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An efficient density matrix renormalization group (DMRG) algorithm is presented and applied to Y junctions,
systems with three arms of n sites that meet at a central site. The accuracy is comparable to DMRG of chains.
As in chains, new sites are always bonded to the most recently added sites and the superblock Hamiltonian
contains only new or once renormalized operators. Junctions of up to N = 3n + 1 ≈ 500 sites are studied with
antiferromagnetic (AF) Heisenberg exchange J between nearest-neighbor spins S or electron transfer t between
nearest neighbors in half-filled Hubbard models. Exchange or electron transfer is exclusively between sites in
two sublattices with NA �= NB . The ground state (GS) and spin densities ρr = 〈Sz

r 〉 at site r are quite different
for junctions with S = 1/2, 1, 3/2, and 2. The GS has finite total spin SG = 2S(S) for even (odd) N and for
MG = SG in the SG spin manifold, ρr > 0(< 0) at sites of the larger (smaller) sublattice. S = 1/2 junctions
have delocalized states and decreasing spin densities with increasing N . S = 1 junctions have four localized
Sz = 1/2 states at the end of each arm and centered on the junction, consistent with localized states in S = 1
chains with finite Haldane gap. The GS of S = 3/2 or 2 junctions of up to 500 spins is a spin density wave with
increased amplitude at the ends of arms or near the junction. Quantum fluctuations completely suppress AF order
in S = 1/2 or 1 junctions, as well as in half-filled Hubbard junctions, but reduce rather than suppress AF order
in S = 3/2 or 2 junctions.
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I. INTRODUCTION

The transport and magnetic properties of a system with a
junction of three wires have been a frontier area of research.
Y junctions such as three-terminal Josephson devices [1]
or carbon nanotubes [2] have been studied experimentally.
Understanding quantum effect in three terminal junctions
is important for potential applications as rectifiers [2,3],
switches, and logic gate devices [4]. Recently, these sys-
tems have also been studied theoretically [5–12]. Interesting
predictions include a low energy chiral fixed point with an
asymmetric current flow in a spinless fermionic system [13]
and negative density reflection at the junction of Bose liquid
of ultracold atoms [14]. Theoretical studies have been mainly
based on field theoretical approaches [14,15].

Exact numerical results are limited to very small junctions
and tend to be inconclusive, especially with respect to quantum
many body effects. Numerical techniques such as density
matrix renormalization group (DMRG) give excellent results
for one-dimensional (1D) systems [16]. At first sight, however,
DMRG appears to be far less accurate for structures with three
terminals in which a long bond is repeatedly renormalized.
Guo and White (GW) introduced [17] a new DMRG algorithm,
summarized in Sec. II, for Y junctions with spin S at every site.
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We present in this paper a modified DMRG algorithm, quite
distinct from that of GW, for Y junctions with N = 3n + 1
sites and three equal 1D arms of n sites. The accuracy and
efficiency of the modified algorithm is comparable to DMRG
in 1D chains, and we have studied Y junctions of up to 500
spins. We note that tensor-tree networks [18] are a general
approach to many-body systems with a tree structure such as Y
junctions, dendrimers, or Bethe lattices. Stilbenoid dendrimers
are a recent quantum chemical application [19] based on
molecular units with many degrees of freedom. Tree networks
based on different units call for diverse algorithms.

1D chains with Heisenberg exchange J between nearest
neighbors are correlated systems that have been extensively
studied ever since Bethe and Hulthen solved the S = 1/2
chain with antiferromagnetic J (J > 0) in the thermodynamic
limit [20]. Recent topics include spin chains with competing
interactions, spontaneously broken symmetry, and gapped or
gapless phases [21,22]. Another recent topic is chains with
J > 0 and integer spin S that Haldane [23] predicted to have
a finite energy gap �(S), in contrast to gapless chains of
half-integer spins. For general spin chains, with arbitrary site
spin, extended range exchange interactions and dimerization,
DMRG has been the principal numerical approach to the
ground state (GS) properties.

The paper is organized as follows. The modified algorithm
for Y junctions with equal arms is presented and tested in
Sec. II, including both infinite and finite DMRG algorithms.
Its accuracy is fully comparable to DMRG for chains. As
in chains, new sites are always bonded to the most recently
added sites and the superblock Hamiltonian contains only new
or once renormalized operators. The algorithm is applied to Y

2469-9950/2016/93(7)/075107(9) 075107-1 ©2016 American Physical Society

http://dx.doi.org/10.1103/PhysRevB.93.075107


KUMAR, PARVEJ, THOMAS, RAMASESHA, AND SOOS PHYSICAL REVIEW B 93, 075107 (2016)

junctions in Sec. III, first to fermionic and S = 1/2 junctions,
then to S = 1 junctions, and finally to S = 3/2 and 2 junctions.
We focus on spin densities and size dependence. Localized
states in S = 1 junction are in excellent agreement with the
valence bond solid (VBS) model of Affleck, Kennedy, Lieb,
and Tasaki (AKLT) [24]. There is a localized Sz = 1/2 state
at the end of each arm and one centered on the junction. The
localization length ξ = 6.25 in arms is close to the chain result
of White and Huse [25], while the length ξJ < ξ indicates
greater localization at the junction. The GS of S = 3/2 or 2
junctions up to 500 spins are unexpectedly different, however:
they are spin density waves (SDWs) with increased amplitude
at the ends of arms and near the junction. Antiferromagnetic
(AF) order is possible in systems with total spin SG > 0 and
found in Y junctions of S > 1 spins. We briefly mention in the
Discussion generalizations of the algorithm to other junctions.

