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Simulating open quantum dynamics with time-dependent variational matrix product states:
Towards microscopic correlation of environment dynamics and reduced system evolution
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We report the development of an efficient many-body algorithm for simulating open quantum system dynamics
that utilizes a time-dependent variational principle for matrix product states to evolve large system-environment
states. Capturing all system-environment correlations, we reproduce the nonperturbative, quantum-critical
dynamics of the zero-temperature spin-boson model, and then exploit the many-body information to visualize
the complete time-frequency spectrum of the environmental excitations. Our “environmental spectra” reveal
correlated vibrational motion in polaronic modes which preserve their vibrational coherence during incoherent
spin relaxation, demonstrating how environment information could yield valuable insights into complex quantum
dissipative processes.
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I. INTRODUCTION

Dissipative quantum dynamics can now be probed in
microscopic, real-time detail, yielding unprecedented insight
into system-environment processes whose understanding and
control will be essential for future quantum technologies [1–6].
Recently, experimental observations of coherence in organic
and biological materials [1,2,5,7–10] have strongly motivated
a better understanding of the microscopic origin and role of
“ultrafast” (<ps) effects resulting from quantum correlations,
memory, bath structure, and nonperturbative system-bath
couplings. While advanced reduced density matrix techniques
can account for these phenomena [11–14], information is
inevitably discarded when tracing out the environment, and
a truly many-body approach is required for deeper insight
into the mechanisms at play. However, this necessitates the
evolution of a macroscopically large system-environment
state, and the determination of open-system ground states and
dynamics are only tractable with powerful computational tech-
niques, such as exact diagonalization, multiconfigurational
Hartree-Fock, and various time-dependent (density matrix)
renormalization group techniques [15–20].

In this article, we present a versatile approach to this
problem, based on the recently proposed time-dependent vari-
ational principle (TDVP) for variational matrix product states
(VMPS) [17,21–25]. This many-body method gathers together
several recent advances in VMPS theory to create a fast,
efficient algorithm for system-bath dynamics, where resources
can be allocated “on the fly” [17,21,22]. We show that the
method can correctly capture the complex, non-Markovian
physics of the famous spin-boson model (SBM) [26,27], and
then show how visualizing the accompanying environmental
dynamics provides an informative, time- and frequency-
resolved spectroscopy of open systems. This combination of
accurate system dynamics and powerful diagnostic tools for
analyzing the detail within system-environment states can be
applied to a wide range of problems, and could be particularly
useful for unraveling the physics of the “intermediate” regime
of open systems [28].
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The paper is organized as follows. Section II defines the
model Hamiltonian used in our calculations. Sections III and
IV briefly outline the orthogonal polynomial chain mapping as
well as the VMPS method upon which our algorithm is based,
including the optimized boson basis (OBB) which modifies
the matrix product state (MPS) network. Section V presents
the new TDVP scheme required to time-evolve the modified
MPS and presents a derivation of the scheme. Finally Sec. VI
presents numerical results for the model Hamiltonian and
demonstrates to which detail the environmental dynamics can
be analyzed and related to system-bath dynamics.

II. THE SPIN-BOSON MODEL

The spin-boson model (SBM) has become the benchmark
for testing advanced open system methods, as well as having
numerous direct applications in physics, chemistry, and biol-
ogy [26,27]. It describes a quantum two-level system (TLS)
that interacts with an environment of harmonic oscillators via
the Hamiltonian (� = 1) [26],

H = −�

2
σx − ε

2
σz︸ ︷︷ ︸

HS

+σz

2

∑
n

λn(bn + b†n) +
∑

n

ωnb
†
nbn, (1)

where the TLS has an energy bias ε, coherent tunneling ampli-
tude �, and coupling λn to environmental modes of energy ωn.
The operators σi are Pauli matrices, while b

†
n and bn are bosonic

creation and annihilation operators. Here, we focus on general
power-law spectral functions J (ω) = π

∑
n λ2

nδ(ω − ωn) =
2παω1−s

c ωsθ (ωc − ω) which parametrize the bandwidth of
the environment ωc, the (dimensionless) interaction strength
α, and the frequency-dependence exponent s which defines
sub-Ohmic (s < 1), Ohmic (s = 1), and super-Ohmic (s > 1)
environments. The Ohmic and sub-Ohmic cases possess a
range of quantum phase transitions (QPT) (〈σz〉g.s �= 0) when
α exceeds a critical coupling αc [13–18,29–38].

Since the VMPS method works especially well on 1D
chain Hamiltonians, it is necessary to transform the SBM.
We use the orthogonal polynomial mapping introduced in
Prior et al. [19,39] to obtain a semi-infinite 1D coupled-chain
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representation (see next section and Ref. [16]),

H = HS + σz

2
c0(a0 + a

†
0)

+
L−2∑
k=0

[ωka
†
kak + tk(a†

kak+1 + a
†
k+1ak)], (2)

with effective system-environment coupling c0 =√∫ ωc

0
J (ω)
π

dω and truncation of the chain to a length
L.

