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Analytic continuation by averaging Padé approximants
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The ill-posed analytic continuation problem for Green’s functions and self-energies is investigated by revisiting
the Padé approximants technique. We propose to remedy the well-known problems of the Padé approximants by
performing an average of several continuations, obtained by varying the number of fitted input points and Padé
coefficients independently. The suggested approach is then applied to several test cases, including Sm and Pr
atomic self-energies, the Green’s functions of the Hubbard model for a Bethe lattice and of the Haldane model for
a nanoribbon, as well as two special test functions. The sensitivity to numerical noise and the dependence on the
precision of the numerical libraries are analyzed in detail. The present approach is compared to a number of other
techniques, i.e., the nonnegative least-squares method, the nonnegative Tikhonov method, and the maximum
entropy method, and is shown to perform well for the chosen test cases. This conclusion holds even when the
noise on the input data is increased to reach values typical for quantum Monte Carlo simulations. The ability of
the algorithm to resolve fine structures is finally illustrated for two relevant test functions.
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I. INTRODUCTION

Strongly correlated materials are currently of great interest
due to that they exhibit a plethora of exotic effects which may
be important for technological applications [1,2]. One of the
crucial problems behind the investigation of strongly corre-
lated materials is determining their electronic structure. To
this aim several computational methods have been developed
in the last twenty years, including the dynamical mean-field
theory (DMFT) [3,4] or the GW approach [5]. These methods
are often based on the Green’s function formalism, and are
not always applied directly to real energies. In fact, for
technical reasons, it may be more convenient to work with
complex energies and then obtain the Green’s functions (and
related observables) for real energies by means of analytic
continuation, as illustrated in Fig. 1.

The analytic continuation of functions whose formulas
are known is a rather simple task in complex analysis. In
numerical problems, instead, difficulties arise. Although there
still exists a unique continuation if a function is known
at infinitely many discrete points on the imaginary axis
and with infinite precision [6], these conditions are not
fulfilled in standard computations. The problem depicted in
Fig. 1 is therefore ill posed, especially if there is no a
priori knowledge of the function structure on the real axis.
Owing to these difficulties, several methods were proposed
to perform the analytic continuation of Green’s functions
and self-energies. The most celebrated approaches include
the maximum entropy method (MEM) [7–14], the singular
value decomposition (SVD) [14,15] and the closely related
nonnegative Tikhonov (NNT) method [16], the nonnegative
least-squares (NNLS) method [17], the method of consistent
constraints [18], stochastic regularization methods [19], and
sampling methods [20–23]. Additionally, recent work shows
the analytic continuation can be performed from complex
time, reducing its ill-conditioned property [24]. All these
methods contributed greatly to advance our understanding
of the analytic continuation, but in practical terms they still

suffer from drawbacks such as requiring prior information
on the function to continue, smearing high-energy states, and
involving great computational efforts or applicability.

Another well-known technique for analytic continuation is
the Padé approximant method. It consists of parametrizing the
numerical function by means of a ratio of two polynomials,
or equivalently by a terminating continued fraction. There
are different schemes for finding the Padé approximant. One
is Thiele’s reciprocal difference method [25], which is a
numerically fast method for attaining the function values at
selected points in the complex plane by recursion. It was
first applied to condensed matter physics by Vidberg and
Serene [26] to address the Eliashberg equations. A second
approach is to determine the polynomial coefficients explicitly,
giving the function everywhere in the complex plane. In the
scheme proposed by Beach et al. [27], the Padé coefficients
are calculated through a standard matrix problem, which
makes it possible to use widely available routines for linear
algebra.

In general, all the schemes based on the Padé approximant
method have the advantage of not requiring any prior informa-
tion on the function that one intends to continue. However, such
an unbiased continuation often results in artifacts and spurious
features. In the worst cases the continued function may violate
important physical constraints, e.g., leading to a positive
imaginary part of the Green’s function. These problems are
more severe for Padé schemes based on recursive algorithms,
due to the propagation of errors. Increasing the precision
of the input data as well as that of the numerical routines
employed in the algorithms removes spurious features from
the continuation [27]. Unfortunately, obtaining input data with
a precision higher than double precision (about 64 bits) is not
so straightforward for problems of current scientific interest.
Conversely, one must often work with Green’s functions and
self-energies plagued by numerical noise, as arising from
quantum Monte Carlo (QMC) methods [28]. Hence, the Padé
approximant method has achieved less attention than the other
techniques outlined above.
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FIG. 1. Typical example of analytic continuation of the Green’s
function in the complex plane. The Matsubara frequencies on the
imaginary axis are labeled following the convention explained in
Sec. II.

The errors in the Padé approximant method are due to
the presence of approximate zero-pole pairs in the polyno-
mials [27]. These pairs arise from including too many points
in the Padé fitting and should ideally cancel each other when
taking the ratio between polynomials. The limited precision
prevents this from happening, leading to a sort of overfitting
problem. Beach et al. proposed a procedure to identify the ideal
number of points to include in the algorithm but this approach
is hard to apply unless Matsubara data of very high precision
are available [27]. More recently, in Refs. [29,30], the authors
suggested some heuristic procedures to identify and eliminate
the zero-pole pairs from the polynomials. Despite representing
an improvement with respect to the original formulation, all
these schemes still suffer from a certain degree of arbitrariness
and require an ad hoc analysis, case by case.

In the present work, we show that the overfitting problem
can be greatly reduced by reformulating the Beach algorithm to
use fewer Padé coefficients than input points, which has been
suggested already in Ref. [31]. This implies transforming the
problem into a least-squares (LS) minimization. We build on
this approach to tackle the sensitivity of the Padé method by
constructing a set of analytic continuations where the number
of coefficients and input points are varied independently. These
continuations can then be used to perform a weighted average
in which the spurious zero-pole pairs have a strongly reduced
contribution. We show that this procedure stabilizes the Padé
method and removes unphysical structures. The advantages
of our approach are shown to be especially important for low
input precision data. Even for numerical noise comparable to
standard QMC simulations our Padé scheme provides good
analytic continuations. A further improvement is obtained by
exploiting the symmetries of the Green’s function, i.e., by con-
sidering a small number of negative Matsubara frequencies.
Finally, we benchmark our approach on various test cases,
including the atomic self-energies of Sm and Pr, the Green’s
functions of the Hubbard model for a Bethe lattice and of the
Haldane model for a nanoribbon, as well as some simple test
functions. These results are compared with exact solutions as
well as with analytic continuations obtained via MEM, NNT,
and NNLS. The proposed Padé method is shown to often
perform better than the other methods over a wide range of
noise magnitudes.

The paper is organized as follows. Section I is an introduc-
tion, and Sec. II is dedicated to a short review of the relevant
properties of Green’s functions and self-energies which we
intend to continue. In Sec. III, our Padé scheme is described
in detail. The results are illustrated in Sec. IV, together with a
description of step-by-step improvements, tests of the accuracy
and stability with respect to Matsubara noise, and precision
of the numerical routines. A wider range of tests as well as a
comparison with some other methods for analytic continuation
are presented in Sec. V. Finally the resolving power of our
algorithm is analyzed in Sec. VI, which is followed by the
conclusions.

