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Spin-driven nematic order that has been proposed for iron-based superconductors is generated by pronounced
fluctuations of a striped density wave state. On the other hand it is a well known fact that the nematic order
parameter couples bilinearly to the strain, which suppresses the fluctuations of the nematic order parameter
itself and lowers the upper critical dimension, yielding mean-field behavior of the nematic degrees of freedom
for d > 2. This is consistent with the measured Curie-Weiss behavior of the nematic susceptibility. Here we
reconcile this apparent contradiction between pronounced magnetic fluctuations and mean-field behavior of the
nematic degrees of freedom. We show, by developing a ϕ4 theory for the nematic degrees of freedom, that
the coupling to elastic strain does not suppress the fluctuations that cause the nematic order in the first place
(magnetic fluctuations), yet it does transform the Ising-nematic transition into a mean-field transition. In addition,
we demonstrate that the mean-field behavior occurs in the entire temperature regime where a softening of the
shear modulus is observed.
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I. INTRODUCTION

In many iron-based superconductors, a structural phase
transition that sets at in at the temperature Ts , from the
high-temperature tetragonal phase into an orthorhombic phase,
has been shown to closely track the magnetic transition at
Tm [1–4], i.e., Ts � Tm. In 1111 materials the structural and
magnetic phase transitions are split and of second order. On the
other hand, in the 122 family the transitions are either joint and
of first order or split and second order. In Ba(Fe1−xCox)2As2,
where the transitions are split, the lower, magnetic transition
is weakly first order for x < 0.02 [1,2].

From elastoresistance measurements [5] there is very strong
evidence that the nematic state is driven by electronic excita-
tions. This is fully consistent with the comparatively large
resistivity-anisotropy measurements [6,7] with the softening
of the elastic modulus over a wide temperature range [8–12],
with strong signatures in the electronic Raman response in the
normal [10,13–19] and superconducting [20] states, and with
the observation of anisotropies in various additional observ-
ables, such as thermopower [21], optical conductivity [22,23],
torque magnetometry [3], and in STM measurements [24] and
NMR measurements [25].

To explain the origin of the nematic phase in pnictides,
an orbital fluctuation based scenario [26–31] and a theory
for spin-driven nematicity [4,32,33] have been proposed. In
the latter, spin-fluctuations, associated with striped magnetic
order, can generate the emergent electronic nematic order at
temperatures above the Neel temperature [4,32–35]. Nematic
degrees of freedom couple to the lattice [9,36,37] and induce
the structural phase transition to the orthorhombic phase.
Scaling of the shear modulus and the NMR spin-lattice
relaxation rate for 122 systems, discussed in Ref. [8], strongly
support the spin-driven nematicity scenario. Here the presence
of the magnetic fluctuations associated with the stripe density
wave phase proves crucial for stabilizing the nematic phase.
On the other hand, nematic order was also observed in FeSe,
a material where spin-magnetic order is only generated via
application of external pressure, while a structural transition

along with a softening of the lattice occurs at ambient pressure
in a fashion very similar to the 122 iron pictides [38–40].
This led to the suggestion that this system might be driven
by orbital fluctuations. Alternatively, given the observed small
Fermi surfaces of FeSe [41,42] almost degenerate imaginary
charge density and spin density waves are expected [43–46].
Therefore, a mechanism based on fluctuating and possibly
ordered striped imaginary charge density waves was proposed
that is conceptually very similar to the striped spin-driven
mechanism [43].

In Ref. [32] the phase diagram of striped density wave
induced nematicity was investigated. At a finite temperature
phase transition, it was found that preemptive nematic order
emerges via split phase transitions for some regime of the
parameter space of the model, while in other cases a joint first-
order transition occurs, all in good agreement with experiment.
Clearly, fluctuations were crucial to derive this rich phase
diagram.