III. ORTHOGONAL POLYNOMIALS

The mapping of the environment to a semi-infinite chain
model is performed using orthogonal polynomials as described
in Ref. [39,40]. The starlike Hamiltonian

H = HS +
∫ xmax

0
g(x)b†xbx dx

+Â

∫ xmax

0
h(x)

(
bx + b†x

)
dx, (3)

with the system Hamiltonian HS and the system operator Â in
the interaction term, is mapped onto the chain Hamiltonian

H = HS + Âc0(a0 + a
†
0)

+
∞∑

k=0

[ωka
†
kak + tk(a†

kak+1 + a
†
k+1ak)]. (4)

For an arbitrary spectral density J (ω) the mapping can be
obtained by finding the recurrence relation of polynomials
orthogonal with respect to the weight function

h2(x) = J (g(x))
g′(x)

π
, (5)

where usually the linear dispersion relation g(x) = ωcx = ω is
used without loss of generality. The orthonormal polynomials
p̃k(x) generating the orthogonal transformation Uk(x) from
the continuous variable x onto the discrete chain

Uk(x) = h(x)p̃k(x),

a
†
k =

∫ xmax

0
Uk(x)b†x dx,

(6)

satisfy the normalization condition

〈p̃k,p̃l〉μ =
∫ xmax

0
h2(x)p̃k(x)p̃l(x) dx = δk,l, (7)

and relate the monic orthogonal polynomials πk(x) via

p̃k(x) = πk(x)

‖πk(x)‖μ

, (8)

where the norm ‖p‖μ = √〈p,p〉μ is induced by the inner
product 〈·,·〉μ under the measure dμ(x) = h2(x)dx. The chain
parameters c0,ωk,tk are related to the coefficients αk,βk of the

monic recurrence relation

πk+1(x) = (x − αk)πk(x) − βkπk−1(x),

ωk = ωcαk,

tk = ωc

√
βk+1,

c0 = ‖π0(x)‖μ,

(9)

with the initial polynomials π−1(x) = 0 and π0(x) = 1. For
the power-law spectral density with hard cutoff at the charac-
teristic frequency ωc,

J (ω) = 2παω1−s
s ωsθ (ωc − ω), (10)

the site energies ωk and couplings c0,tk can be analytically
found as

ωk = ωc

2

(
1 + s2

(s + 2k)(2 + s + 2k)

)
,

tk = ωc(1 + k)(1 + s + k)

(s + 2 + 2k)(3 + s + 2k)

√
3 + s + 2k

1 + s + 2k
,

(11)

for k = 0,1, . . . ,L − 2 if the chain is truncated to length L.
This analytic mapping allows a simple inversion b

†
x =∑

k Uk(x)a†
k to obtain observables of the original Hamiltonian

from the chain observables. In the presented work we used the
spin projected displacement

f ↑/↓
x =

〈
1 ± σz

2

b
†
x + bx

2

〉

=
L−2∑
k=0

h(x)p̃k(x)Re

[〈
1 ± σz

2
a
†
k

〉]
(12)

and the occupation of phonon modes

〈b†xbx〉 =
L−2∑
k,l=0

h2(x)p̃k(x)p̃l(x) 〈a†
kal〉 , (13)

where the continuous variable x has to be discretized.
While for time-evolution the widely used logarithmic

discretization needs an averaging scheme over multiple calcu-
lations to minimize discretization errors, this method is exact
and gives accurate results in one run. In fact this mapping can
be recovered in the limit � → 1 of infinitely fine discretization
[16,41].

IV. VARIATIONAL MATRIX PRODUCT
STATE FORMULATION

We now outline the formalism and features of our algorithm,
the intricate details of which can be found in Refs. [17,21,23].

For a 1D lattice of size L with sites k and corresponding
local eigenstate basis |nk〉 of dimension dk an arbitrary state
of the Hilbert space |
〉 ∈ H can be written as

|
〉 =
dk∑

{nk}=1


n1,...,nL
|n1, . . . ,nL〉, (14)

where the sum is done over every possible combination of
nk . Any |
〉 can be written as a matrix product state (MPS)
|
MPS〉 ∈ M ⊆ H via iterative application of singular value
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FIG. 1. (a)–(c) All possible normalizations of A. The straight line
represents the identity matrix. (d)–(g) Center matrices (orange) and
corresponding network normalization for one site.