II. MODEL AND ALGORITHM

We primarily consider Y junctions with isotropic exchange
J between adjacent sites with spin S. The model Hamiltonian
for the junction in Fig. 1 is

HS = J
∑

〈rr ′〉
Sr · Sr ′ . (1)

The sums are restricted to adjacent sites, J = 1 is a
convenient unit of energy, and we discuss systems with
S = 1/2, 1, 3/2, and 2. We also study fermionic junctions that
correspond to half-filled Hubbard models with N electrons
and N sites in Fig. 1,

HF = −t
∑

〈pp′〉σ
(a+

pσ ap′σ + a+
p′σ apσ ) + U

∑

p

a+
pαa+

pβapβapα.

(2)
Electron transfer t (set to 1 to define the energy scale) is

limited to adjacent sites p,p′, the number operator is np, and
U > 0 is repulsion for two electrons at a site. The Hückel
or tight-binding limit of U = 0 is readily solved exactly and

FIG. 1. Y junction of N = 10 sites with three equal arms of n =
3 sites. The numbering for the left (unprimed), up (primed), and
down blocks (double primed) is used in the DMRG algorithm; the
numbering in red is used for spin densities.

provides a direct check of accuracy. The atomic limit U >> t

reduces HF at half filling to HS with S = 1/2 and J = 4t2/U .
Both HS and HF conserve total spin ST and its component

Sz. By convention, we choose the Zeeman component Sz = SG

when the GS has spin SG > 0. The spin density at site r is the
GS expectation value

ρr = 〈
Sz

r

〉
. (3)

The sum over sites r returns Sz � 0, but individual ρr may be
positive or negative. Y junctions are bipartite: all exchange J

or electron transfer t is between sites that form two sublattices,
A and B, here with NA �= NB sites. The GS of HS has SG =
S|NA − NB |, which alternates between SG = S and 2S for
odd and even N , respectively. Sites in the larger sublattice
have positive ρr ; those in the smaller sublattice have negative
ρr � 0.

The computational effort for one eigenstate in conventional
DMRG for 1D chains with open boundary conditions goes as
O(Nm4), where N is the number of sites and m is the number
of states per block for a given accuracy [26,27]. The reason why
is as follows: The number of arithmetic operations to obtain
all eigenvalues of an L × L matrix is O(L3); so the number
of operations for one eigenvalue goes as L2. In DMRG the
matrix size is L = 16m2 for fermions and L = (2S + 1)2m2

for spin S. In either case, L2 goes as m4 and a system of size
N requires DMRG steps of N/2. This estimate excludes the
construction and diagonalization of density matrices which are
O(m3). The greatest cost is the superblock diagonalization that
goes as O(m4) for one eigenstate.

Conventional DMRG for Y junctions scales as O(m6) and,
as shown in Fig. 1 c of Ref. [17], involves a long bond whose
operators are renormalized many times. GW [17] cite previous
DMRG applications to Y junctions and present a more efficient
scheme for junctions with three equal arms that meet at a point,
as in Fig. 1, or at the vertices of an equilateral triangle. Singular
value decomposition is used to obtain the density matrix of a
single arm, and is faster as it requires O(m4) operations instead
of O(m6). The method has a large truncation of the density
matrix when two arms are combined into a single block. We
avoid truncation below since arms are never combined. The
slow O(m6) step is the GS eigenvector of the superblock
matrix, which goes as L = O((2S + 1)m3) for three arms.
The modified algorithm has improved accuracy for smaller m

and makes it possible to treat Y junctions of N ∼ 500 sites.
DMRG algorithms of 1D chains add two sites per step

between the left and right blocks [26,27]. The new sites are
always bonded to the most recently added sites. The superblock
Hamiltonian of chains only contains new operators or once
renormalized operators, a desirable featured that we retain for
Y junctions. In some algorithms the number of newly added
sites in the superblock can vary from one [28] to two [17]
or four [29] depending on the accuracy requirements of the
systems. Here the superblock grows by three sites.