II. GREEN’S FUNCTION FORMALISM

The one-particle Green’s function is a key quantity in the
solution of models exhibiting strong correlations. Here we are
going to briefly summarize the main properties of the Green’s
function, which will be then used in Sec. III for explaining and
improving the Padé approximant method. In finite-temperature
Matsubara formalism, the one-electron Green’s function of a
time-independent Hamiltonian is written as

G(τ ) = −〈T [c(τ )c†(0)]〉, (1)

where τ is the imaginary time, T is the time-ordering
superoperator, and c(τ ) and c(τ )† are respectively annihilation
and creation operators in the Heisenberg representation. For
simplicity we consider here models with a single orbital,
so that no subscripts are needed. The generalization to
multiorbital systems is straightforward. The expectation value
in Eq. (1) denotes the thermal average over the grand canonical
ensemble, and G(τ ) is defined on the interval τ ∈ (−β,β],
where β is the inverse temperature. A fermionic Green’s
function is antiperiodic due to the anticommutation relation
{c,c†} = 1 and the trace invariance under cyclic permutations.
By periodically repeating G(τ ), its Fourier representation is

G(τ ) = 1

β

∞∑
n=−∞

Gne
−iωnτ (2)

with Fourier coefficients

Gn =
∫ β

0
dτeiωnτG(τ ) (3)

and fermionic Matsubara frequencies ωn = (2n − 1)π/β. A
unique spectral function ρ(ω) ∈ R+ exists for a complete set
of Gn values, related to Gn through the Hilbert transform

G(z) =
∫ ∞

−∞
dω

1

z − ω
ρ(ω) (4)

by setting z = iωn. Time-reversal symmetry is ensured by
G(z∗) = G(z)∗ and follows from Eq. (4), as is shown in
Ref. [27]. Due to causality, the Green’s function is analytic
in the whole complex plane except along the real axis where
its imaginary part has a discontinuity. The spectral function in
Eq. (4) can be expressed as

ρ(ω) = − 1

π
Im[G(ω + iδ+)] with δ → 0+, (5)

and is 1/(2π ) times the magnitude of the discontinuity in
Im[G(z)] on the real axis. The parameter δ in Eq. (5) is the
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distance above the real axis. The spectral function obeys the
sum rule s = ∫ ∞

−∞ dωρ(ω) = 1; thus the Green’s function has
an asymptote G(z) → s/z for |z| → ∞, according to Eq. (4).

Determining the spectral function ρ(ω) from a finite set
of values Gn with a finite precision is the goal of this
paper. Sometimes one can divide the Green’s function into
a noninteracting Green’s function and a correction part due
to interactions, expressed by a self-energy function �(z).
Often one can determine the analytical continuation of the
noninteracting Green’s function exactly, and therefore it may
be more convenient to perform the analytic continuation of the
self-energy �(z), instead of the full Green’s function G(z).
The self-energy has the following analytical form:

�(z) = �0 + �G(z) (6)

with a static part �0 ∈ R and a dynamic part �G(z) ∈ C.
The latter has the same analytic properties as G(z) with
the exception of the normalization value, s ∈ R+, which is
not necessarily equal to 1 [27]. Once the self-energy has
been analytically continued to the real axis, then the spectral
function may be obtained via the Dyson equation and Eq. (5).
In general the procedure outlined above leads to smaller
errors than performing directly the analytic continuation of
G(z) [23,32,33].

III. PADÉ APPROXIMANTS

A Padé approximant can be expressed as a [k/r] rational
polynomial:

Pk,r (z) =
∑k+1

i=1 aiz
i−1∑r

i=1 bizi−1 + zr
, (7)

and has in general complex coefficients ai and bi , and an
asymptote ak+1z

k−r for large |z|. Since G(z) and �G(z) have
asymptotes s/z, they are suitably fitted using a [(r − 1)/r]
Padé approximant, i.e.,

Pr (z) =
∑r

i=1 aiz
i−1∑r

i=1 bizi−1 + zr
. (8)

The coefficient ar = s ∈ R+ is significant as it determines the
asymptotic behavior. The number of coefficients are in total
N = 2r and can be found as described below.

A. Plain Padé

In Beach’s algorithm [27], the N coefficients for the Padé
approximant Pr (z) of a complex function f (z) are found by
selecting N points zi ∈ C where f (z) is known and requiring
Pr (zi) = f (zi). This results in inverting an N × N matrix. For
the sake of simplicity, let us call this approach “plain Padé.”

B. Least-squares Padé

Using the same number of unknown coefficients as fitting
points may lead to overfitting and can give unstable continua-
tions with spurious or even unphysical spectra, e.g., negative
intensities. Hence, it may be more useful to have the number of
input points M and the number of coefficients N independent
under the condition N � M , as was also suggested by the
authors in Ref. [31]. Requiring Pr (zi) = f (zi) for M points,

with N � M , yields a LS matrix equation

Kv = y, (9)

where

v =
[

a
b

]
=

⎡
⎢⎢⎢⎢⎢⎢⎢⎣

a1
...
ar

b1
...
br

⎤
⎥⎥⎥⎥⎥⎥⎥⎦

, y =

⎡
⎢⎢⎢⎣

zr
1f (z1)

zr
2f (z2)

...
zr
Mf (zM )

⎤
⎥⎥⎥⎦ (10)

and

K =

⎡
⎢⎢⎢⎢⎣

1 · · · zr−1
1 −f (z1) · · · −f (z1)zr−1

1

1 · · · zr−1
2 −f (z2) · · · −f (z2)zr−1

2
...

...
...

...
...

...

1 · · · zr−1
M −f (zM ) · · · −f (zM )zr−1

M

⎤
⎥⎥⎥⎥⎦.

(11)

C. Average Padé approximants

As mentioned in the introduction, for input data of high
precision, the performance of plain Padé is excellent. When the
precision is reduced, however, the quality of the continuation
quickly degrades, and shows a strong dependence on the
number N of coefficients and input points. A small N may
lead to an approximant with not enough poles to reproduce
the structure of the function f (z). A big N increases the
risk of spurious poles coming from imperfect zero-pole pairs,
leading to errors and unphysical features. Due to that the
zero-pole pairs arise from numerical noise and have therefore
a random distribution [29], we suggest performing the analytic
continuation for several N and then averaging the spectra in
contrast to just picking a single N value. Moreover, for the LS
Padé, a similar argument can be formulated for the number
of (independent) fitting points M . An average continuation is
now defined by the interval of coefficients N and the interval
of input points M , as well as by the way the input points
are picked. We use subsequent Matsubara points starting at
ωn0 (see Fig. 1 for explanation of n0), even though other
distributions are possible, such as a logarithmic one. We
can now identify a single continuation with the values of
{n0,N,M}, which we label with the configuration subscript c.
The Padé coefficients of c are labeled as vc and its spectrum as
ρc(ω) = −1/π Im[P (c)(ω + iδ)]. We now have to decide how
to vary the independent coefficients {n0,N,M}. For simplicity
we choose to use the following sets:

n0 ∈ {
n0min :n0step :n0max

}
, (12)

M ∈ {Mmin:Mstep:Mmax}, (13)

N ∈ {Nmin:Nstep:min(Nmax,M)}, (14)

where for example n0min :n0step :n0max indicates n0min ,n0min +
n0step , . . . ,n0max . Once we have computed the analytic contin-
uations for all the parameters defined above, we can take a
weighted average by summing over all configurations c, with
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weight wc,

ρ(ω) = 1∑
c wc

∑
c

wcρc(ω). (15)

We have also considered averaging the Padé approximant
coefficients, instead of the spectra, for configurations with
the same N , and then averaging the spectra from different N .
However this turned out to give worse results and will not be
discussed further in this article.

The next step is to specify the averaging weight distribu-
tion wc. A necessary condition we apply to all considered
distributions is the absence of unphysical configurations. A
configuration c is considered unphysical if ρc(ω) < 0 for some
ω. With this premise, we analyze three possible choices of
distributions.

1. Average diagonal Padé

The distribution wD
c includes only physical configurations

with N = M , i.e., wD
c = δN,M for physical configurations

and wD
c = 0 for unphysical configurations. The superscript

D refers to the use of only diagonal configurations for which
N = M .

2. Average LS Padé

The distribution wLS
c includes all physical LS configura-

tions (including those where N = M), hence wLS
c = 0 for

unphysical configurations and wLS
c = 1 otherwise.