On the other hand: the behavior near the nematic transition
seems to display generic mean-field behavior, including the
Curie-Weiss behavior of nematic susceptibility [12,47,48].
In addition, it was noted already in the 1970s [49–52] that
fluctuations of an order parameter that couples linearly to an
elastic deformation are suppressed. This is the case for the
nematic order parameter, which couples linearly to orthorom-
bic distortion via the nemato-elastic coupling. This can lead
to mean-field behavior, instead of d = 2 or d = 3 Ising-like
behavior that is expected in the absence of the coupling to
strain [49–51]. In the context of the iron-based systems, this
effect was already stressed by Cano et al. [37] and in Ref. [53],
where quantum critical elasticity was investigated. Given these
observations and the fact that fluctuations were essential for
the derivation of the aforementioned phase diagram, it seems
worthwhile exploring whether the strain-coupling-induced
mean-field behavior of the nematic degrees of freedom can
change the conclusions of Ref. [32].

To address this problem, we start from a model of a spin-
driven nematic phase, similar to that of Ref. [32], and include
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FIG. 1. The regime in which the mean-field behavior of the
nematic degrees of freedom can be expected (shaded light green
region). The figure shows the softening of the elastic modulus cs ,
Eq. (49), denoted by a solid blue line, as one approaches the structural
transition from the high-temperature tetragonal phase. TMF indicates
the characteristic temperature where mean-field behavior of nematic
degrees of freedom sets in upon approaching the transition at Ts .
The mean-field regime coincides with the regime of strong elastic
modulus renormalization (see the main text for the explanation).

the coupling to elastic strain. We then determine an effective
order parameter theory of the nematic order parameter in the
presence of strain. Integrating out strain results in the appear-
ance of the nonanalytic terms in the propagator for nematic
fluctuations, that are direction dependent, similar to what was
found in Refs. [54–56], where spin models in the presence of
dipolar interactions were examined. These nonanalytic terms
lead to mean-field behavior of the nematic transition and are
shown to give rise to a Curie-Weiss susceptibility over a sizable
temperature range. Yet the strain coupling does not affect the
very existence of nematic order and of the split structural and
magnetic transition temperatures. Thus, elastic strain changes
the universality class of the nematic phase transition (not of
the magnetic transition) but does not destroy the nematic phase
itself. In addition, we find that the mean-field behavior occurs
in the entire temperature regime where a softening of the shear
modulus is observed; see Fig 1. This is one of our principal
results.

Another alternative explanation for Curie-Weiss behavior
due to nematic quantum criticality was recently proposed in
Ref. [57].

The outline of the paper is as follows. In Sec. II we briefly
introduce the model for spin-driven nematicity. In Sec. III
we develop a ϕ4 theory for the nematic fluctuations and esti-
mate the Ginzburg regime, showing that nematic fluctuations
are expected to be large in the absence of the coupling to the
lattice. In Sec. III B we include the nemato-elastic coupling
and analyze the nature of the nematic transition using a
renormalization group approach. We show that the coupling to
the lattice introduces nonanalytic direction-dependent terms
in the propagator for nematic-fluctuations. This results in
softening only along certain directions in the momentum
space. As a consequence, the upper critical dimension becomes
lower compared to the case without coupling to the strain. We
find duc = 2 and the nematic transition becomes mean-field
for d > 2. Finally, In Sec. IV we summarize our results.

FIG. 2. Band structure: The model consists of the central hole-
like � band and the electron-like X and Y bands, shifted by QX =
(π/a,0) and QY = (0,π/a), respectively.

II. THE MODEL

In what follows, we will work with a 1-Fe unit cell with
lattice constant a. We begin by considering a continuum model
valid near the second-order phase transition, with diverging
correlation length that includes coupled magnetic and elastic
degrees of freedom characterized by the action

S = S� + Sph + Sc, (1)

with partition function

Z =
∫

DuD(�x�y)e−S. (2)

Here, S� represents the the action of the magnetic degrees
of freedom, Sph the phononic actions, and Sc the coupling
between magnetic degrees of freedom and phonons.