The modified algorithm is shown schematically in Fig. 2.
Sites enclosed in loops define systems that consist of an arm
plus a new site. The environment contains all sites in the other
two arms. The key point is that the system at one step becomes
an arm in the next step, thereby avoiding having to combine
two arms into one block. The system block has m × r degrees
of freedom, m for the arm and r for the new site, with r = 4 for
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(a)

(b)

(c)

FIG. 2. Schematic representation of the infinite DMRG algorithm
for Y junctions with equal arms. At each step, the loop encloses the
system and the superblock contains a new site shown as an open dot,
and three arms.

fermionic junctions and r = 2S + 1 for sites with spin S. The
relevant dimension is not mr of the system block, however,
because the density matrix is block diagonal in sectors with
different MS values. The time needed to diagonalize the density
matrix is negligible in sectors of dimension mr/(NS + 1). We
obtain all density matrix eigenvectors |i〉 of the system block
by block diagonalizing it into different MS sectors.

As shown in Fig. 2, we start with a superblock of four sites,
N = 3n + 1 = 4. The notation (2,1,1) refers to an arm plus
the central site and two other arms, respectively. The second
step corresponds to (3,2,2) and N = 7, the third to (4,3,3)
and N = 10, and so on. The n + 1 sites of arm plus central
site at step n become the arm at step n + 1. We find the GS
eigenvector |ψ〉 of the superblock, starting with N = 4, and
expand |ψ〉 in the basis of the system (arm plus site) and the
environment (two arms),

|ψ〉 =
∑

ik

Cik|i〉|k〉. (4)

The basis vectors |k〉 are direct products of basis states of
two arms of the system of the previous step. The total number
of sites, N = 3n + 1, increases by three at each step. The
reduced density matrix of the system has elements

ρij =
∑

k

C∗
ikCjk. (5)

The sum is over the environmental degrees of freedom.
We suppose ρ to be a matrix of dimension M . After
diagonalization, we take the m eigenvectors of ρ with the
largest eigenvalues as elements of an M×m matrix ρ ′. The
effective Hamiltonian and operators in the truncated m×m

basis are renormalized according to

O = (ρ ′)†Oρ ′, H = (ρ ′)†Hρ ′, (6)

where (ρ ′)† is the transpose matrix, and O and H are the
operators and Hamiltonian of system block. The superblock
eigenvalue calculation is the slow step that scales as O(m6),
although conservation of total Sz reduces the dimension to

less than (2S + 1)m3. The GS then yields the reduced density
matrix ρij of the system for the junction in which each arm
is one site longer. Since operators of the system block are
renormalized only once, similar to 1D chains, we expect
similar truncation errors in Y junctions.

The following steps and Fig. 2 describe the infinite DMRG
algorithm for Y junctions with equal arms.

(a) Start with four sites, the superblock in Fig. 2(a).
(b) Find the GS eigenvalue and eigenvector.
(c) Construct the density matrix of the system block, shown

in Figs. 2(a), 2(b), and 2(c) for 4, 7, and 10 site superblocks,
respectively. Diagonalize it to get the eigenvectors correspond-
ing to the m largest eigenvalues.

(d) Renormalize the operators and Hamiltonian for the
system blocks using Eq. (6).

(e) Construct the Hamiltonian of the superblock as shown
in Figs. 2(b) and 2(c).

(f) Repeat the process from (b) to (e) until the desired size
N = 3n + 1 is reached.

Finite DMRG is required to obtain accurate spin densities,
correlation functions, and other GS properties. The conven-
tional finite algorithm for 1D chains has two new sites and
sweeps through two arms of the same chain [26,27]. The
algorithm for Y junctions has one new site and sweeps through
two arms while keeping the third arm constant. The procedure
is shown schematically in Fig. 3 and summarized below. Three
to four DMRG sweeps are typically sufficient for converged
energies. Finite DMRG is particularly important for junctions
with S = 3/2 and 2 sites.

(a) Start with the superblock with equal arms as shown
Fig. 3(a) taken from the infinite algorithm calculation. Select
two arms A and B for sweeping through.

(b) Find the GS eigenvector of the superblock. The new
system block “A” is the old block A plus a new site, shown
as the open dot in Fig. 3(b). Block “A” has one site added
to arm A and removed from arm B at every step, while arm
C remains same. Construct the reduced density matrix of the
system block “A”.

1 
2 

3 
4 

1” 
2” 

3” 
4” 

1’ 
2’ 
3’ 
4’ 

A 

C 

B 
1 

2 
3 

4 

1” 
2” 

3” 
4” 

1’ 
2’ 
3’ 
4’ 

A 

C 

B 
1 

2 
3 

4 

1” 
2” 

3” 
4” 

1’ 
2’ 
3’ 
4’ 

A 

C 

B 

1 
2 

3 
4 

1” 
2” 

3” 
4” 

1’ 
2’ 
3’ 
4’ 

A 

C 

B 

(e)(f) 1 
2 

3 
4 

1” 
2” 

3” 
4” 

1’ 
2’ 
3’ 
4’ 

A 

C 

B 
1 

2 
3 

4 

1” 
2” 

3” 
4” 

1’ 
2’ 
3’ 
4’ 

A 

C 

B 

(a) (b) (c)

(d)

FIG. 3. Schematic representation of finite DMRG steps. Sites of
the system block are enclosed in the loop; remaining sites are in the
environmental block. The new site is the open dot. A, B, and C arm
refer to the three different arms.
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TABLE I. m dependence of the GS energy per site ε0 of Y
junctions with 64 sites, equal arms, and U = 0 in Eq. (2) or S = 1/2,
J = 1 in Eq. (1).

m U = 0 S = 1/2

20 −1.23336877828 −0.43915791387
40 −1.25809972580 −0.43915891861
60 −1.25826370430 −0.43915892503
80 −1.25838125000 −0.43915892523
100 −1.25842968750 −0.43915892525
Exact −1.25848468281

(c) Renormalize the Hamiltonian and operators of the
system block “A”.