decompositions (SVD) on 
n1,...,nL
resulting in the rank-3

tensors A(k) ∈ CDk−1×Dk×dk ,

|
MPS〉 =
dk∑

{nk}=1

An1 An2 · · · AnL |n1, . . . ,nL〉 , (15)

where we have open boundary conditions (a0 = aL = 1), use
the indexing Ank

ak−1,ak
= [A(k)]ak−1,ak,nk

= [Ank (k)]ak−1,ak
, and

allow omitting the site argument for clarity.
Furthermore we employ an optimized boson basis (OBB),

as introduced by Guo et al. [17], which is realized via an
additional map (isometry) V ∈ Cdk×dOBB,k from the optimized
basis |ñk〉 into the local basis |nk〉,

Ank

ak−1,ak
=

dOBB,k∑
ñk=1

Ãñk

ak−1,ak
Vnk,ñk

, (16)

where we will write A instead of Ã throughout this work.
This mapping allows high compression (dOBB,k 
 dk) of the
local oscillator basis in the case of large variances Var(nk),
which has been shown to be highly effective in dealing with
quantum-critical SBMs [17].

Once we represented a state as an MPS, any variational
optimization and time evolution is performed iteratively by
sweeping along the chain. During the sweeping procedure
we keep the state in a mixed canonical form to benefit
from orthogonality conditions. Furthermore only one matrix
can be focused (centered), which means its vectorization
v has unit length 〈v|v〉 = 1 = 〈
MPS |
MPS〉. Figure 1

diagrammatically explains all normalizations of A and the
possible center matrices AC(k),VC(k) and bond centers
Ca(k),Cñ(k) which have special relevance for the time evo-
lution explained later. When focusing on site k, all A matrices
of site i < k will be kept left-orthonormal while matrices i > k

will be right-normalized to produce orthonormal left and right
basis states |�L〉 , |�R〉:

|
(A)〉 =
∑

ak−1,nk,ak

[AC(k)]ñk

ak−1,ak

∣∣�[1:k−1]
L,ak−1

〉 |ñk〉
∣∣�[k+1:L]

R,ak

〉
.

(17)

The efficiency of MPS is based on low-rank tensor
approximations which significantly reduce the number of
variational parameters in the tensors A(k),V (k). This restricts
the Hilbert space spanned by the MPS to a manifold M ⊂ H.
The combination of high truncation and dynamical “on the
fly” bond adjustment, while representing an optimal manifold,
allows the implementation of an efficient variational algorithm
with significant advantages for computational speed and
accuracy [17,23,24,42]. We truncate and expand the bonds
ak and ñk such that the smallest singular values kept are within
10−4 and 10−4.5 leading to adaptive dimensions Dk and dOBB,k

with upper bounds Dmax and dOBB, max.

V. TIME-DEPENDENT VARIATIONAL PRINCIPLE

The time evolution is performed with the time-dependent
variational principle (TDVP) described in Refs. [21,22]. It
is derived from the Dirac-Frenkel variational principle and
obtained by projecting the Schrödinger equation onto the
tangent space of the MPS manifold M to find optimal
equations of motion for each MPS center tensor within M to
generate the best approximation |
MPS(t)〉 to the exact state
|
(t)〉. Haegeman et al. have shown that this is equivalent to a
Lie-Trotter splitting of the MPS instead of the time-evolution
operator U(t) = e−iĤ t . Unlike the Suzuki-Trotter splitting of
U(t), errors only accrue from the integration scheme.

Since the OBB modifies the MPS network, our implemen-
tation of the TDVP needed an extension of the original TDVP
scheme. To prove that this can be done and to derive the
appropriate integration scheme, we will present in Sec. V A
the derivation of the tangent space projector P̂T|
MPS 〉M in the
formalism established by Ref. [22]. Additionally we will give a
more simplified description of the resulting integration scheme
in Sec. V B.

A. Derivation of the tangent space projector

This derivation will be similar to Theorem 3.1 of Ref [22]
but using the left canonical form of the MPS with OBB
matrices. To be more consistent with their notation and for
clarity, we will use nk,ñk , and ak instead of dk,dOBB,k , and Dk

to address bond dimensions.
Additionally to the definitions of Lubich et al. we need to

introduce further notation to address the components of an
MPS tensor X ∈ Rn1×···×nL and their unfoldings (as depicted
in Fig. 1).

Any site tensor Ck ∈ Rak−1×nk×ak can be written as a matrix
using the left and right unfolding C<

k ∈ R(ak−1,nk )×ak and
C>

k ∈ R(ak,nk )×ak−1 . Similarly the orthonormalized site tensors
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Q<
k ,Q>

k ∈ Rak−1×nk×ak are unfolded as

Q<
k ∈ R(ak−1nk )×ak ,

Q>
k ∈ R(aknk)×ak−1 , (18)

and additionally fulfill the normalization conditions
Q<T

k Q<
k = 1ak

and Q>T
k Q>

k = 1ak−1 .
Unfolded segments of the MPS to the left and right of

site k are denoted as X�k−1 ∈ R(n1...nk−1)×ak−1 and X�k+1 ∈
R(nk+1...nL)×ak , respectively. If these parts are left and right
orthonormalized we will write Q�k−1 and Q�k+1.