In order to develop a long-wavelength theory for the
magnetic degrees of freedom, it is sufficient to analyze
the symmetry of the ordered state. The iron-based systems
are characterized by magnetic order with ordering wave
vectors Qx = πex/a and Qy = πey/a; see Fig. 2. Let us
denote spin fluctuations associated with Qx and Qy ordering
wave vectors �x and �y, respectively. Both order parameters
individually describe collinear order, i.e., they are formed
out of the manifold O(3)/O(2). Naively, one would expect
for the total system a manifold O(3)/O(2) × O(3)/O(2) for
the order parameters. However, either quantum or thermal
fluctuations (in the case of localized spins) or simple mean-
field interactions (in the case of itinerant spins) bring these
down to O(3)/O(2) × Z2. Then the most general expansion
of the magnetic action is (see also Refs. [18,32])

S� =
∫

x

[
r0

(
�2

x + �2
y

) + (∇�x)2 + (∇�y)2]

+
∫

x

[
u

2N

(
�2

x + �2
y

)2 − g

2N

(
�2

x − �2
y

)2
]
. (3)

Here,
∫
x
· · · = ∫

ddx · · · . Similarly, we will use below∫
q
· · · = ∫

ddq

(2π)d
· · · for integrations over momenta. The pa-

rameter r0 tunes the distance from the magnetic phase
transition, and u and g denote the magnetic and nematic
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coupling constants respectively. In a model based on itinerant
electrons these constants can be expressed as an integral over
certain combinations of Green’s functions across different
bands [18,32]. Here we do not distinguish between localized or
itinerant magnetism and merely use the above phenomenolog-
ical form for the magnetic energy that is basically dictated
by symmetry as long as g > 0. The results that we will
subsequently obtain are valid regardless of the detailed micro-
scopic nature of magnetism and must be the subset of a more
complicated analysis of, e.g., a multi-orbital Hubbard model.
One of the efficient approaches to spin-driven nematicity
is the large-N expansion, where N denotes the number of
components of the vectors �x,y . The validity of the large-N
approach for the present model follows from the comparison of
numerical investigations of the J1 − J2 Heisenberg model [58]
and from an analysis of the ε = 4 − d expansion, formally
valid for all N in Ref. [32]. In our analysis we are using a
continuum model. For an anisotropic system of moderately
or weakly coupled layers, it is more appropriate to avoid the
continuum limit in the third dimension. In Ref. [32] such a
model was analyzed where q2 → q2

x + q2
y + Az(1 − cos qz),

where qx,y are still in the continuum limit while qz goes
from −π to π . It was then shown that such an anisotropic
three-dimensional system behaves very similarly to a model
in the continuum limit, yet with dimension d intermediate
between 2 and 3, i.e., 2 < d < 3. In what follows we will
pursue this continuum approach with variable dimensionality.

The static phonon part of the action for the acoustic modes
in the B1g channel is given as

Sph = N

∫
q

cs(q)(qxux − qyuy)2. (4)

Here u = (ux,uy) is the phonon displacement field, cs(q) is the
sound velocity, and q momentum along soft direction. cs(q) is
determined by the elastic constants of the material. It holds for
a tetragonal symmetry,

cs(q) = c0
s + μ1 cos2 θ + μ2 sin4 θ sin2 (2φ), (5)

where c0
s = c11 − c12 is the bare value of the sound velocity,

and μ1 and μ2 are expressed in terms of the combinations of
elastic constants of the system (for details see the Appendix A).
The coefficient N in Sph was introduced to generate a consistent
expansion in large N .

Finally, the key magneto-elastic coupling is

Sc = λel

∫
x

(
�2

x − �2
y

)
(∂xux − ∂yuy), (6)

where λel is the magneto-elastic coupling constant and ∂xux −
∂yuy the orthorhombic distortion.