(d) Construct the superblock Hamiltonian with new blocks
“A”, “B”, and “C” shown in Fig. 3(b).

(e) Repeat the steps (b) to (d) until block B has only one
site as shown in Fig. 3(c).

(f) Now take B as the system block, and blocks A and C as
the environment. As shown in Fig. 3(d), add a site to block B
and remove one from block A.

(g) Repeat steps (b) to (d) for system block B until block A
has only one site as shown in Fig. 3(e).

(h) In the next step, A becomes the system block. One site
is added in A and removed from block B. Steps (b) to (d) are
repeated until Fig. 3(a) is reached.

(i) Now take blocks A and C while keeping block B constant
and repeat the cycle (a) to (h) that starts and ends with equal
arms in Fig. 3(a). Finally, take blocks B and C while keeping
the block A constant. Repeat the cycle from (a) to (h) that
starts and ends with Fig. 3(a).

(j) One cycle of finite DMRG is the whole process from (a)
to (i).

Next we discuss the accuracy and efficiency of the algo-
rithm. The U = 0 limit of Eq. (2) is a Hückel or tight-binding
model of noninteracting electrons on N sites that can readily
be solved exactly. As an example, we took a half-filled band
of N = 64 sites and calculated the GS energy per site ε0 as
a function of m, the dimension of the system block in the
truncated basis. Table I shows good convergence by m ∼ 60
for this fermionic system of about 4N degrees of freedom, or
some 421 per arm. DMRG of noninteracting electrons often
converges the most slowly due to GS degeneracy or to higher
entanglement entropy [30,31]. The Y junction of S = 1/2
spins in Eq. (1) is the U 
 t limit with 2N spin degrees of
freedom whose GS energy per site is not known exactly. As
shown in Table I, m ∼ 20 is sufficient for ε0 of junctions with
21 spins per arm.

As additional tests of the algorithm, we consider the total
energy E(m) of 64-site Y junctions with J = 1 in Eq. (1) and
S = 1/2, 1, 3/2, and 2 as a function of m. The truncation errors
P (m) = 1 − ∑m

j ωj on keeping m eigenvalues of the density
matrix are listed in Table II for S = 3/2 and 2 at N = 64.
P (80) increases by less than a factor of two in large junctions
with N = 298.

Since the exact GS is not known, we follow the evolution
of �E(m) = E(m0) − E(m) where m0 = 100 is the nominally
converged value. Excellent convergence is achieved in Fig. 4

TABLE II. Truncation errors P (m) of 64-site Y junction of S =
3/2 and 2 as a function of m.

m P (m),S = 3/2 P (m),S = 2

64 1.2 ×10−9 7.2 × 10−6

80 7.6 ×10−10 3.0 × 10−6

100 1.7 ×10−10 1.5 × 10−6

130 5.2 ×10−11 5.6 × 10−7

by m ∼ 70, with �E of the order of 10−10 for S = 1/2,10−7

for S = 1, and 10−6 for S = 3/2 or 2. Increasing m to 130
lowers �E/E(100) by 5 × 10−7 for S = 2. The P (m) change
in Table II is also small. By contrast, the GW algorithm [17] for
�E with S = 1 reaches only 10−6 around m = 140 in Fig. 3 of
Ref. [17]. The present algorithm is well suited for Y junctions,
both because as in 1D chains operators are renormalized only
once and because the procedure in Fig. 2 increases the number
of sites smoothly without ever having to combine two arms.

III. LOCALIZED STATES AND
ANTIFERROMAGNETIC ORDER

We apply the modified DMRG algorithm to Y junctions
with equal arms, either half-filled junctions in Eq. (2) or
Heisenberg junctions with spin S at every site in Eq. (1). Unless
otherwise stated, the results are based on m = 100 and 5–10
sweeps of finite DMRG. We discuss junctions of N = 3n + 1
sites, distinguish between odd and even N , and study the
size dependence. The algorithm is applicable to junctions of
N ∼ 500 sites. We focus on AF order in Heisenberg junctions
with S > 1 and on localized states of junctions with integer S.

As mentioned in the Introduction, Y junctions are bipartite,
with different number of sites NA �= NB in sublattices A and
B. We take NA > NB and have

NA = N + 1

2
= NB + 1 (odd N,even n),

NA = N

2
+ 1 = NB + 2 (even N,odd n).

