the site Hamiltonian are
random, taken from the thermal Gaussian distribution of width

�E = λ

√
T
K

= √
c
ν
T . According to random matrix theory, the

distribution of eigenenergies of the single-site Hamiltonian
is given by the Wigner semicircle law, such that the density
of states is ρ(ε) = N

2π�E2

√
4(�E)2 − ε2 [26]. The maximum

momentum relaxation rate at high temperatures is of the order
of the inverse bandwidth, hence τ−1 ∝ √

T .
The diffusion constant is composed of a typical velocity

squared multiplied by a time scale; at high temperatures it is
then simply given by

D ∼ 〈v2〉BZτ = 〈v2〉BZ

�E
, (15)

which is the behavior that appears in Eq. (14). The averaged
band velocity is used, rather than the Fermi velocity; at high
temperature, the entire band participates in the transport. In the
high-temperature regime, the compressibility scales as N/�E,
and therefore χ (cT � �) ∝ 1√

cT /ν
. Using these simplified

relations for the diffusion constant and the compressibility,
the conductivity is given by σ = Dχ , resulting in the two
asymptotic behaviors obtained above.

Hartnoll [25] postulated a bound on the diffusion constant,

D � v2
F

T
. (16)

In our system, this bound is violated at high temperature, as
�E � T in the regime we consider. This is because the bound
of Eq. (16) is based on an energy-time uncertainty relation
for the velocity degradation time, assuming that the typical
available energy is given by the temperature T . In our system,
the phonons can be regarded as a bath that allows dissipation
of energy and momentum of the electronic system; there is
an additional energy scale �E that corresponds to the rate of
dissipation due to coupling to the bath.

Conspicuously absent from the physics described above
are strong-coupling effects, namely Anderson localization and
polaron physics. In the limit ω0 → 0 the phonons act as static
disorder; one may expect that at sufficiently high temperatures,
all the electronic states for a given phonon configuration may
become localized, which would cause a rapid increase in the
resistivity [6]. However, in the N → ∞ limit, the intrasite
level spacing scales as �E/N , and is hence always much
smaller than the hopping matrix element between two adjacent
sites. Therefore, the physics of Anderson localization does not
appear to leading order in 1/N .

Similarly, polaronic physics will not appear in the limit
N → ∞. Upon fixing N and upon increasing the electron-
phonon coupling constant, the electronic effective mass is

enhanced by a Franck-Condon factor that scales as e
− λ2

2NKω0 .
Clearly, polaron formation is absent to leading order in 1/N .

In this sense, the large-N limit is a weak-coupling theory,
with the normalized coupling constant

λ̃ = λ√
N

. (17)

Effects which depend on the coupling of an electron to a single
phonon mode, such as localization due to polaron formation,
are absent in the large-N limit; on the other hand, noncoherent
effects such as momentum degradation, which result from
the coupling of an electron to N phonon modes, are not
suppressed.

Conclusions. We have presented a tractable model of a
large number N of electronic flavors coupled to N2 optical
phonon modes. The resistivity of this system as a function
of temperature exhibits a crossover when the quasiparticle
scattering rate becomes of the order of the Fermi energy, from
a linear Boltzmann form to a non-Boltzmann regime, where the
resistivity is again linear but with an altered slope; depending
on the band structure and chemical potential, this system may
exhibit a reduction of slope (similar to “resistivity saturation”),
or, conversely, an increase in slope at high temperatures.

While it is satisfying that the crossover behavior at the
Mott-Ioffe-Regel limit, EF τ ∼ 1, arises naturally from our
model, it is not entirely clear why above the MIR limit the
resistivity does not universally saturate; the high–temperature
behavior is rather subtle, depending on the shape of the band
and the coupling constant. This may, of course, be an artifact of
the large-N limit; it could, alternatively, point to the possible
importance of the physics missing in our model, such as
phonon nonlinearity or Coulomb interactions.
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APPENDIX: CHEMICAL POTENTIAL AT
CONSTANT DENSITY

In order to calculate the temperature dependence of the
chemical potential at high T , we use the ansatz

μ(T � �/c) = f0

√
cT

ν
. (A1)

We then calculate the self-energy

�(ω) = cT

ν

∫
ddk

(2π )d
1

ω − εk + μ(T ) − �(ω)

≈ cT 

ν

1

ω + μ(T ) − �(ω)
(A2)

which produces

�(ω) = 1

2

√
cT 

ν
(ω̃ + f0 − i

√
4 − (ω̃ + f0)2)

A(k,ω) ≈
√

4 − (ω̃ + f0)2√
cT 

ν

�(4 − (ω̃ + f0)2), (A3)

with ω̃ = ω/

√
cT 

ν
. We then self-consistently calculate the

electron density, which is given by

n = 

∫ 0

−∞

dω

2π
A(ω) = 

∫ f0

−2

dω̃

2π

√
4 − ω̃2, (A4)

independent of temperature.
The conductivity is then calculated according to for-

mula (6), which results in the modification of the high-T

resistivity slope by a factor of 1/[1 − ( f0

2 )
2
].
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