3. Average similar LS Padé

The distribution wS
c includes a subset of all physical

continuations. Spurious structures may arise due to the finite
precision of the ill-conditioned matrix K which needs to be
inverted. Being randomly distributed, these spurious structures
can be eliminated by favoring spectra similar to each other. To
this aim we define a deviation value between a physical spectral
function from all the other physical ones:

	c =
∑
c′ 	=c

wLS
c′

∫ ∞

−∞
dω|ρc(ω) − ρc′ (ω)|. (16)

In order to filter out the best configurations, we introduce
two criteria. Two sets of configurations will be generated, one
for each fulfilled criterion, and we pick the intersection. One
criterion is to only include configurations with 	c smaller than
30% of the average deviation. The latter is given by

	̄ = 1∑
c wLS

c

∑
c

wLS
c 	c. (17)

The other criterion is to restrict the number of configurations
to be included to 51% of all the physical ones. This is done by
picking the ones with lowest 	c.

With the averaging weights, one can also calculate the
energy-resolved variation from the mean, with big variation
for a particular energy indicating instability and possibly
unresolved sharp features.

D. Enforcing symmetry

To improve the resulting continuation, it may be advan-
tageous to exploit the symmetry f (z∗) = f (z)∗ by including
negative Matsubara points, hence n0 < 1, in the fitting. If a
symmetric mesh is considered with equally many negative as
positive Matsubara points (n0 = −M/2 + 1), spurious poles
appear on the real axis, which results in a poor spectrum [14].
The more negative n0 gets, the more spurious peaks appear.
By averaging over several continuations many of the peaks
will be suppressed due to their random positions. This makes
it possible to have a more negative n0 value compared to a
nonaveraging approach. By using a span of different n0, the
averaging procedure determines how many continuations are
taken into account for each n0. Assigning higher weights to
continuations fulfilling the symmetry criterion Im[ar ] = 0, in
the spirit of Ref. [27], sometimes improves on the accuracy
even further, but this strategy has not been analyzed in the
present article.

IV. RESULTS AND DISCUSSION

A. Averaging methods

In this study, we performed analytic continuation for a
variety of functions. An interesting test for illustrating the
averaging methods described in Sec. III C is offered by the
self-energy of a Sm atom. This function is interesting for two
reasons. First of all, it is a rather demanding test for a Padé
approximant method, due to the presence of several narrow
peaks at close distance from each other, which are associated
with the atomic multiplets (see gray lines in Fig. 2). Second,
this Sm self-energy represents a realistic test case which may
arise in state-of-the-art computational problems. The present
function has been obtained by means of the electronic structure
code RSPt [34], when addressing a cluster of seven Sm
atoms in the Hubbard I approximation [32,35]. The Hubbard
I approximation can be used to calculate the Green’s function
on the Matsubara axis. However, it can also be applied directly
on the real axis which makes it possible to obtain a reference
term to judge the quality of the analytic continuation. Further
computational details about this test case are described in
Appendix A. The spectral functions are evaluated at a distance
δ = 0.01 Ry above the real axis. For the self-energy �, we
estimate �0 with �̃0 just before doing the continuations,
by fitting the asymptote of the real part to �̃0 + c/ω2

n. This
gives us approximately �G, which is suitably fitted by a
P [(r − 1)/r] Padé approximant described in Sec. III. More
sophisticated fittings of the asymptotic tail [36] have been
tested, and lead to similar results. The dependence of the Padé
performance on the quality of the asymptotic fitting is analyzed
separately in Appendix B.

The Sm self-energy is continued by using the different
averaging methods. The number of coefficients and input
points to use in the average are set to M ∈ {50:4:98} and N ∈
{50:4:min(98,M)}. The distributions of averaging weights and
input points tested are instead the following:

(1) plain Padé, wc = δM,70δN,M and n0 = 1;
(2) average diagonal Padé, wD

c and n0 = 1;
(3) average LS Padé, wLS

c and n0 = 1;
(4) average similar LS Padé, wS

c and n0 = 1;
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FIG. 2. Illustration of the different improvements done on plain Padé for a Sm atom, with relative noise of magnitude σ = 10−6 on the
Matsubara points. Description of the five obtained spectra (from left to right panel): Plain Padé, using N = M = 70,n0 = 1, and characterized
by unphysical features; Padé average with wD

c and n0 = 1; Padé average with wLS
c and n0 = 1; Padé average with wS

c and n0 = 1; Padé average
with wS

c and with mirror symmetry imposed by using n0 ∈ {−5:1:0}.

(5) average similar LS Padé with mirror symmetry, wS
c and

n0 ∈ {−5:1:0}.
The results of the analytic continuations for these five

different methods are shown in Fig. 2. The Matsubara self-
energy has relative noise of magnitude σ = 10−6 on every
Matsubara point. The dependence of the results on the noise
level magnitude will be discussed in the next subsection;
here we instead focus on the different averaging techniques.
The leftmost panel of Fig. 2 clearly illustrates that for this
noise magnitude plain Padé leads to an unphysical self-energy,
whose spectrum becomes negative at about −0.4 Ry. When
averages are considered, this pathology is cured. Already
with average diagonal Padé, i.e., by including only physical
configurations with N = M , the self-energy is acceptable,
as illustrated in the second panel (from the left) of Fig. 2.
In the third panel, one can see the effect of averaging over
more configurations with N � M . High-energy peaks are now
captured and the only significant deficiency is that the two
peaks just below the Fermi level (zero energy) are merged
into one. In the fourth panel, among physical configurations
those similar to each other are chosen. This does not change
the spectrum for this test function case but it often gives an
improvement versus the average LS Padé scheme if symmetry
is imposed, which is discussed and shown in Sec. IV B. The
distributions of configurations contributing to the averages for
the first four cases are visualized in Fig. 3. This figure shows
a few physical continuations but it shall be noted that this is
related to the particular test function as well as to the magnitude
and representation of the external noise. For a generic
function the number of physical continuations is typically
larger. Moreover, the number of physical continuations can
be increased by decreasing the steps Mstep and Nstep. As a
general consideration, it is not surprising that the plain Padé
often runs into problems since so many continuations are not
even physical. A final improvement to the spectral function is
obtained when using the average similar LS Padé together with
symmetry constraints. The rightmost panel of Fig. 2 shows that
this method gives an analytic continuation that is very close
to the exact result. The two-peak structure at −0.15 Ry is

finally resolved. The only noticeable differences are a certain
tendency to broaden peaks which are close to each other. This
broadening is not surprising and originates directly from the
averaging. Not all the continuations contributing to the average
are able to reproduce those peaks, and their inclusion results
in a broadening.

B. Stability with respect to the numerical noise

The overview presented above is illustrative of the improve-
ments due to the averaging in the Padé scheme. It is important
to analyze how these results depend on the numerical precision
used in the computation. It is well-known that Beach’s
algorithm performs well for high-precision problems [27]. A
fundamental question here is whether only the precision of the

unphysical
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FIG. 3. Illustration of configurations in (N,M) space with n0 = 1
for the self-energy of a Sm atom, with relative noise of magnitude
σ = 10−6 on Matsubara points. A black cross denotes an unphysical,
ρc < 0, continuation. A circular dot denotes a physical continuation,
ρc � 0, and the color denotes the deviation 	c.
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input Matsubara data matters or whether the internal numerics
of Padé also play a role, and to what extent.

We show the influence of the Matsubara precision by
illustrating how the analytic continuation of the Sm self-energy
presented in the previous subsection changes by adding
random noise of variable magnitude. For each Matsubara
point, both the real and imaginary parts of the self-energy
are multiplied with a factor (1 + ε), where ε is a normally
distributed random variable with zero mean and standard
deviation value σ . Although the quality of a continuation is
better judged by a close inspection of the resulting function
with respect to the exact result, this procedure is difficult to
follow for an assessment of a plethora of tests. To avoid this
problem we follow Beach’s strategy and devise a measure of
the error performed on the spectral function:

E =
∫ ∞
−∞ dω|ρexact(ω) − ρ(ω)|∫ ∞

−∞ dω|ρexact(ω)| . (18)

The integration bounds are of course limited in computations
and were chosen as −1 Ry and +1 Ry, unless differently
specified. To check how the error changes depending on
noise representation, both mean 〈E〉 and σE = 〈(E − 〈E〉)2〉
are calculated using 10 different seeds for random number
generation.