III. COLLECTIVE NEMATIC FLUCTUATIONS AND ϕ4

THEORY OF NEMATIC DEGREES OF FREEDOM

In order to develop a theory for collective nematic degrees
of freedom, we first perform a Hubbard-Stratonovich transfor-
mation of the two quartic terms in the magnetic part S� of the

action Eq. (3) to obtain

S�[ϕ,λ] = 1

2

∫
x

(
N

u
λ2 + N

g
ϕ2

)

+
∫

x

(
�x

�y

)T

G−1[λ,ϕ]

(
�x

�y

)
, (7)

where

G−1[λ,ϕ] =
(

r0 + iλ + ϕ − ∇2 0

0 r0 + iλ − ϕ − ∇2

)
. (8)

We shift ϕ → ϕ + λel(∂xux − ∂yuy) and integrate out the
magnetic modes. It follows

S = N

2

∫
x

(
1

u
λ2 + 1

g
ϕ2

)
+ N

∫
q

cs(q)(qxux − qyuy)2

− λelN

g

∫
x

ϕ(∂xux − ∂yuy) + N

2
tr lnG−1[λ,ϕ], (9)

where cs(q) is given by Eq. (5) with cs → cs + λ2
el/g. Finally,

we integrate over the phonon degrees of freedom, which leads
to

S = N

2

∫
q

[
1

u
λqλ−q +

(
1

g
+ λ2

el

cs(q)

)
ϕqϕ−q

]

+ N

2
tr lnG−1[λ,ϕ]. (10)

This action is an exact reformulation of our initial model. It is
the starting point of our subsequent analysis.

We concentrate on finite-temperature transitions and, for
the moment, focus on the tetragonal phase, where the nematic
order parameter is zero. We write

λ(x) = −iψ0 + η(x), (11)

where ψ0 is determined by the saddle-point equation that
becomes exact at leading order in 1/N . Nonzero ψ0 amounts
to a fluctuation renormalization of the magnetic correlation
length. η(x) denotes the fluctuating part of λ(x). Similarly, for
the Green’s function matrix we can write

G−1[λ,ϕ] = G−1
0 − V[η,ϕ], (12)

where

G−1
0 = (r − ∇2)I, (13)

with r = r0 + ψ0, and

V[η,ϕ] = −
(

iη + ϕ 0

0 iη − ϕ

)
. (14)

We expand:

tr lnG−1[λ,ϕ] = tr lnG−1
0 + tr ln(1 − G0V)

≈ tr lnG−1
0 − 1

2 tr(G0V)2

− 1
3 tr(G0V)3 − 1

4 tr(G0V)4. (15)
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Now one can write the action as S = S0 + S2 + S3 + S4, with

S0 = −N

2

∫
x

ψ2
0

u
+ N

2
tr lnG−1

0 , (16)

and the quadratic part

S2 = N

2

∫
q

(
η(q)

ϕ(q)

)T

D−1(q)

(
η(−q)

ϕ(−q)

)
, (17)

where

D−1(q) =
(

D−1
η (q) 0

0 D−1
ϕ (q)

)
, (18)

with D−1
η (q) = 1

u
+ (q,r) and D−1

ϕ (q) = 1
g

+ λ2

cs (q) −
(q,r). The self-energy part is given by

(q,r) =
∫

k

1

r + k2

1

r + (k + q)2
≈ L2r

d
2 −2 − bϕq2, (19)

with

bϕ = −r
d
2 −3

(
4

d
L4 + d − 4

d
L3

)
, (20)

and we defined

Ln =
∫

p

1

(1 + p2)n
= �

(
n − d

2

)
(2

√
π )d�(n)

. (21)

The cubic action is given by

S3 = −N

∫
p,q

T (p,q)ϕ(−p)ϕ(p − q)η(q), (22)

where

T (p,q) = i

∫
k

G0(k)G0(k − q)G0(p + k − q) (23)

is the triangular loop that appears in Fig. 3.
The quartic terms give the following contribution to the

action:

S4 = −N

4
L4r

d/2−4
∫

q1,q2,q3

ϕq1ϕq2ϕq3ϕ−q1−q2−q3 . (24)

FIG. 3. Diagrammatic contributions to uϕ . Full lines denote the
spin-fluctuation propagators G0, wavy lines the propagators Dϕ and
dotted lines the propagator Dη (see the main text). The diagram on
the left is proportional to L4 and gives a negative contribution to uϕ .
The diagram on the right contains two triangles T given by Eq. (23),
connected by a propagator Dη. This diagram becomes larger as the
dimensionality d is lowered and it provides a positive contribution
to uϕ .