(7)

20 30 40 50 60 70 80 90m
10-12

10-10

10-8

10-6

10-4

10-2

(E
(1

00
) -

 E
(m

))
/E

(1
00

) S = 2

S = 3/2

S = 1

S = 1/2

FIG. 4. Total GS energy E(100) − E(m) as a function of m for
64-site Y junctions with equal arms, J = 1, and the indicated S per
site in Eq. (1).
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The junction is in sublattice A for odd N , and in sublattice
B for even N . The Néel state |AF 〉 has spins ±S at all sites
in sublattices A and B, respectively, and is the SDW with
the largest possible amplitude; |AF 〉 is exact in the limit
of classical spins, S → ∞. Quantum fluctuations in Eq. (1)
strongly reduce AF order for S > 1 and suppress it altogether
for S = 1/2 or 1. Nevertheless, |AF 〉 gives the correct spin,
SG = 2S for even N and S for odd N , and also accounts for
the sign of the GS spin densities in Eq. (3), with ρr > 0 for r

in sublattice A and ρr � 0 for r in sublattice B.

A. Fermionic and S = 1/2 junctions

The Hückel junction has U = 0 in Eq. (2) and NA − NB

nonbonding orbitals with energy ε = 0 and nodes at all sites
in sublattice B. The nonbonding orbitals are easily found
analytically. The half-filled junction has N electrons, N sites,
and spin α in nonbonding orbitals. The GS for odd N has
SG = 1/2 and ρr = 1/(2NA) at sites in sublattice A, and
ρr = 0 at sites in sublattice B. The triplet GS for even N

has SG = 1, ρr = 1/NA at sites in NA, and ρr = 0 at sites in
NB . Since SG = 1 for arbitrarily large (even) N , the Hückel
densities at sites in sublattice A decrease as 2/(N + 2).

Increasing U > 0 in the half-filled junction does not change
SG but induces negative ρr < 0 at NB sites and increases
ρr > 0 at NA sites. The sum over |ρr | increases with U as
localized spins are formed due to electron correlations. The
spin densities are no longer equal, however, as seen in Fig. 5
at U = 4t , the bandwidth of the 1D Hückel or tight-binding
model. The Heisenberg model with S = 1/2 in Eq. (1) has the
largest positive and negative spin densities.

The Heisenberg junction with even N has ρJ < 0 at the
junction and spin densities that go as 1/N . The S = 1/2
junction of N = 202 spins also has a triplet GS and a spin
density distribution similar to the Heisenberg model in Fig. 5.
Longer arms lead to smaller spin densities: ρ68 = −0.0929
for the junction at r = 68; ρ67 = 0.0974 and ρ66 = −0.0817
at the first and second neighbors of the junction; ρ1 = 0.0307
and ρ2 = −0.0198 at the first two sites of arms. As expected,
quantum fluctuations entirely suppress AF order in the infinite
S = 1/2 junction. We note that spin densities increase along

0 5 10 15 20 25 30 35 40r
-0.2

-0.1

0

0.1

0.2

0.3

ρ r =
 <

 S
z r >

Heisenberg Model
Hubbard Model, U=4t
Huckel Model,  U=0

Junction

FIG. 5. Spin densities ρr along any two arms of 64-site Y
junctions with U = 0 or 4t in Eq. (2), or S = 1/2 in Eq. (1). The
junction is at r = 22 with ρJ � 0.

0 10 20 30 40 50 60 70r
-0.4

-0.2

0

0.2

0.4

0.6

ρ r =
 <

S
z r>

Arm

Junction

S=1, N=202

FIG. 6. Spin densities in one arm of a Y junction of N = 202
sites, S = 1, as a function of r with r = 1 at the first site and at
r = 68 at the junction.

the arms at odd r and become more negative at even r . We
will later find a different pattern in S = 3/2 junctions in which
quantum fluctuations are not as dominant.

B. S = 1 junctions

Haldane [23] predicted finite energy gaps �(S) in infinite
Heisenberg spin chains with integer S and nearest neighbor
J > 0. Experimental realizations of S = 1 chains have con-
firmed a gap that DMRG evaluates [25] as �(1)/J = 0.4105.
The valence bond solid (VBS) picture of AKLT [24] has been
widely applied to S = 1 chains, and we do likewise for S = 1
junctions. S = 1 chains with open boundary conditions have a
localized state with Sz = 1/2 and localization length ξ = 6.03
[25] at each end. GW [17] obtained four localized Sz = 1/2
states in a Y junction with N = 181, one at the end of each
arm and one centered on the junction.

Figure 6 shows the spin densities in one arm of a Y junction
of N = 202 sites with S = 1. As expected, the GS has SG = 2,
the junction at r = 68 has ρJ < 0, and the total Sz of either
localized state is 1/2. The spin densities in the first 15 sites of
an arm and 14 sites from the junction are listed in Table III.
The spin densities of localized states are conventionally taken
as proportional to [25,32]

ρr ∝ (−1)r−1 exp(−r/ξ ), (8)

where r = 1 refers to the ends of chains. This approximation
neglects the difference between ρr for even and odd r that is
clearly seen in Fig. 6 and Table III. Any pair r , r + 2 defines
a local localization length [32] ξ = 2/(ln|ρr | − ln|ρr+2|). As
seen in Fig. 7, the ρr > 0 and ρr < 0 series have similar
localization whose average is ξ = 6.25 for arms, ξJ = 5.81
for the junction. The first few sites deviate from a simple
exponential. White and Huse [25] obtained ξ = 6.03 for S = 1
chains with open boundary conditions; they did not consider
positive and negative spin densities separately. GW [17] report
similar localization at the junction and arms without going into
detail, while we find slightly but distinctly smaller ξJ = 5.81.