In the top panel of Fig. 4 we report 〈E〉 and σE for the
four different methods. Average diagonal Padé, average LS

0.2

0.3

0.5

1

0.2

0.3

0.5

1

10−14 10−12 10−10 10−8 10−6 10−4 10−2

E

N = M = 70

wD
c

wLS
c

wS
c

E

σ

FIG. 4. Average error 〈E〉 versus standard deviation σ of the
numerical noise. The error deviation σE (see main text) is represented
as error bars. The five circles in the figure indicate those continuations
corresponding to the spectra reported in Fig. 2. Top panel: Analytic
continuations performed with n0 = 1. Bottom panel: Analytic con-
tinuations performed with n0 ∈ {−5:1:0}, except for plain Padé in red
where n0 = −2 is used.

Padé, and average similar LS Padé are considered by using
the same setup as above but keeping n0 = 1 for all of them.
For plain Padé we use N = M = 70, which is representative
of a typical calculation. The circles in Fig. 4 indicate the
errors 〈E〉 associated with the spectra reported in Fig. 2.
This may be useful to understand how the errors quantify
different agreements with the exact spectral function. The
data reported in the top panel of Fig. 4 illustrate how all
the continuations using averaging lead to improved results
over a wide range of noise magnitudes. Among the different
averages, the schemes based on the LS minimization perform
better, but the improvements are minor. In the bottom panel
of Fig. 4 we report analogous data, but using n0 ∈ {−5:1:0}
for all methods, except for the plain Padé where n0 = −2 is
used. Three points become evident. First of all, introducing
this small number of negative frequencies leads to a great
improvement of the continuations for noise of all magnitudes
smaller than σ = 10−4. Second, the improvements due to this
symmetrization are much larger for the Padé schemes based
on averages, which again emphasizes the limitations of the
original Padé formulation. Third, the curves for all different
Padé schemes based on averages exhibit some sorts of plateaus
when reducing the amount of noise. These are most likely due
to the resolving power of the algorithms and will be analyzed
separately in Sec. VI.

It is also instructing to look at the number of configurations
included in wD

c ,wLS
c , and wS

c . These, resolved for each n0,
are reported in Table I for a single noise representation
of magnitude σ = 10−6. Notice that in our representation,
n0 = 0 corresponds to including the first negative Matsubara
frequency, n0 = −1 corresponds to including also the second
one, and so on. Interestingly, the three averaging methods give
no solutions for n0 = 0, although this is not a general feature of
the method but specifically related to this function and noise.
By using a lower n0, the number of physical configurations
increases. In principle, however, there is a nontrivial relation
between physical configurations and n0. For instance, we can
see from Table I that the averaging for wD

c picks up mostly
configurations with n0 = −3 and n0 = −5.

Similar tests as those reported in Fig. 2 have been performed
for several other functions (not shown) and one can in general
conclude that wS

c performs better than wLS
c which performs

better than wD
c . This hierarchy is also seen in Fig. 4, although

differences are smaller than compared to plain Padé. Finally

TABLE I. Number of configurations contributing in averages,
resolved for each n0. Note that wS

c is determined by comparing
separate sets of configurations with each other. In this case, all the
configurations arising from n0 ∈ {−5:1:0} are compared with each
other. Configurations with n0 = 1 are instead compared separately
with each other. For each n0, 91 configurations are in total considered
and 13 configurations on the diagonal. The numbers in the rightmost
column can be counted from Fig. 3. The analysis is for a self-energy
of a Sm atom, with σ = 10−6 noise added on the Matsubara points.

n0 = −5 −4 −3 −2 −1 0 1

Number of wD
c > 0 13 8 11 3 1 0 2

Number of wLS
c > 0 91 75 81 44 3 0 8

Number of wS
c > 0 70 48 29 3 0 0 5
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notice, especially in the bottom panel of Fig. 4, the big σE for
plain Padé compared to the other schemes.

C. Precision of the numerical routines

As mentioned above, an important question concerns the
role of internal numerical precision of the Padé approximant
method. For plain Padé, i.e., Beach’s original algorithm, one
can estimate the needed precision for the inversion of the
matrix K by considering the ratio between the biggest and
smallest elements, which is approximately given by ξ =
(wnmax )r = {[2(M + n0 − 1) − 1]π/β}r . This yields [27,31]
about 2 log2(ξ ) binary digits, which in our setup varies between
73 and 256 depending on which N,M , and n0 are used. From
this one might expect 32 bits (single precision) and 64 bits
(double precision) to perform poorly, and perhaps one should
resort to 512 bits. To clarify these questions we perform several
tests using the method which offered the best results for the Sm
self-energy, i.e., average similar LS Padé with symmetry. We
interface our code to a multiple-precision arithmetic library
MPACK [37], using the standard routine CGESV. We explore
four different precisions of this routine: 64, 128, 256, and
1024 bits. The results of the tests are shown in Fig. 5. It is
clear that standard double precision is not enough to solve
the numerical problems arising in Padé, unless a very big
noise is present. Luckily, quadruple precision offers already
good results. Increasing the precision even more, one obtains
that 256 and 1024 bits give the same error, which means that
no further improvements can be obtained. It is important to
stress that these results depend on the choice of test function.
In particular, a faster convergence to the exact continuation
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FIG. 5. In the bottom panel, the real-axis error 〈E〉 as a function
of input noise σ is reported for various precisions of the numerical
routines (MPACK library). σE is represented by the error bars. The
circles indicate continuations whose spectra are plotted in the top
panel, using the same lines as in the bottom panel, and shifted with
an offset for a better visualization. Exact results are also reported
(lowest curve, in gray).

can be obtained for a more “curvy” function, without the
delta-like peaks which are typical for atomic self-energies
calculated with the Hubbard I approximation. Nevertheless,
Fig. 5 illustrates how significant improvements to the analytic
continuation can be obtained by using an increased precision
for the LS routines, even for big Matsubara noise. We therefore
use a modified LAPACK [38] routine ZGELS with a precision
of 128 bits for the LS minimization. In our tests LAPACK
performed better than MPACK, and 128-bit LAPACK routines
result in errors comparable to 256-bit MPACK. This most
likely arises from using different algorithms for the LS
problem. In light of these results the LAPACK routines with
128-bit precision were used for all the data presented in the
rest of the paper, as well as for those presented in the previous
sections.

V. COMPARISON WITH OTHER CONTINUATION
METHODS

In this section we compare the most accurate Padé method,
as described in the previous section, with other existing
methods for analytical continuation. The latter include our
in-house implementations of NNLS [17], NNT [16], and
MEM [7–14]. A schematic overview of these approaches is
given in Appendix C. The test functions presented in the
following were chosen to cover different types of analytic
structures, from the multiplet structures of a Sm atom to the
semicircular density of states of the noninteracting infinite-
dimensional Bethe lattice. Both Green’s functions and self-
energies are considered and the exact function is also known
on the real axis to evaluate the accuracy and stability of the
analytic continuation.

A. Sm atom in a cluster

The first test case is represented by the function used in
the previous sections, i.e., the atomic-like self-energy of one
of the sites of a cluster of seven Sm atoms calculated in the
Hubbard I approximation, as described in Appendix A. The
error as a function of noise for several methods is presented
on the bottom panel of Fig. 6(a). We note that the MEM
gives a smaller error than NNLS and NNT, for most noise
levels. Overall these three methods show a similar behavior
when varying the noise. The averaging Padé scheme gives
the most accurate results, except when σ = 10−4. Even in
this case, nevertheless, the difference between Padé and the
best-performing method is small. Finally, we note that none
of the tested methods converge to the exact spectrum when
decreasing noise up to the native input precision, and one
can still observe a plateau in 〈E〉, as we emphasize in the
section above. This confirms that this self-energy, with spiky
features, is a difficult case for analytic continuation. The
biggest contribution to the real-axis error for the two spectra in
the top panel of Fig. 6(a) originates from the underestimation of
the peak heights for the three peaks closest to the Fermi-energy,
which is clearly seen from the middle panel of Fig. 6(a).