This notation can be transferred to the OBB tensors Ak ∈
Rak−1×ñk×ak and V k ∈ Rnk×ñk forming a decomposition of the
site tensors Ck as

C<
k = (V k ⊗ 1ak−1 )A<

k . (19)

The OBB tensors can also be orthonormalized, denoted as
QA,k and QV,k ∈ Rnk×ñk , where QT

V,k QV,k = Q<,T
A,k Q<

A,k =
1ñk

. They compose Q<
k and Q>

k as

Q<
k = (

QV,k ⊗ 1ak−1

)
Q<

A,k,

Q>
k = (

QV,k ⊗ 1ak

)
Q>

A,k.
(20)

Furthermore it is necessary to define a new unfolding Q̌
<

k ∈
R(ak−1ak )×ñk to support the following notation.

Let XTk be the kth tensor transpose cycling the kth tensor
dimension of X to the first position while keeping the order of
all other dimensions. This permutation can be written as

X(i1,i2, . . . ,iL) = XTk
(
iσk(1),iσk(2), . . . ,iσk(L)

)
, (21)

with the k cycle σk = (k 1 2 · · · k − 1) ∈ �L. The
inverse of this transpose is XT−k defined by the k cycle σ−k =
σ−1

k = (k k − 1 · · · 2 1). The kth unfolding X (k) of
X denoted with round braces is then equivalent to the first
unfolding of the kth tensor transpose of X,

X (k) = XTk〈1〉 ∈ Rnk×(n1...nk−1nk+1...nL),

X = Ten(k)[X (k)] = Ten1[XTk〈1〉]T−k ,
(22)

with the corresponding tensor reconstruction as its inverse.
A matrix A ∈ Rm×n,m > n with rank(A) = n has a left

inverse

A−1 = (AT A)−1AT ,

A−1A = 1n,
(23)

and a projector PA onto the range of A

PA = AA−1, (24)

which will be used for the definition of the tangent space
projector.

The tangent space TXM of any state X ∈ M of the
OBB-MPS manifold can be constructed from the orthogonal
subspaces VA,k,VV,k . We will use the MPS in the left canonical
gauge including site k,

X = Tenk

[
( QV,k ⊗ Q�k−1) Q<

A,k XT
�k+1

]
. (25)

Thus we have

VA,k = {
Tenk

[
( QV,k ⊗ Q�k−1)δ Q<

A,k XT
�k+1

]
: δQ<

A,k ∈ Rak−1×ñk×ak , Q<T
A,kδ Q<

A,k = 0 for k �= L
}
,

VV,k = {
Ten(k)

[
δ QV,k( Q̌

<

A,k)T (X�k+1 ⊗ Q�k−1)T
]

: δ Q<
V,k ∈ Rnk×ñk , QT

V,kδ QV,k = 0
}
, (26)

with XT � L + 1 = 1 since aL = 1. Since these subspaces are
mutually disjoint, the tangent space is

TXM =
L⊕

k=1

(VA,k ⊕ VV,k), (27)

and allows the decomposition of any tangent vector δX ∈
TXM

δX =
L∑

k=1

(δXA,k + δXV,k),

〈δXi,k,δXj,l〉 = 0 for i �= j,k �= l.

(28)

We want to find the tangent space projector PTXM for
an arbitrary Z ∈ Rn1×...×nL such that the projection δU =
PTXM(Z) ∈ TXM is orthogonal and therefore satisfies

〈δU,δX〉 = 〈Z,δX〉 ∀δX ∈ TXM. (29)

Due to the disjoint subspaces Vi,k we can decompose

δU =
L∑

k=1

(δUA,k + δUV,k) (30)

with δUi,k ∈ Vi,k and find

〈δUi,k,δXi,k〉 = 〈Z,δXi,k〉 (31)

for i ∈ {A,V }. The projection is then defined by the δB
matrices in

δU 〈k〉
A,k = ( QV,k ⊗ Q�k−1)δB<

A,k XT
�k+1,

δU (k)
V,k = δBV,k( Q̌

<

A,k)T (X�k+1 ⊗ Q�k−1)T ,
(32)

with Q<T
A,kδB<

A,k = 0 for k �= L and QT
V,kδBV,k = 0.