We consider next Y junctions of S = 1 spins and odd N =
199. The GS is a triplet, SG = Sz = 1, and the junction has
ρJ > 0. Quite remarkably, the spin densities of the localized
state are identical to a part per 104 to the N = 202 values

075107-5



KUMAR, PARVEJ, THOMAS, RAMASESHA, AND SOOS PHYSICAL REVIEW B 93, 075107 (2016)

TABLE III. Spin densities of a Y junction of N = 202 sites with
S = 1. Listed are the first 15 sites of an arm, the junction, and up to
14 sites from the junction.

Spin density ρr Arm, r = 1 Junction

1 0.5321 −0.3044
2 −0.3209 0.3530
3 0.3733 −0.2515
4 −0.2652 0.2459
5 0.2624 −0.1886
6 −0.2000 0.1737
7 0.1855 −0.1383
8 −0.1469 0.1234
9 0.1317 −0.1004
10 −0.1068 0.0880
11 0.0939 −0.0726
12 −0.0773 0.0629
13 0.0671 −0.0629
14 −0.0558 0.0450
15 0.0480 −0.0377

in Table III aside from a reversed sign around the junction.
The localization lengths ξA = 6.25 and ξJ = 5.81 obtained
for N = 202 are equally applicable to N = 199 within our
numerical accuracy. Spin densities near the junction add to
three localized states at the ends of arms for N = 202 and Sz =
2, while they subtract for N = 199 and Sz = 1. Identical |ρr |
for N = 199 and 202 directly confirm that each localized state
has Sz = 1/2. The GS of a Y junction of S = 1 spins and long
arms is 24 = 16-fold degenerate and comprises a quintet, three
triplets, and two singlets. The quintet has A symmetry under
C3, the singlets transform as E, and the triplets as A and E.

C. Junctions with S > 1

The Haldane gap of the infinite S = 2 chain with exchange
J = 1 between neighbor is smaller [31], �(2) = 0.0886 ±
0.0018, about �(1)/5 and is less accurately known than �(1).
The ends of S = 2 chains are expected to have localized
S = 1 states in a VBS framework with correspondingly larger
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FIG. 7. Spin densities from Fig. 6 plotted as ln|ρr | vs r at an arm
and at the junction. Circles (squares) represent negative (positive)
spin density.
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FIG. 8. Spin densities ρr in one arm of Y junctions with
(a) N = 448 and (b) N = 298 spins S = 3/2 and 2. Lines are based
on parameters in Table IV.

ξ . Schollwöck et al. [32] have discussed the S = 2 chain
in detail using DMRG, quantum Monte Carlo, and exact
diagonalization methods; they interpret results using VBS and
report [32,33] limited agreement. We return to chains after
presenting results for Y junctions with S = 3/2 and 2.

Smaller �(2) in S = 2 chains requires Y junctions with
longer arms to study localized S = 1 states. Instead of
localized states, however, and in sharp contrast to S = 1/2
or 1 junctions, we find substantial AF order in both S = 2
and S = 3/2 junctions as shown in Fig. 8 for N = 448 (left
panel) and 298 (right panel). The junction is at r = 150 or
100, respectively. The spin density in the interior of arms
oscillates between ±c at odd and even r . The amplitude
increases at the junction and at the end of arms, in contrast
to the spin densities of the S = 1/2 junction in Fig. 5 whose
magnitude decreases from the junction. The similarity in the
behavior of the S = 3/2 and S = 2 junctions is noteworthy
since the infinite S = 3/2 chain is gapless unlike the S = 2
chain. We consider the main features together before pointing
out differences between S = 3/2 and 2 junctions.

By definition, Heisenberg exchange is between localized
spins S at every site. The sum over ρr is the z component of
spin in the given state. The sum over |ρr | normalized to NS

is the fraction of unpaired spins; the Néel state |AF 〉 with ±S

returns (NS)−1∑
r |ρr | = 1. We interpret SDW amplitudes c

in Fig. 8 in the interior of arms as AF order c/S that increases
with S. The fraction of unpaired spins in S = 3/2 junctions
is 0.293 for N = 245 and 0.302 for N = 448; the fraction for
S = 2 spins is 0.326 for N = 445 and 0.323 for N = 448. By
contrast, the fraction is less than 0.1 in S = 1 junctions for
N = 202 or 199 and clearly vanishes in the infinite junction
since unpaired spins are in localized states. The fraction of
unpaired spins also goes to zero in S = 1/2 junctions with
increasing N as discussed earlier.