B. Pr atom in the bulk

The second test case is given by the self-energy of a Pr
atom, as obtained from LDA+DMFT simulations of bulk fcc
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FIG. 6. Comparison of the Padé scheme with three other well-known methods for analytic continuation. In the bottom panels, the real-axis
error 〈E〉 as a function of the Matsubara noise σ is shown. The errors bars represent σE . The circles indicate continuations whose spectra are
plotted in the top panels. Spectra shifted with an offset for a better visualization. Exact results are also reported (lowest curves, in gray). In the
middle panels the energy-resolved errors of the spectra in the top panels with respect to the exact result are reported.

Pr in the Hubbard I approximation (see also Appendix A). The
error as a function of noise for several methods is illustrated
on the bottom panel of Fig. 6(b). As for Sm, we again see
that the Padé scheme outperforms the other methods for the
majority of noise levels. For noise where σ is between 10−5

and 10−8 the MEM shows a comparable agreement with
the exact results. For big noise, it is very surprising that
Padé performs better than the MEM. However, other tested
self-energies based on the Hubbard I approximation, which
are not shown in this article, also show the same behavior.
A significant difference between the left and right bottom
panels of Fig. 6 is that for Pr no error plateau is observed
for the Padé scheme, when decreasing noise. As explained
in Sec. VI, this is probably related to the analytic structure
of the test function, i.e., the distribution of delta-like peaks
within the considered energy range. From the upper and
middle panel of Fig. 6(b), one can see that the advantage of
the averaging Padé scheme with respect to other methods is
that, for comparable errors, the features it resolves are better
captured, such as the height and width of the main peak. This
gives a better agreement with the exact continuation, even if
more peaks are actually detected by other methods than by
Padé.

C. Hubbard model on the Bethe lattice

An interesting test function is the noninteracting Green’s
function of the Hubbard model on the Bethe-lattice with
infinite nearest neighbors [3]. This function has a smooth
semicircular shape, which makes it much different from the
other functions considered so far. The error as a function
of noise for β = 100 Ry−1 is shown in Fig. 7 for several
methods. For the Padé scheme, we see a stable monotonic
decrease of 〈E〉 as σ is decreased. Even for big noise the error
remains relatively small as a few spurious oscillations arise in
the spectral function. The performance of the other methods
varies greatly. The curve for the MEM shows no improvements
for σ smaller than 10−8, due to tiny oscillations around the
exact function. We stress here that the MEM is known to have
problems in describing sharp band edges far from the Fermi
energy. The spectral function for NNT is also characterized by
small spurious oscillations (see top panel of Fig. 7), but they
disappear with decreasing σ . The NNLS completely fails (at
least in our implementation) in describing the present spectral
function as many spurious peaks arise on the contour of the
semicircle.

Another interesting observation from Fig. 7 is that n0 = 1
actually performs better than n0 ∈ {−5:1:0}. The latter gives
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FIG. 7. Comparing the Padé scheme with three other well-known
methods for the analytic continuation of the noninteracting Green’s
function of the Hubbard model on a Bethe lattice with infinite nearest
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of the Matsubara noise σ is shown. The error bars represent σE . The
circles indicate continuations whose spectra are plotted in the top
panel, using the same lines as in the bottom panel, and shifted with
an offset for a better visualization. Exact spectrum is also reported
(lowest curve, in gray).

more spurious features, which makes it less precise. We have
also obtained this result for some other test functions. This
trend we believe can be traced back to the presence of a
discontinuity of the function when going from positive to
negative Matsubara frequencies. If the function goes to zero as
iω goes to zero, like for the atomic self-energies of Sm and Pr,
then adding a small number of negative frequencies improves
the result significantly. However, if the function goes to a finite
value, like for the metallic Green’s function of the Bethe lattice,
then trying to describe the discontinuity in the imaginary part
at the real energy axis is detrimental to Padé. This qualitative
difference is not a problem for the Padé method, since the
asymptotic behavior for small frequencies is known from the
input Matsubara data, and one can decide beforehand whether
to include negative frequencies or not.

D. Haldane model for a nanoribbon

We also investigate a noninteracting Green’s function of an
edge atom of a nanoribbon, having a honeycomb lattice for
the Haldane model [39]. The spectral function contains many
Van Hove singularities which makes it a very challenging
test for analytic continuation. We use β = 100 in units of
mRy and a Hamiltonian hopping parameter ratio λ/t = 0.1.
In Fig. 8 real-axis errors 〈E〉 are shown for NNT, MEM, and
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FIG. 8. Comparing the Padé scheme with three other well-known
methods for the analytic continuation of the noninteracting Green’s
function of a nanoribbon. In the bottom panel, the real-axis error
〈E〉 as a function of the Matsubara noise σ is shown. The error bars
represent σE . The circles indicate continuations whose spectra are
plotted in the top panel, using the same lines as in the bottom panel.
Exact spectrum is also reported (in gray).

Padé. We see that Padé, NNT, and MEM reproduce the exact
low-energy spectrum successfully. The overall distribution of
spectral weight at higher energy is also captured. Resolving the
high-energy peaks requires data of higher precision than those
used here. NNLS creates a plethora of spurious peaks for all
noise levels and its real-axis error is therefore not shown. This
problem is related to the complicated structure of the exact
function but also reflects the general tendency of NNLS to
resolve a lot of features while leading to substantial errors on
the peak positions. This behavior is different from the present
Padé scheme. If the latter resolves the peak structure of a
function the positions are usually correct.

In the top panel of Fig. 8, we see that the Padé scheme
reproduces the exact function very well at low energy and also
the shoulders at ±0.8 mRy are captured. These are completely
missed by the other methods. Overall, we again observe that
the Padé scheme leads to the best results among the tested
methods. In light of the discussion at the end of Sec. V C, we
use n0 = 1 for this system, due to its metallic character.

VI. ALGORITHM RESOLVING POWER

From our previous analysis, it may be expected that
decreasing the noise on the input Matsubara data should
lead to continuous improvement of the analytical continuation
obtained with Padé. Nevertheless, the data reported in the
bottom panel of Fig. 4 as well as in Fig. 5 illustrate how
below a certain noise no further decrease of 〈E〉 is observed
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up to the native precision of the Matsubara data. This issue
is related to the nature of the analytical continuation problem.
The amount of information stored in the input data is not
enough to resolve high-energy features, even if one possesses
the perfect continuation scheme. In this context, the Sm atom
presented in the previous section is a particularly hard test,
since there are several high-energy satellites, like the double
peak at about −0.6 Ry seen in Fig. 2. The plateau in 〈E〉
can then be explained by the fact that the Padé approximant
method first manages to resolve all structures close to the Fermi
level, but then saturates until the data precision is high enough
to resolve also the high-energy structures. This unfortunately
does not happen in our test, see, e.g., Fig. 5, as the native
Matsubara data are limited to double precision. A similar
problem occurs for the Green’s function of the nanoribbon,
where none of the tested methods could resolve the series of
high-energy peaks. This discussion motivates us to analyze
the ability of Padé (and other methods) to resolve fine spectral
structures, by using a simple test function. The latter is a
Green’s function which consists of two poles on the real axis,
i.e.,

G(z) = 1/2

z − (ω0 + 	ω/2)
+ 1/2

z − (ω0 − 	ω/2)
. (19)

The spectrum is centered at ω0, while the two distinct peaks
are located at a distance 	ω from each other. This Green’s
function is first generated at Matsubara frequencies for an
inverse temperature β = 100 mRy−1. From the Matsubara
data G is continued to δ = 0.1 mRy above the real energy
axis, using Padé settings wS

c and n0 ∈ {−5:1:0}. Since we are
treating a Green’s function, no static part is subtracted from the
asymptote. We can then identify the maximal noise magnitude
σmax for which the two peaks can still be resolved. Success
in resolving the two peaks is defined as the Padé spectrum
having two maxima, in a majority of 10 noise representations.
In addition, the position of each maximum has to be within a
distance δ from the position of the exact peak. The maximum
allowed σmax for ω0 ∈ {1,2,4,6,8} is reported in the left panels
of Fig. 9, for two different distances 	ω. If the two peaks could
not be resolved for any noise level, no point is plotted. As
expected the accuracy of Padé decreases when ω0 increases,
and also when the peaks are closer to each other. It is also
interesting to analyze how the algorithm performs when other
spectral features are present. To this aim we add a pole centered
at zero energy and containing half of the total spectral weight;
see the right panels of Fig. 9. The resolving power of the
algorithm is slightly decreased, but the scaling with respect to
ω0 seems to be the same as for the original two-peak function.