To find expressions for δB<
A,k and δBV,k we follow the

same steps as Ref. [22]. Here we give an outline for δBV,k to
obtain δU (k)

V,k . First substitute the expressions for δU (k)
V,k and

δX (k)
V,k [Eq. (26)] into Eq. (31) and isolate the term δ QV,k in

both inner products:

〈
δU (k)

V,k,δX (k)
V,k

〉 = 〈δBV,k MT ,δ QV,k MT 〉
= 〈δBV,k MT M,δ QV,k〉 ,〈

Z(k),δX (k)
V,k

〉 = 〈Z(k) M,δ QV,k〉 ,

(33)
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where we defined M = (X�k+1 ⊗ Q�k−1) Q̌
<

A,k for clarity. To
remove the inner products on both sides we use the property
〈A,C〉 = 〈B,C〉 → PCA = PCB with Pδ QV,k

= 1nk
− PV,k

and then substitute the found expression for δBV,k into δU (k)
V,k:

δBV,k = (1nk
− PV,k)Z(k) M(MT M)−1,

δU (k)
V,k = (1nk

− PV,k)Z(k)(M M−1).
(34)

Thus we derived the projection of Z onto the tangent space as

δU 〈k〉
A,k = [(PV,k ⊗ P�k−1) − P�k]Z〈k〉 P�k+1,

δU (k)
V,k = (1nk

− PV,k)Z(k) P M , (35)

where we used the projectors

PV,k = QV,k QT
V,k, P�k−1 = Q�k−1 QT

�k−1,

P�k+1 = X�k+1 X−1
�k+1 = Q�k+1 QT

�k+1. (36)

In the notation of Ref. [21] the tangent space projector thus
reads

P̂T|
MPS 〉M =
L∑

k=1

P̂
[1:k−1]
L ⊗ P̂

[k]
V ⊗ P̂

[k+1:L]
R

−
L−1∑
k=1

P̂
[1:k]
L ⊗ P̂

[k+1:L]
R

+
L∑

k=1

P̂
[1:k−1,k+1:L]
A ⊗ (1k − P̂

[k]
V ), (37)

with the left and right chain projectors

P̂
[1:k]
L =

Dk∑
ak=1

∣∣�[1:k]
L,ak

〉 〈
�

[1:k]
L,ak

∣∣,

P̂
[k+1:L]
R =

Dk∑
ak=1

∣∣�[k+1:L]
R,ak

〉 〈
�

[k+1:L]
R,ak

∣∣,

P̂
[k]
V =

dOBB,k∑
ñk=1

∣∣�[k]
ñk

〉 〈
�

[k]
ñk

∣∣,

P̂
[1:k−1,k+1:L]
A =

dOBB,k∑
ñk=1

∣∣�[1:k−1,k+1:L]
A,ñk

〉 〈
�

[1:k−1,k+1:L]
A,ñk

∣∣. (38)

Using these expressions to project H |
MPS〉 onto
T|
MPS 〉M we get, after a Lie-Trotter decomposition of the
MPS, a system of equations of motion for each MPS tensor
VC(k) and AC(k) as well as for the bond matrices Cñ(k) and
Ca(k) which can be solved directly by

V C(k,t) = e−iHV (k)t V C(k,0),

C ñ(k,t) = e+iHñ(k)t C ñ(k,0),

AC(k,t) = e−iHA(k)t AC(k,0),

Ca(k,t) = e+iHa (k)t Ca(k,0).

The effective local Hamiltonians of each tensor used in
the exponentials are obtained by a full contraction of the

=H(k) Ĥ

(a) H(k)

=HA(k) H(k)

(b) HA(k)

=HV (k) H(k)

(c) HV (k)

=Ha(k) HA(k)

(d) Ha(k)

=Hñ(k) HV (k)

(e) Hñ(k)

FIG. 2. All effective local Hamiltonians needed for the TDVP
with OBB.

Hamiltonian with the MPS, while omitting the respective
tensor. A diagrammatic representation is given in Fig. 2.

B. 1-tensor update scheme

A key formal result we present is this OBB-TDVP scheme
with a single-tensor update, which is given by

V C(k,t + �t) = e−iHV (k)�t V C(k,t),

↓ SVD

C ñ(k,t) = e+iHñ(k)�t C ñ(k,t + �t),

↓ SVD
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AC(k,t + �t) = e−iHA(k)�t AC(k,t),

↓ SVD

Ca(k,t) = e+iHa (k)�t Ca(k,t + �t), (39)

where bold notation indicates vectorizations of the tensors. The
effective local Hamiltonian H∼(k) generating the optimal time
evolution of a center matrix is obtained by full contraction
with all MPS matrices except for the to be evolved center
matrix as depicted in Fig. 2. This scheme can be seen to
maintain the general form of the TDVP equations given in
Refs. [21,22]. Essentially, after each forward evolution t →
t + �t of a centered tensor VC or AC , the centered bond matrix
Cñ/a(t + �t) obtained via SVD has to be evolved backwards
in time t + �t → t before contraction with the next tensor.
By sweeping left-to-right and back to the left with a time
step �t/2 one obtains a second-order symmetric integrator
with error of order O(�t3). Since for each evolution step the
entire effective Hamiltonian is applied, it is possible to include
long-range interactions.