We model the increased SDW amplitude at the ends of
arms or near the junction as exponential in |ρr | − c. Positive
and negative spin densities for Y junctions of N = 448 spins
are shown in Fig. 9 for S = 3/2 and in Fig. 10 for S = 2, along
with the slopes λ for arms and λJ from the junction. Finite c

limits the range of |ρr | − c to one decade instead of more
than two decades in Fig. 7 for S = 1 junctions with c = 0 and
well-defined localized states. The parameter λ and λJ describe
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FIG. 9. Spin densities from Fig. 8 for S = 3/2, N = 448 plotted
as ln(|ρr | − 0.336) vs r at an arm and at the junction.

increased SDW amplitudes in junctions with S > 1 rather than
localization lengths.

Deviations from ρr = ±c are limited to the ends of arms
when n > λ or λJ . The SDW amplitude in Fig. 9 for N = 448
(n = 149) and S = 3/2 is c = 0.336, positive and negative
spin densities yield nearly equal λ and λJ , and λJ = 7.9 is
significantly smaller than λ = 12.2. The junction has ρJ =
−0.510 when N = 448 and 0.480 when N = 445; the spin
densities in the arms are equal within a percent or two.
The N = 445 junction has essentially identical c, λ, and λJ .
Nevertheless, we have SG = 3 for N = 448, and SG = 3/2
for N = 445. The difference is largely due to the junction and
its first few neighbors. Large junctions with even and odd N

support a SDW with equal c and equal ρ1 > 0 at the ends of
each arm. Figure 10 shows exponential contributions for S = 2
junctions with N = 448 and SG = 4. Since the slow decrease
of spin densities in Fig. 8 and the resulting λ ∼ 32 are in
the expected range for �(2) ∼ �(1)/5, the SDW amplitude
of S = 2 junctions may not be entirely due to end effects.
We leave open the thermodynamic limit of Y junctions with
S = 2.

Table IV lists the parameters c, λ, and λJ obtained as shown
for Figs. 9 and 10 for even N . The solid lines in Fig. 8 also
require amplitudes for exponential contributions. Essentially
the same parameters hold for N ± 3. The size dependence of
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FIG. 10. Spin densities from Fig. 8 for S = 2, N = 448 plotted
as ln(|ρr | − 0.54) vs r at an arm and at the junction.

TABLE IV. SDW amplitude c and parameters λ, λJ for exponen-
tial increase of spin densities |ρr | − c at the ends of arms or from the
junction in Fig. 8.

S N c λ λJ

3/2 298 0.350 11.2 9.1
3/2 448 0.336 12.2 7.9
2 298 0.68 12 10
2 448 0.54 32 20

S = 3/2 junctions has apparently saturated or almost saturated
at N ∼ 450, but has not saturated for S = 2 junctions. We
always find λJ < λ, faster decrease of the SDW amplitude
from the junction than from the ends of arms.

The VBS picture has localized S = 1 states at ends of S =
2 chains or S = 2 arms in Y junctions. We find decreasing
ρ1 = 1.202 and 1.200 for N = 298 and 448 junctions, while
Schollwöck et al. [32] report ρ1 = 1.13 for an S = 2 chain of
N = 270 spins with a fixed S = 1 defect at the other end. The
local localization length, ξ = 2/(ln|ρ| − ln|ρr+2|), is shown in
Fig. 6 of Ref. [32] as a function of r and increasing m (to 180);
a 25-fold change of spin densities is calculated, with ξ in the
range ∼40 ± 10 to r = 30, then almost constant ξ ∼ 50 for
40 < r < 125, and much larger ξ at larger r that are discarded
as due to finite m and finite system size; hence |ρr | up to
r ∼ 125 is approximately exponential at best. As seen for
S = 2 junctions in Fig. 8, the first few spin densities at the
junction or arms also deviate from exponential in |ρr | − c, and
we do not know how to identify a localized state. The S = 3/2
junction at N = 298 and 448 has decreasing ρ1 = 0.781 and
0.780 that, perhaps coincidentally, is again slightly larger than
S/2 = 0.75. Since the SDW amplitude is S in Néel state |AF 〉,
quantum fluctuations in finite junctions reduce AF order by
50% at the ends of arms and by more than 50% elsewhere.
SDWs occur naturally in systems whose GS has SG > 0 and
2SG + 1 degeneracy in Sz.

To conclude this subsection, we comment on S = 3/2 and 2
chains with open boundary conditions that were motivated (i)
by the unexpected result that S = 2 junctions to N ∼ 500 do
not follow VBS and (ii) to confirm quantitative agreement with
Schollwöck et al. [32]. The GS of quantum chains with an even
number of spins N is a singlet, SG = 0. It is not degenerate,
thereby excluding a SDW, but may have quasi-long-range
order in the infinite chain. Delocalized states are expected in
the gapless S = 3/2 chain. The gapped S = 2 chain may have
localized S = 1 states at either end that become decoupled in
the infinite chain. Two localized states lead to exponentially
small gaps between the singlet GS, a triplet, and a quintet, just
as S = 1 chains have an exponentially small gap to the lowest
triplet [34,35]. Accordingly, we studied the quintet, SG = 2,
with the lowest energy of S = 2 chains and for comparison
the lowest-energy triplet, SG = 1, of S = 3/2 chains.