Before comparing to the other methods, let us discuss
the scaling of the curves reported in Fig. 9. The monotonic
decrease of σmax as ω0 increases is expected and can be
understood by comparing G(z) with a single pole function:
1/(z − ω0) at z = iωn. Expanding the difference of them in
	ω one gets 	ω2/(iωn − ω0)3, where it is clear the two-peak
structure should be hard to resolve for a big ω0 or a small 	ω.
From Fig. 9 we conclude it is less than exponentially hard
for Padé to resolve a two-peak structure as a function of ω0.
Overall, the data reported in Fig. 9 offer a good quantitative
measure of the resolving power of the Padé scheme. When
considering pairs of peaks at different distance from zero
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FIG. 9. Left panel: Highest possible noise magnitude to resolve
the two-peak structure in Eq. (19) as a function of the center position
ω0. Results for the Padé scheme as well as NNLS, NNT, and MEM
are reported. Right panel: Same as left panel but for a function with
an additional peak at zero energy.

energy one can explain the real-axis error saturation as a
function of Matsubara precision observed in the previous
sections for the Padé algorithm.

The resolving power of the other methods shown in Fig. 9
also suffers from the ill-posed nature of the analytic contin-
uation. In addition, the saturation observed when decreasing
Matsubara noise also comes from real-axis discretization and
regularization constraints. In an overall comparison of the
methods, the performance in resolving the two-peak structure
is somehow the opposite to the performance for smooth curves;
see, e.g., Sec. V C. For the two-peak test function NNLS
performs best, MEM worst, and NNT and the Padé scheme are
in the middle. This confirms what is outlined in the previous
section, i.e., that NNLS resolves many more peaks than the
other methods, although at the price of a significant loss of
accuracy. Notice also how quickly the performance of MEM
degrades with respect to the increase of ω0. Smearing of
peaks by MEM is a well-known issue [20] and is here seen
when comparing with the other analytic continuation methods.
Finally, notice that only the Padé scheme was able to resolve
the peaks centered at ω0 = 6 mRy and separated by 	ω =
0.2 mRy.

VII. CONCLUSIONS

We have developed a Padé scheme to perform the analytic
continuation of Green’s functions and self-energies. We have
first decoupled the number of input Matsubara points and the
number of Padé coefficients in Beach’s algorithm. To improve
the stability and the accuracy we propose to average several
physical LS Padé approximants as well as to use numerical
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routines of higher precision than the Matsubara data have.
The averaging is shown to remove spurious features arising
due to the presence of imperfect zero-pole pairs, and high
numerical precision routines are shown to be crucial for
resolving spectrum features, even for noisy Matsubara data.
Enforcing mirror symmetry further improves the accuracy, for
test functions with small spectral weight at zero energy. The
joint usage of averaging physical LS continuations and mirror
symmetry is shown to perform better than other well-known
methods for analytic continuation, such as NNLS, NNT, and
MEM, for a variety of test functions. Even for noisy Matsubara
data, the Padé scheme is shown to give a better agreement with
exact results than other methods. The problem of unphysical
continuations, which is considered to be typical of Padé, is
here cured for all tested functions. The performance of our
algorithm in resolving close peaks at high energies is also high,
and inferior only to NNLS, among the investigated methods.
But for functions with smooth and several peaky features, the
Padé scheme gives higher accuracy than NNLS.

An accurate Padé scheme for analytic continuation presents
several advantages with respect to other methods. The Padé
method assumes an ansatz for the shape of the exact function
and does not depend on any further assumption, such as model
functions, normalization, regularization, or asymptote of the
Matsubara data. This makes it tolerant to systematic errors.
Moreover, spectral methods, such as MEM, need to discretize
the real axis and sometimes the attained spectrum is very
dependent on how this is done. This is not a problem for
the Padé method, where the function becomes known in the
whole complex plane and can just be evaluated on the real
energy window of interest. For the spectral methods, the energy
window has to be chosen with greater care, since one wants a
window which is small enough to have a dense mesh but big
enough to ensure the whole spectral weight is included. A too
small energy window does not only exclude spectral features
but also reduces spectral accuracy inside, since left-out features
have to be compensated.

The developed Padé scheme can find several applications in
computational condensed matter physics. In LDA+DMFT it
can be used to extract spectral functions when calculations are
performed on the Matsubara axis. Moreover, increasing appli-
cations of the exact diagonalization solver [40–43] demands
the development of new techniques to fit the hybridization
function more accurately. One way to do this is to fit the
function in the whole complex plane instead of using a
selected axis (real or imaginary). This may be useful for
codes working on the Matsubara axis, for which the exact
diagonalization fitting may be nontrivial [40,42]. Finally,
several implementations of LDA+DMFT include analytic
continuation in their computational schemes, such as the
KKR/EMTO implementations of Refs. [29,44,45]. A more
controlled formulation of Padé such as the one presented here
may lead to an improvement of the stability and the accuracy
of those codes.
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APPENDIX A: ATOMIC SELF-ENERGIES FOR Sm AND Pr

The self-energies of the Sm and Pr atoms used in the
main text were calculated using DMFT within the Hubbard
I approximation. In particular we used the RSPt code, where
DMFT is interfaced with the full-potential linear muffin-tin
orbital (FP-LMTO) method [34–36]. The aim of this appendix
is to illustrate the basic concepts behind the calculations and
also to present the computational details needed to reproduce
our test functions. For an extensive explanation of methods and
code, we redirect the reader to the aforementioned references.

In the Hubbard I approximation the many-body problem is
reduced to an atomic problem, whose Hamiltonian is

Ĥ =
∑
i,j

Ĥ at
i,j ĉ

†
i ĉj + 1

2

∑
i,j,k,l

Ui,j,k,l ĉ
†
i ĉ

†
j ĉl ĉk. (A1)

Here the indices i,j,k,l run over the correlated 4f orbitals,
and the operators ĉ and ĉ† are respectively the annihilation
and creation operators for those orbitals. The single-particle
atomic Hamiltonian matrix Ĥ at

i,j and the Coulomb repulsion
tensor Ui,j,k,l fully determine the problem to solve. We
assume the orbitals i to be atomic-like, whose angular part
corresponds to complex spherical harmonics Yl,m for l = 3.
In this representation, the Coulomb repulsion term is further
parametrized using the Slater integrals F 0, F 2, F 4, and F 6,
as explained in Ref. [4]. For simplicity let us consider the
chemical potential as being at zero energy.

Once the Hamiltonian in Eq. (A1) is given, we can solve
the atomic problem by direct diagonalization, which leads to
eigenvalues Eν and eigenvectors |ν〉. The Lehmann represen-
tation then gives the atomic interacting Green’s function:

Gi,j (z) = 1

Z

∑
ν1,ν2

〈ν1|ci |ν2〉〈ν2|c†j |ν1〉
z + (

Eν1 − Eν2

) (e−βEν1 + e−βEν2 ).