The single-tensor update with OBB has significant advan-
tages over the 1-site update TDVP without OBB in cases where
a large number of local states has to be considered. The two
additional evolution steps for V C and C ñ can outweigh the
unfavorable scaling of the 1-site TDVP without OBB. The
computational complexity of the TDVP with OBB scales as
O( max(D3dOBB,D2d2

OBB,dOBBd2,d2
OBBd)), which is signif-

icantly faster than the original scaling O( max(D3d,D2d2))
without OBB for dOBB 
 d. The scaling behavior of OBB-
TDVP is also more preferable in comparison with the common
time-evolving block decimation (TEBD) [O(d3D3)] and the
very recently proposed TEBD with local basis optimiza-
tion (TEBD-LBO) of Brockt et al. [43] with a scaling of
O( max(d3

OBBD3,d3D2)). The latter uses a technique very
similar to the OBB to map the local Hilbert space onto an
optimized basis to reduce the computational effort.

As evident from the example given in Fig. 3 it is possible
to increase the local Hilbert space on each site from dk =
200 to dk = 500 at no extra cost by introducing an OBB of
dOBB = 65. Similarly a calculation needing dk = 500 can be
accelerated by a factor of 4–10 by using an OBB, depending on
the amount of (allowed) entanglement. Generally, the smaller
dOBB , the less entanglement can be captured by the MPS
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dOBB
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40

60

80

100

t/
Sw

ee
p

in
m
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D = 20, L = 200

dk = 200 no OBB
dk = 500 no OBB
dk = 500 with OBB

FIG. 3. Comparison of CPU time per sweep for TDVP without
OBB and dk = 200,dk = 500 (lines) and for TDVP with OBB and
dk = 500 (crosses).

between a site and its left and right environment, but the faster
and more memory efficient is the computation.

VI. SIMULATED SBM DYNAMICS

If not otherwise stated, we take � = 0.1,ε = 0,ωc =
1,�t = 0.1–1 with initial MPS dimensions dk = 30,D =
5,dOBB = 5 and maximal Dmax = 5,dOBB, max = 15 in all
simulations. All results had converged sufficiently with respect
to D by D = 5. The required chain length L depends on ωc,
the simulated time range T , and the extracted observables.
If only the system dynamics are desired, we take L = 2

7T ,
while for environment observables in frequency space, we need
L = 2

3.5T to avoid artifacts caused by unphysical reflections at
the end of the chain (see Fig. 8). For reference, a single sweep
with dimensions dk = 30,D = 5,dOBB = 15, and L = 200
takes 4 seconds on one core of an Intel Core i7-4790 CPU.

We will consider two different initial state preparations for
time evolution, both with the environment at zero temperature.
The polarized coupled state is obtained via variational ground
state optimization of the z-polarized spin coupled to the
environment, as in Refs. [13,18]. The uncorrelated product
state has the vacuum state |�〉 of the bath coupled to the
z-polarized spin.

A. Spin dynamics

In Figs. 4–6 we present the dynamics in the weak (α < αc)
and strong coupling regime (α > αc) for Ohmic s = 1 and
sub-Ohmic s = 0.25,0.5,0.75 spectral densities. Globally, we
find excellent agreement with previous numerical work on
the non-Markovian dynamics of the SBM, such as the time-
dependent numerical renormalization group (TD-NRG) [18]
and path integral methods [13]. In brief, the Ohmic results
(Fig. 4) show increasingly damped oscillations as α increases
for α < 0.5, overdamped relaxation for 0.5 < α < 1 which
relax more slowly as α → 1, and complete localization above
the quantum-critical coupling of αc = 1.

The spin dynamics of the sub-Ohmic SBM close to the
coherent-incoherent changeover αCI (s) are shown under the
two different initial preparations of product state and coupled
state in Figs. 5 and 6. In contrast to the Ohmic case,

0 50 100 150 200 250 300

σ
z

-0.5

0

0.5

1
(a)

0.01 0.05 0.1 0.15 0.2

ωct
100 101 102 103

σ
z

0

0.5

1
(b)

s = 1

0.5
0.75
1
1.25
1.5

FIG. 4. (a) Weak (α < αc) and (b) strong coupling for Ohmic
(s = 1, αc = 1) spectral density at different α. Panel (b) was obtained
at �t = 0.01.
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(b)

ωct
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σ
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0
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1
(c)s = 0.5

ωct
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(d) 0.075
0.1

0.125
0.15

0.2

FIG. 5. (a), (b) Weak and (c), (d) strong coupling (below and
above αc) for sub-Ohmic spectral density (s = 0.5, αc = 0.107) at
different couplings α. Initial state is (a), (c) the product state and (b),
(d) the coupled state.