Spin densities for open S = 3/2 and 2 chains of N = 150
and 300 spins are shown in Fig. 11 up to the middle, where
they are zero by symmetry. In either case, the first few ρr to
r ∼ 30 depend weakly on size, as found previously [32], and
are almost the same as in N = 450 junctions with 150-site
arms. End effects are similar in chains and junctions, and
exponential fits over a limited range are possible aside from
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(b) N = 300 spins S = 3/2 and 2 with antiferromagnetic Heisenberg
exchange J between neighbors.

the first few spin densities. Symmetry about the middle of
chains leads to linear ρr around r = N/2 as shown in Fig. 11.
The fraction of unpaired spins is large: 0.183 and 0.121 for
S = 2 at N = 150 and 300, and 0.090 and 0.067 for S = 3/2,
N = 150 and 300. We infer that the spin densities are primarily
due to end effects in these chains or junctions, in sharp contrast
to localized states in S = 1 chains or junctions.

IV. DISCUSSION

We have presented a modified DMRG algorithm for Y
junctions in Sec. II and results in Sec. III for junctions up to 500
sites, mainly junctions in Eq. (1) with Heisenberg exchange J

between spins S = 1/2, 1, 3/2, or 2. Much longer chains of,
say, 1000 sites greatly increase the computational effort at the
finite DMRG step. The accuracy may not be lower, however,
since the entanglement entropy [30] of the GS for dividing the
junction into system and environmental blocks will increase
only slightly. As already noted, we are considering large but
finite junctions rather than the thermodynamic limit. That limit
is better studied in chains since neither the junction nor the ends
of arms should matter in junctions with infinitely long arms.

The accuracy of the modified algorithm is fully equal to the
DMRG accuracy for 1D chains. Two arms are never combined
into one and new sites are always bonded to the most recently
added sites. As in chains, the superblock Hamiltonian contains
only new or once renormalized operators. Infinite DMRG
is accurate for S = 1/2 or 1 junctions, where finite DMRG
makes minimal improvements, but finite DMRG significantly
improves the results for S = 3/2 or 2 junctions. Three or
four sweeps of finite DMRG is sufficient for good energy
convergence. We performed 5–10 sweeps for spin densities in
order to confirm the different GS of S = 1 and 2 junctions.

The modified algorithm for Y junctions of equal arms can be
generalized to other systems, to be discussed elsewhere [36].
All generalizations are based on the schematic procedures in
Figs. 2 and 3 for equal arms. (i) No change is required for more

than three equal arms, although computational requirement
increases as discussed on Sec. II on going from chains to
three arms. (ii) The algorithm performs well in preliminary
tests of Y junctions with arms of different lengths n �= n′ �= n′′
[36]. The infinite algorithm with equal arms is run until the
longest arm n is reached. Finite DMRG is then done using
blocks of different size to construct the superblock. (iii) GW
considered Y junctions with arms that meet at an equilateral
triangle instead of a point [17]. For such systems, the modified
infinite algorithm can again be used to generate the desired
junction. In the beginning of finite DMRG, the superblock
is constructed using blocks of different size [36]: two blocks
have the same size, the third block has one fewer site, and the
new site is added to the third block. The modified algorithm
can also be generalized to (iv) Y junctions with different S; we
use four new sites with different S and three arms at every step
[36]. A new site is added at the end of each arm and another
one is added at the junction of these three arms in Fig. 2. Since
the size of the density matrix is L = (2S + 1)2m2 for adding
one spin S, the size scales as (2S + 1)8 for adding four spins
S. The procedure is efficient for small S but rapidly becomes
more expensive for large S.

We have applied the modified algorithms to Y junctions
of correlated spins electrons with a few degrees of freedom
per site and short-range interactions. Sustained interest in the
physics of exchange interactions in systems of integer and
half-integer spin provide many applications. Junctions whose
sites have more degrees of freedom pose computational rather
than conceptual issues.

Experimentally, there is a considerable body of work
on carbon nanotube Y junctions [37], both on synthetic
methods and transport properties. When viewed as a junc-
tion of chains with virtual sites, each virtual site contains
several C atoms with one π -electron each. A recent study
discussed self-adoptive junctions formed from semiconducting
transition metal dichalcogenide monolayers exfoliated from
MoS2, MoSe2, and WSe2 bulk crystals [38]. Again, junctions
with linear branches of sites with many degrees of freedom
can in principle be a first approximation for these systems.
Our efficient modified algorithm would be applicable. Ex-
perimental studies of Y junctions involving transition metal
complexes are likely in the near future. Such junctions are
based on magnetic or correlated-electron sites and efficient
DMRG algorithm would give valuable insights.
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