(A2)

From here, the self-energy can be obtained via inverse Dyson
equation

�i,j (z) = [
G−1

0 (z)
]
i,j

− [G−1(z)]i,j , (A3)

where the G0 is the noninteracting atomic Green’s function. In
this article, we focus on the trace of the self-energy, i.e.,

�(z) = Tr[�i,j (z)] =
∑

i

�i,i(z). (A4)

The input points z are chosen to be Matsubara frequencies for
β = 100 Ry−1. The analytic continuation to the real energy
axis is evaluated for a distance δ = 0.01 Ry.

The local Hamiltonians for a Sm atom in a cluster and a Pr
atom in the bulk on the basis of the 14 correlated 4f orbitals
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are respectively

Sm :Ĥ at
i,j =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

−2.187 0 0 0 0 0 0 0 0 0 0 0 0 0
0 −2.193 0 0 0 0 0 0.015 0 0 0 0 0 0
0 0 −2.200 0 0 0 0 0 0.019 0 0 0 0 0
0 0 0 −2.206 0 0 0 0 0 0.021 0 0 0 0
0 0 0 0 −2.212 0 0 0 0 0 0.021 0 0 0
0 0 0 0 0 −2.217 0 0 0 0 0 0.019 0 0
0 0 0 0 0 0 −2.223 0 0 0 0 0 0.015 0
0 0.015 0 0 0 0 0 −2.223 0 0 0 0 0 0
0 0 0.019 0 0 0 0 0 −2.217 0 0 0 0 0
0 0 0 0.021 0 0 0 0 0 −2.212 0 0 0 0
0 0 0 0 0.021 0 0 0 0 0 −2.206 0 0 0
0 0 0 0 0 0.019 0 0 0 0 0 −2.200 0 0
0 0 0 0 0 0 0.015 0 0 0 0 0 −2.193 0
0 0 0 0 0 0 0 0 0 0 0 0 0 −2.187

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

,

Pr :Ĥ at
i,j =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

−0.678 0 0 0 0 0 0 0 0 0 0 0 0 0
0 −0.683 0 0 0 0 0 0.010 0 0 0 0 0 0
0 0 −0.686 0 0 0 0 0 0.013 0 0 0 0 0
0 0 0 −0.691 0 0 0 0 0 0.014 0 0 0 0
0 0 0 0 −0.694 0 0 0 0 0 0.014 0 0 0
0 0 0 0 0 −0.699 0 0 0 0 0 0.013 0 0
0 0 0 0 0 0 −0.702 0 0 0 0 0 0.010 0
0 0.010 0 0 0 0 0 −0.702 0 0 0 0 0 0
0 0 0.013 0 0 0 0 0 −0.699 0 0 0 0 0
0 0 0 0.014 0 0 0 0 0 −0.694 0 0 0 0
0 0 0 0 0.014 0 0 0 0 0 −0.691 0 0 0
0 0 0 0 0 0.013 0 0 0 0 0 −0.686 0 0
0 0 0 0 0 0 0.010 0 0 0 0 0 −0.683 0
0 0 0 0 0 0 0 0 0 0 0 0 0 −0.678

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

.

The orbitals are ordered from m = −3 to m = 3 for minority
spin and then again for majority spin, for both rows and
columns. The Slater parameters for determining the Coulomb
tensor are instead

F0 = 0.441 Ry, F2 = 0.876 Ry,

F4 = 0.585 Ry, F6 = 0.433 Ry,

for Sm, and

F0 = 0.514 Ry, F2 = 0.745 Ry,

F4 = 0.488 Ry, F6 = 0.360 Ry,

for Pr. As a final remark, please consider that these two tests
should be intended as realistic examples but not as physical
solutions of given problems.

APPENDIX B: DEPENDENCE ON THE STATIC
SELF-ENERGY ASYMPTOTE

In this appendix we will investigate how sensitive the
different continuation methods are to a small static part in
the self-energy, which might arise from imprecise asymptotic
fitting. The self-energy can be decomposed as � = �0 + �G,
where �G(z) → 0 as |z| → ∞. All the considered continua-
tion methods work with �G and assume that it has the correct
asymptote. However, since we estimate �0 by fitting a constant
�̃0 to the noisy data, the function to continue may have a
small static part 	�0 = �0 − �̃0. Therefore, it is interesting
to test how sensitive the continuation methods are to a residual

static part. We perform this test for the self-energy of a Sm
atom, which is described extensively in the main text. We first
subtract the static part �0 from the raw data, then add a small
static part 	�0 and perform the analytic continuation. Finally
we calculate the real-axis error, by comparing to the exact
self-energy, which is reported in Fig. 10. It is clear that the
Padé algorithm is much less sensitive to a finite 	�0 than the

0.2

0.3

0.5

1.0

10−14 10−12 10−10 10−8 10−6 10−4 10−2

E

|ΔΣ0| [Ry]

NNLS
NNT
MEM

wS
c , n0 ∈ {−5:1:0}

FIG. 10. Real-axis error as a function of the residual static self-
energy 	�0. Both positive and negative 	�0 values are considered,
hence the two lines per method. The test is for the self-energy of a
Sm atom with double-precision Matsubara data.
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other methods. This is typical of the method and not only of
our particular Padé scheme. This tolerance to errors on the
asymptote is one of the reasons why the Padé scheme works
so well also for big noise magnitudes compared with the other
methods. Note that Green’s functions do not have a finite static
part, but this test may be relevant for them too, since systematic
errors in numerical routines (e.g., Fourier transforms) may
affect their asymptotic behavior.

APPENDIX C: OVERVIEW OF OTHER METHODS FOR
ANALYTIC CONTINUATION

In this appendix we provide a brief description of the other
methods for analytic continuation that are used in Sec. V. For a
more detailed description of all techniques mentioned here, we
redirect the reader to appropriate references. Note that in this
implementation we use standard double precision (64 bits). In
a few cases some continuations improved by increasing the
precision to quadruple (128 bits) but we have not investigated
this issue in detail, since it is too far from the scope of this
work.

1. Nonnegative least squares

Instead of fitting to input Matsubara data fn using a Padé
approximant, one can use the Hilbert transform, Eq. (4), to
calculate the unknown ρ(ω). By discretizing the real axis, the
integral in Eq. (4) becomes

fn =
N∑

j=1

wj

iωn − ωj

ρj , (C1)

where wj is an integration weight and ρj = ρ(ωj ). The
previous equation can be conveniently written as a matrix
equation of the form f = Kρ. By choosing M Matsubara
points, such that M � 2N , and by respecting the nonnegativity

of the spectral function, the task becomes solving the following
NNLS problem:

min
ρ�0

| f − Kρ|2. (C2)

A procedure to solve NNLS problems iteratively is described
extensively in Ref. [17].

2. Nonnegative Tikhonov

Ill-posed problems, such as analytic continuation, are often
tackled by introducing regularizations. The Tikhonov regular-
ization [46] is based on adding a minimization condition on ρ,
which results in transforming Eq. (C2) into

min
ρ�0

| f − Kρ|2 + |αρ|2 = min
ρ�0

| f̃ − K̃αρ|2. (C3)

For a fixed α this is simply a NNLS problem and a suitable α

can be determined by, e.g., the L-curve method [46].

3. Maximum entropy method

The MEM is the most widespread method for analytic
continuation [7–14]. Its success is due to the robustness
to Matsubara noise. The lack of information on the noisy
Matsubara data is counteracted by additional information
provided through a model function m. In the MEM the spectral
function is regularized by maximizing the entropy. It is a
Bayesian approach with a normal probability distribution as a
likelihood function and a priori distribution set by the Shannon
entropy. In the simplified case where the Matsubara data are
assumed to be uncorrelated and with equal precision, the
equation to solve can be formulated as

min
ρ�0

| f − Kρ|2 − αS[ρ], (C4)

where S is the entropy which is maximized for ρ = m.