Since the action S is quadratic in η, we can integrate the η-fields
from the action, and use that∫

Dη exp

{∫
q

[
−N

2
η(q)D−1

η (q)η(−q) + Nj (q)η(q)

]}

= exp

{
−N

2
j (q)Dη(q)j (−q)

}
, (25)

with j (q) = ∫
p

T (p,q)ϕ(−p)ϕ(p − q).
The resulting field theory for the nematic fluctuations is

therefore of the form

Sϕ/N = 1

2

∫
q

(
rϕ + λ2

el

cs(q)
+ bϕq2

)
ϕqϕ−q + uϕ

4

∫
x

ϕ4,

(26)
where

uϕ = −L4r
d
2 −4 + 2uL2

3r
d−6

1 + uL2r
d
2 −2

,

rϕ = 1

g
− L2r

d
2 −2, (27)

bϕ = r
d
2 −3

(
4

d
L4 + d − 4

d
L3

)
.

We note that there are two contributions to the quartic term
uϕ : the mean-field-like term ∝ L4, which is negative, and
the second term ∝ L2

3, which is depicted in Fig. 3 on the
right. As we have shown above, the second term arises
from the contraction of η propagators coming from two
triangular loops T . This term yields a positive contribution,
and it is responsible for the change in sign of the quartic
coupling constant and thus for the possibility to have second-
order split magnetic and nematic transitions. Analyzing both
contributions shows that the term proportional to L2

3 becomes
increasingly more important for lower space dimensionality
d. Thus, low-dimensional fluctuations are responsible for
preemptive nematic order. If d < 4, r

d
2 −2 � 1 as r → 0, and

we get for sufficiently large magnetic correlation length that

uϕ =
(

2L3
3

L2
− L4

)
r

d
2 −4. (28)

To avoid confusion, we stress that r ∝ ξ−2 determines the
magnetic correlation length ξ , while rϕ ∝ ξ−2

ϕ yields the
nematic correlation length. The former vanishes at the critical
point TN of striped magnetic order, while the latter is zero
at a nematic second-order transition. We find that the quartic
coupling constant uϕ , given by Eq. (28), can therefore only
be positive for d < 3. Thus, only for very large correlation
length and d < 3 is it possible that we obtain a second-order
transition. We remind the reader that an anisotropic three-
dimensional system is described in terms of an intermediate
dimensionality 2 < d < 3; see Ref. [32].

Finally, we comment on the splitting between the nematic
and the magnetic transitions. The condition for the second-
order nematic transition (for which uϕ > 0 is required) to occur

is that r̃ϕ = rϕ + λ2
el

c0
s

= 0, with rϕ given by Eq. (28). This gives

1

g
− L2r

d
2 −2 + λ2

el

c0
s

= 0, (29)
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which occurs at the finite (but large) value of the magnetic cor-
relation length ξ ∝ r− 1

2 . In other words, the nematic transition
preempts the magnetic transition and occurs at a slightly higher
temperature Ts > TN . The temperature difference is dictated
by the value of the nematic coupling constant g and the size
of the nemato-elastic coupling constant.

A. The case without coupling to strain

Let us first analyze the case λel = 0 without coupling to the
lattice. We still need to determine whether, for a given set of
coupling constants u,g, the correlation length ever becomes
large enough to yield a positive sign for uϕ . In order to
determine the location of the tricritical point of the nematic
degrees of freedom (i.e., where uϕ changes its sign), we use
the fact that at the nematic transition and for λel = 0 it holds
that rϕ = 0, i.e., L2r

d
2 −2 = 1

g
, which we solve to determine

r(g):

r(g) =
(

2dπd/2

�
(
2 − d

2

)
g

) 2
d−4

. (30)

We use this result to express r in Eq. (28) in terms of g and
obtain with α = u/g:

uϕ = 4 − d

24g
8−d
4−d

2α(3 − d) − (6 − d)

1 + α

(
2dπd/2

�
(
2 − d

2

)) 4
4−d

. (31)

Thus, if d < 3 one only obtains a second-order transition for

α > αc = 6 − d

2(3 − d)
. (32)

This result was obtained in Ref. [32] from an analysis of the
equation of state of the nematic order parameter.