the sub-Ohmic dynamics always remain underdamped for
s = 0.25, showing at least one oscillation even above αc =
0.022, as recently found in [13,18,34]. Furthermore an initial
polarization of the bath leads to a higher frequency of spin
oscillations with stronger coupling α which is not observable
in the product state since the polarization persists on a larger
time scale, giving an effective bias to the TLS Hamiltonian
[14]. The frequency of these oscillations is nonmonotonic,
initially decreasing due to dressing of the tunneling matrix
element (a system-bath correlation effect) and then increasing
for stronger coupling. The s = 0.5 case exhibits overdamping
only with the product state for α > αCI ≈ αc = 0.107, while
the coupled state always has initial oscillations even at strong
coupling. The final value of 〈σz〉 reflects the mean field
nature of the QPT in systems with 0 < s � 0.5, for which the
spin magnetization grows continuously from zero above the

σ
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ωct
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s = 0.25

ωct
0 30 60 90

(d)

s = 0.750 10 20 30
0.94
0.96
0.98
1

FIG. 6. Weak and strong coupling (below and above αc) for sub-
Ohmic spectral densities [(a), (b): s = 0.25, αc = 0.022; (c), (d):
s = 0.75, αc ≈ 0.3, αCI ≈ 0.22] at different couplings α. Initial state
is the product [(a), (c)] or the coupled state [(b), (d)].

critical coupling [15,31,37,38]. At s = 0.75 both the product
state and the coupled state lead to overdamped dynamics for
α � αCI ≈ 0.22 and localize for α > αc ≈ 0.3. The accuracy
of the calculations across a wide range of spectral densities
from weak to strong coupling combined with the efficient use
of computational resources demonstrates the versatility of the
VMPS implementation.

B. Environment dynamics and spectroscopy

Having verified our method, we now use an efficient
inversion of the chain mapping (see Sec. III) to present
the dynamics of the entire environment in time-frequency
space [42]. Figure 7(a) and its inset show the population
of each mode for intermediate Ohmic coupling, with an
initially broad excitation and subsequent emergence of a sharp
resonance peak around the TLS energy gap. The peak in
this environmental “absorption spectrum” rises on the time
scale of spin relaxation (ωct ≈ 300), while its position evolves
and is complete by ωct ≈ 110. The final peak position is
reached after about one period of the resonant frequencies
of the environment modes (ωres ≈ 0.06ωc), consistent with
the “sampling” required for the broadband environment to
resolve the TLS gap. A range of novel phenomena related
to nondetailed balance and phase-dependent relaxation have
recently been predicted to exist prior to this time [44], though
we will not explore this further here.

Instead, we note that this time scale may be additionally
modified by polaronic dressing (spin-bath entanglement),
which leads to a renormalization (suppression) of the bare
TLS energy gap � that drives Ohmic and sub-Ohmic ground
states towards their QPTs. The environment spectrum in
Fig. 7(a) clearly resolves the emergence of the renormalized
TLS’s energy gap �r . This ultrafast process, dominated by
high frequency (ωk > �) modes, is generally hard to observe
but important in organic exciton transfer and has been seen
in inorganic semiconductors [4]. According to Silbey and
Harris’ variational polaron theory for the ground state of the
Ohmic SBM [45], �r = �( �

ωc
)

α
1−α , which agrees with the peak

position extracted from the environmental spectra. This is
shown in Fig. 7(b) for s = 1 and s = 3 in the regime 0 < α �
1. In the chain basis the renormalization is accompanied by the
persistent excitation of the sites closest to the system, which
defines an effectively screened system “seen” by the rest of
the environment (see Fig. 8)—an observation familiar in NRG
studies of the related Kondo problem [46]. The dynamics of
the collective coordinate of the first chain site were also used to
verify a novel coherence pumping mechanism in a recent study
of a simple photosynthetic pigment-protein complex [47].

Accompanying the emission of phonons into the resonant
modes, we also observe prominent, damped oscillations for
all modes, which vanish on the time scale of spin relaxation
(Fig. 7). Recently, Bera et al. have shown that strong coupling
induces intermode entanglement which could induce apparent
mixing and damping of individual modes [29,30], but this
is predicted for slow and resonant modes, whereas we find
damped oscillations at all frequencies. Given the unitary,
energy-preserving evolution of the many-body state, this
observation warrants further consideration. To investigate this,
we perform a type of state-selective coherent spectroscopy to
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FIG. 7. (a) Phonon modes ωk occupation for an Ohmic environment with α = 0.2 exhibits a strong resonance at the renormalized tunneling
amplitude �r ≈ 0.057 and a damping of oscillations. (b) Simulated renormalized tunneling �r versus analytic expression (lines) shows good
agreement. Polaron theory predicts �r = �e− α

s−1 for s = 3. (c) The projected phonon displacement f
↑
k for s = 1,α = 0.4 oscillates even after

spin relaxation at t ≈ 350.

look at further details within the many-body state. Figure 7(c)
shows the displacement fk of modes projected onto the up spin

state; i.e., we compute f
↑/↓
k = 〈1±σz

2
b
†
k+bk

2 〉. It is immediately
seen that the displacements do not show any damping and
oscillate at their natural frequencies over the length of the
simulation.