[1] J. Bednorz and K. Müller, Z. Phys. B 64, 189 (1986).
[2] G. Jonker and J. V. Santen, Physica 16, 337 (1950).
[3] A. Georges, G. Kotliar, W. Krauth, and M. J. Rozenberg, Rev.

Mod. Phys. 68, 13 (1996).
[4] G. Kotliar, S. Y. Savrasov, K. Haule, V. S. Oudovenko, O.

Parcollet, and C. A. Marianetti, Rev. Mod. Phys. 78, 865 (2006).
[5] F. Aryasetiawan and O. Gunnarsson, Rep. Prog. Phys. 61, 237

(1998).
[6] C. Titchmarsh, The Theory of Functions, Fundamental Theories

of Physics (Oxford University Press, London, 1939).
[7] R. N. Silver, D. S. Sivia, and J. E. Gubernatis, Phys. Rev. B 41,

2380 (1990).
[8] M. Jarrell and J. Gubernatis, Phys. Rep. 269, 133 (1996).
[9] R. Bryan, Eur. Biophys. J. 18, 165 (1990).

[10] J. E. Gubernatis, M. Jarrell, R. N. Silver, and D. S. Sivia, Phys.
Rev. B 44, 6011 (1991).

[11] S. Fuchs, T. Pruschke, and M. Jarrell, Phys. Rev. E 81, 056701
(2010).

[12] A. Dirks, P. Werner, M. Jarrell, and T. Pruschke, Phys. Rev. E
82, 026701 (2010).

[13] O. Gunnarsson, M. W. Haverkort, and G. Sangiovanni, Phys.
Rev. B 81, 155107 (2010).

[14] O. Gunnarsson, M. W. Haverkort, and G. Sangiovanni, Phys.
Rev. B 82, 165125 (2010).

[15] C. E. Creffield, E. G. Klepfish, E. R. Pike, and S. Sarkar, Phys.
Rev. Lett. 75, 517 (1995).

[16] V. S. A. Tikhonov, A. Goncharsky, and A. Yagola, Numerical
Methods for the Solution of Ill-Posed Problems (Springer-
Science+Business Media, B.V., Moscow, 1995).

[17] C. L. Lawson and R. J. Hanson, Solving Least Squares Problems
(Society for Industrial and Applied Mathematics, Philadelphia,
1995).

[18] N. Prokofev and B. Svistunov, JETP Lett. 97, 649 (2013).
[19] I. S. Krivenko and A. N. Rubtsov, arXiv:cond-mat/0612233.
[20] K. Vafayi and O. Gunnarsson, Phys. Rev. B 76, 035115 (2007).
[21] A. W. Sandvik, Phys. Rev. B 57, 10287 (1998).
[22] A. S. Mishchenko, N. V. Prokof’ev, A. Sakamoto, and B. V.

Svistunov, Phys. Rev. B 62, 6317 (2000).
[23] P. Staar, B. Ydens, A. Kozhevnikov, J.-P. Locquet, and T.

Schulthess, Phys. Rev. B 89, 245114 (2014).

075104-13

http://dx.doi.org/10.1007/BF01303701
http://dx.doi.org/10.1007/BF01303701
http://dx.doi.org/10.1007/BF01303701
http://dx.doi.org/10.1007/BF01303701
http://dx.doi.org/10.1016/0031-8914(50)90033-4
http://dx.doi.org/10.1016/0031-8914(50)90033-4
http://dx.doi.org/10.1016/0031-8914(50)90033-4
http://dx.doi.org/10.1016/0031-8914(50)90033-4
http://dx.doi.org/10.1103/RevModPhys.68.13
http://dx.doi.org/10.1103/RevModPhys.68.13
http://dx.doi.org/10.1103/RevModPhys.68.13
http://dx.doi.org/10.1103/RevModPhys.68.13
http://dx.doi.org/10.1103/RevModPhys.78.865
http://dx.doi.org/10.1103/RevModPhys.78.865
http://dx.doi.org/10.1103/RevModPhys.78.865
http://dx.doi.org/10.1103/RevModPhys.78.865
http://dx.doi.org/10.1088/0034-4885/61/3/002
http://dx.doi.org/10.1088/0034-4885/61/3/002
http://dx.doi.org/10.1088/0034-4885/61/3/002
http://dx.doi.org/10.1088/0034-4885/61/3/002
http://dx.doi.org/10.1103/PhysRevB.41.2380
http://dx.doi.org/10.1103/PhysRevB.41.2380
http://dx.doi.org/10.1103/PhysRevB.41.2380
http://dx.doi.org/10.1103/PhysRevB.41.2380
http://dx.doi.org/10.1016/0370-1573(95)00074-7
http://dx.doi.org/10.1016/0370-1573(95)00074-7
http://dx.doi.org/10.1016/0370-1573(95)00074-7
http://dx.doi.org/10.1016/0370-1573(95)00074-7
http://dx.doi.org/10.1007/BF02427376
http://dx.doi.org/10.1007/BF02427376
http://dx.doi.org/10.1007/BF02427376
http://dx.doi.org/10.1007/BF02427376
http://dx.doi.org/10.1103/PhysRevB.44.6011
http://dx.doi.org/10.1103/PhysRevB.44.6011
http://dx.doi.org/10.1103/PhysRevB.44.6011
http://dx.doi.org/10.1103/PhysRevB.44.6011
http://dx.doi.org/10.1103/PhysRevE.81.056701
http://dx.doi.org/10.1103/PhysRevE.81.056701
http://dx.doi.org/10.1103/PhysRevE.81.056701
http://dx.doi.org/10.1103/PhysRevE.81.056701
http://dx.doi.org/10.1103/PhysRevE.82.026701
http://dx.doi.org/10.1103/PhysRevE.82.026701
http://dx.doi.org/10.1103/PhysRevE.82.026701
http://dx.doi.org/10.1103/PhysRevE.82.026701
http://dx.doi.org/10.1103/PhysRevB.81.155107
http://dx.doi.org/10.1103/PhysRevB.81.155107
http://dx.doi.org/10.1103/PhysRevB.81.155107
http://dx.doi.org/10.1103/PhysRevB.81.155107
http://dx.doi.org/10.1103/PhysRevB.82.165125
http://dx.doi.org/10.1103/PhysRevB.82.165125
http://dx.doi.org/10.1103/PhysRevB.82.165125
http://dx.doi.org/10.1103/PhysRevB.82.165125
http://dx.doi.org/10.1103/PhysRevLett.75.517
http://dx.doi.org/10.1103/PhysRevLett.75.517
http://dx.doi.org/10.1103/PhysRevLett.75.517
http://dx.doi.org/10.1103/PhysRevLett.75.517
http://dx.doi.org/10.1134/S002136401311009X
http://dx.doi.org/10.1134/S002136401311009X
http://dx.doi.org/10.1134/S002136401311009X
http://dx.doi.org/10.1134/S002136401311009X
http://arxiv.org/abs/arXiv:cond-mat/0612233
http://dx.doi.org/10.1103/PhysRevB.76.035115
http://dx.doi.org/10.1103/PhysRevB.76.035115
http://dx.doi.org/10.1103/PhysRevB.76.035115
http://dx.doi.org/10.1103/PhysRevB.76.035115
http://dx.doi.org/10.1103/PhysRevB.57.10287
http://dx.doi.org/10.1103/PhysRevB.57.10287
http://dx.doi.org/10.1103/PhysRevB.57.10287
http://dx.doi.org/10.1103/PhysRevB.57.10287
http://dx.doi.org/10.1103/PhysRevB.62.6317
http://dx.doi.org/10.1103/PhysRevB.62.6317
http://dx.doi.org/10.1103/PhysRevB.62.6317
http://dx.doi.org/10.1103/PhysRevB.62.6317
http://dx.doi.org/10.1103/PhysRevB.89.245114
http://dx.doi.org/10.1103/PhysRevB.89.245114
http://dx.doi.org/10.1103/PhysRevB.89.245114
http://dx.doi.org/10.1103/PhysRevB.89.245114
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