Let us next estimate the size of the Ginzburg regime, i.e.,
the regime of strong critical fluctuations of the nematic order
parameter without coupling to strain. One expects such critical
nematic fluctuations for d � 4, if uϕ > 0. The Ginzburg
regime is most easily estimated if we determine the natural
dimensionless coupling constant ûϕ . To this end we substitute

ϕ = μφ and q = γ k, where γ 2 = rϕ/bϕ and μ = b
d
4
ϕ r

− d+2
4

ϕ

such that

S = 1

2

∫
k

(1 + k2)φkφ−k + û

4

∫
k1,2,3

φk1φk2φk3φ−k1−k2−k3 ,

(33)
with dimensionless coupling constant

û = uϕγ 3dμ4

= uϕr
d−4

2
ϕ

b
d/2
ϕ

. (34)

We obtain

ûϕ = ϒd (grϕ)
d−4

2 , (35)

with coefficient

ϒd = (48π )d/2(4 − d)1− d
2

24�
(
2 − d

2

) 2α(3 − d) − (6 − d)

(1 + α)
. (36)

Let us define f = grϕ . If f → 0, the coupling ûϕ diverges.
This is expected as we are below the upper critical dimension.

FIG. 4. Slope A(d) of the coefficient ϒd , near αc, for 2 <

d < 3. The dimensionality 2 < d < 3 effectively describes a three-
dimensional but anisotropic system; see Ref. [32]. The slope is always
bigger than 1, except in the region around d = 3. This signifies a
strong fluctuation regime (except near d = 3).

The Ginzburg regime fGinz is determined by ûϕ(f ) ≈ 1. Thus,
we analyze the coefficient ϒd (α). Close to the tricritical point
(α ≈ αc), ϒd (α) vanishes like ϒd (α) = A(d) α−αc

αc
, where A(d)

is the slope.
Except for d near d = 3, we find that the slope is always

bigger than unity; see Fig. 4. We recall that a dimensionality
below d = 3 effectively describes a three-dimensional yet
anisotropic system [32]. A slope bigger than unity already
suggests a broad fluctuation regime, except for a region near
the tricritical point.

B. Critical behavior with coupling to strain

Next, we include the coupling to strain; i.e., we analyze
the action Sϕ of Eq. (26) for finite λel. This problem is
similar to the one of a magnetic system with additional
dipolar interactions. In Refs. [54,55] the critical behavior of
uniaxial magnets with dipolar interactions in d dimensions
was investigated using a renormalization group approach. It
was found that in the presence of the dipolar interaction
the upper critical dimension is lowered from d = 4 (for the
model including only exchange interaction) to d = 3 (for the
model containing both the exchange interaction and the dipolar
interaction). This is because the dipolar interactions generate
nonanalytic direction-dependent terms in the spin propagator,
similar to the nonanalyticities that occur in the propagator
in the case of second-order elastic phase transitions, where
the order parameter is a component of the strain tensor and
where an acoustic phonon emerges as a soft mode [51].
Due to the direction dependence of the propagator in an
elastic phase transition [51], the softening occurs only along
certain directions, which leads to the mean-field behavior
already in d = 3 for systems where the softening occurs
in (m = 1)-dimensional subspace, and for d = 3 and m = 2
logarithmic corrections were found to occur.

As seen from Eqs. (5) and (26), the coupling of the ne-
matic fluctuations to orthorhombic distortion generates similar
direction-dependent nonanalytic terms in the propagator for
nematic fluctuations, and only certain directions in momentum
space remain soft. In fact, for a tetragonal system, one finds that
(see the AppendixA for the detailed derivation) the softening
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occurs in an (m = 1)-dimensional submanifold, in particular
along the directions qx = ±qy and qz = 0.