Figure 9 shows the typical dynamics of a high-frequency
mode. The positive and negative displacements for |↑〉 and |↓〉
are characteristic of polaronic entanglement between the spin
and oscillator. However, it can be seen that their motion is
highly correlated; maximum mode displacement on one spin
state is always obtained at the minimum of the other. Moreover,
the momentum of the mode in each spin state is the same and
preserved; it is not randomized by the dissipative spin-flip
dynamics. This classical correlation within the entangled state
is important, and explains both the appearance of a stationary

FIG. 8. The occupation of the chain for s = 1,α = 0.2 shows a
clear constant offset on the first few sites indicating the dressing and
renormalization of the spin. Additionally the chain exhibits reflections
from the end at ωct ≈ 380 leading to artifacts in the inverse chain
mapping. The open system dynamics are correct until the arrival of
the reflected waves at ωct ≈ 760.

renormalized �r and the apparent relaxation of the mode pop-
ulations 〈b†kbk〉. To motivate this, consider the trial wave func-
tion |
(t)〉 = C↑(t) |↑〉 |f ↑

k (t)〉 + C↓(t) |↓〉 |f ↓
k (t)〉, where we

neglect the other environmental modes. The oscillator wave
functions for each spin state are time-dependent coherent states
|f ↑

k (t)〉 = e(f ↑
k (t)b†k−f

↑∗
k (t)bk ) |0〉. The expectation value 〈σx〉 is

then 〈σx〉 = 2Re[C↑(t)C∗
↓(t) 〈f ↓

k (t)|f ↑
k (t)〉]. The oscillatory

displacements we find fit 2f
↑
k (t) ≈ −gkω

−1
k (1 − eiωkt ) and

2f
↓
k (t) ≈ gkω

−1
k (1 + eiωkt)), after about one oscillation period.

As 〈σx〉 is determined by the overlap of the oscillator wave
functions entangled with each spin state, we see that the
relative displacement of these wavefunctions is preserved
for all further times, obeying f

↓
k − f

↑
k = gkω

−1
k . Thus the

correlated motion provides a constant renormalization of the
spin tunneling, which when summed over all modes leads
to the �r predicted by ground state theories and observed
here as the peak position of the environmental absorption.
Indeed, had the relative displacement been time-dependent
then 〈σx〉 would not relax to a stationary value. Next we
see that the mode population 〈b†kbk〉 = |C↑(t)|2|f ↑

k (t)|2 +
|C↓(t)|2|f ↓

k (t)|2 = 1
2gkω

−1
k [1 + 〈σz〉 cos(ωkt)]. Again, we see

the correlated motion only leads to oscillations of the
population when the spin is out of equilibrium (〈σx〉 �=

0

1

2 〈nk〉

0 100 200 300 400 500

−1

0

ωct

f↑
k f↓

k

(a)

(b)

s = 1, α = 0.4

FIG. 9. (a) The occupation 〈nk〉 and (b) the spin-projected
displacements f

↑/↓
k of the mode ωk = 0.325 with initial product state.

075105-8



SIMULATING OPEN QUANTUM DYNAMICS WITH TIME- . . . PHYSICAL REVIEW B 93, 075105 (2016)

FIG. 10. The phonon occupation for s = 0.75,α = 0.4 with
initial product state oscillates even after the relaxation of the spin
oscillations at ωct ≈ 150 due to the finite 〈σz〉 �= 0.

1), and explains why the apparent population damping for
all high-frequency modes is set by the relaxation of the
spin. Interestingly, this analysis predicts persistent population
oscillations for α > αc in sub-Ohmic baths, or a biased TLS,
which is confirmed in Fig. 10. However, we note that in real
systems the environment must be connected, albeit weakly, to
an external bath, and oscillations will vanish at very long times
(all observables become stationary).

These results show how broadband environmental dynam-
ics can be analyzed at their various significant frequency
scales. Indeed, we have only considered a small subset of the
SBM physics; similar analysis must also be applied to resonant
and slow frequency modes, the dynamical hierarchy and feed-
back between their contributions, and the role of any isolated
modes, to build the full picture. This dynamical dissection,
made possible by our VMPS many-body approach, not only of-
fers insights into the fundamental aspects of complex open sys-
tems; it may also guide the construction of cheaper Ansätze for
describing their ground states and dynamics [11,29,30,34,35].
More immediately, the observation of conserved vibrational
coherences during heavily damped spin relaxation has rele-
vance for time-resolved observation of transfer, and activation
and deactivation of vibrational coherences, recently shown
to be a powerful tool for exploring ultrafast, coherent pro-
cesses in optoelectronic systems and biological photoreactions
[9,10,48,49]. Finally, we note that further extensions are
required for general applications, many of which—such as
finite temperatures and damping of the primary environment—
have already been developed in related methods, such as the
DMRG-based TEDOPA algorithm of Prior et al. [19].
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