If we rescale the field to eliminate the coefficient bϕ , the
action Eq. (26) can be written in the form

Sϕ = 1

2

∫
q

(
rϕ + λ2

el

cs(q)
+ q2

)
ϕqϕ−q

+ uϕ

4

∫
q1,q2,q3

ϕq1ϕq2ϕq3ϕ−q1−q2−q3 , (37)

with cs(q) given by Eq. (5) and μ1,μ2 are given in the
AppendixA. We analyze this action using a one-loop renor-

malization group approach. We define r̃ϕ = rϕ + λ2
el

c0
s

. The flow

equations for this ϕ4 theory are straightforward, and we obtain
the usual result (see for example Ref. [59]):

dr̃ϕ

dl
= 2r̃ϕ + 3uϕ

d

dl

∫ >

q

Dϕ(q),

duϕ

dl
= (4 − d)uϕ − 9u2

ϕ

d

dl

∫ >

q

D2
ϕ(q). (38)

The momentum integration is performed over momenta
between �/b < q < �, where � is the cutoff and b = e−l .
The propagator for nematic fluctuations in the presence of the
coupling to the lattice is given by

D−1
ϕ (q) ≈ r̃ϕ + q2 + h2�

2 sin4 θ sin2 2φ + h1�
2 cos2 θ,

(39)

where we introduced hi�
2 = − λ2

(c0
s )2 μi. Simple power count-

ing arguments show that the coupling constants hi are relevant
and they grow according to

dhi

dl
= 2hi. (40)

This flow equation will not be modified by interaction
corrections, as the elimination of high energy modes cannot
generate nonanalytic corrections of the type q2

z /q
2 ∼ cos2 θ

or q2
xq

2
y/q

4 ∼ sin4 θ sin2 2φ. Thus, we have

hi(l) = hie
2l . (41)

In addition we have

dr̃ϕ

dl
= 2r̃ϕ + 3uϕ�d−2A(h1,h2) − 3uϕr�d−4B(h1,h2),

duϕ

dl
= (4 − d)uϕ − 9u2

ϕ�d−4B(h1,h2), (42)

with

A(h1,h2) = Kd−1

∫
sind−2 θdθdφ

(2π )2
f (θ,φ),

B(h1,h2) = Kd−1

∫
sind−2 θdθdφ

(2π )2
f 2(θ,φ). (43)

We used
∫ · · · = ∫ π

0 dθ
∫ 2π

0 dφ · · · as well as

f (θ,φ) = 1

1 + h1 cos2 θ + h2 sin4 θ sin2(2φ)
. (44)

Furthermore, Kd = 2πd/2

(2π)d
/�( d

2 ). For large hi the main contri-
bution to the integrals in Eq. (43) comes from the vicinity
θ ≈ π/2 and φ ≈ 0 and one finds that

A(h1,h2) ∼ 1

2

Kd−1

(2π )2
(h1h2)−1/2,

B(h1,h2) ∼ 1

4

Kd−1

(2π )2
(h1h2)−1/2.

Therefore we introduce the effective coupling constant

G = uϕ√
h1h2

, (45)

such that

dG

dl
= (2 − d)G − 9G2�d−4 Kd−1

4(2π )2
. (46)

which flows to zero for d > 2, leading to mean-field behavior
above d = 2 [49–51].

Next, we would like to estimate the temperature range in
which the mean-field behavior can be expected, and in which
the Curie-Weiss behavior of nematic degrees of freedom can be
observed. The scaling A,B 	 (h1h2)−1/2 breaks down when
one of the hi becomes of order 1; see Eq. (43). Let us assume
that this happens at length l = l∗, such that h1(l∗) ≈ 1. One
finds that h2(l∗) = h2(0)

h1(0) , and that for d = 2, uϕ(l∗) = uϕ (0)
h1(0) . The

nematic correlation length is given by ξϕ(l∗) = √
h1(0)ξϕ(0).

The analysis will break down when the correlation length
becomes smaller than the lattice spacing a, i.e., for ξϕ(l∗) < a.
Therefore, we expect the mean-field behavior to be valid only
for

ξϕ(0) >
a�c0

s√
λ2

elμ1

≈
√

c0
s

λ2
el

, (47)

where λel is the nemato-elastic coupling constant, and c0
s and

μ1 represent the combinations of various elastic constants of
the material (see the Appendix). In Eq. (47) we have used that
μi ∼ c0

s (see Ref. [60] for experimental data) and that a� ∼ 1.
The susceptibility of the nematic order parameter is given by
χϕ = r−1

ϕ = ξ 2
ϕ . Therefore, the condition for the mean-field

behavior reduces to the following condition for the nematic
susceptibility:

χϕ >
c0
s

λ2
el

. (48)

In Ref. [9], it was shown that the elastic modulus cs softens as
one approaches the structural transition and that it effectively
measures the nematic susceptibility through

c−1
s = (

c0
s

)−1
(

1 + λ2
el

c0
s

χϕ

)
. (49)

We see that when the nematic susceptibility becomes of the

order χϕ ∼ c0
s

λ2
el

strong renormalization of the elastic modulus

will take place. Therefore, we have explicitly shown that the
mean-field behavior, Eq. (48), occurs in the entire regime
where the suppression of the elastic modulus takes place;
see Fig. 1 for details. This is exactly what has been observed
experimentally [12,47,48]. We add that this conclusion is valid
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FIG. 5. Prediction for the resistivity anisotropy. For a mean-field
nematic transition, one expects the resistivity anisotropy �ρ to vary
like �ρ ∼ (�σ )1/δ , where �σ is the externally applied stress, and
δ = 3 in the mean-field theory. The angle θ in the picture is thus
θ = arctan ( 1

3 ).

regardless of the detailed microscopic origin of nematicity.
Curie-Weiss behavior due to the coupling to the lattice is
expected in the entire temperature regime where a softening of
the elastic constant is observed. For several iron based systems,
this regime can be as high as 300–350 K [9,12,47,48].

Note that another implication of our result is that the mean-
field behavior implies further resistivity anisotropy �ρ near
the structural transition �ρ ∼ (�σ )1/δ , with δ = 3, where �σ

is the externally applied stress; for details see Fig. 5.

IV. CONCLUSION

In the spin-driven nematic scenario magnetic fluctuations
associated with the striped magnetic order cause the formation
of the nematic state: the state with no magnetic order, but
broken Z2 symmetry. Therefore, fluctuations are crucial for
the existence of the nematic state. However, experimentally it
has been measured that the nematic degrees of freedom behave
mean-field-like in a very broad temperature range; in particu-
lar, the Curie-Weiss dependence of the nematic susceptibility
was observed. At first sight, these two observations might seem
to be in contradiction.

The present paper reconciles these two statements and de-
termines the temperature regime where a Curie-Weiss behavior
of the nematic susceptibility is expected. In particular, we show
that the coupling to the lattice suppresses the fluctuations of
the nematic order parameter itself, which renders the nematic
transition mean-field, but it does not affect the magnetic
transition or the very existence of the nematic phase. Starting
from a microscopic model of a spin-driven nematic phase,
which also explains the emergence of the nematic phase at a
slightly higher temperature than the Neel temperature (sepa-
rated magnetic and nematic transitions), we constructed the ϕ4

theory of the nematic degrees of freedom. First we ignored the
coupling to the lattice, and, by analyzing the quartic coefficient,
we showed that nematic fluctuations are characterized by a
rather large Gizburg regime. Next, we added the coupling
between nematic degrees of freedom to elastic strain to the

ϕ4 theory and analyzed this using the renormalization group
procedure. We have found that, due to the nemato-elastic
coupling which introduces direction-dependent terms in the
propagator for nematic fluctuations, rendering only certain
directions soft, the nematic transition becomes mean-field for
d > 2. Most importantly, the nemato-elastic coupling does
not suppress fluctuations that cause the nematic order in the
first place (i.e., magnetic fluctuations); it only suppresses
the fluctuations of the nematic order parameter itself. We
have found that the nematic transition happens at large but
finite magnetic correlation length, such that one obtains split
magnetic and nematic transitions, with the nematic transition
being mean-field-like (rather than in the Ising universality
class), while the magnetic transition is expected to behave
in a non-mean-field-like fashion.

Finally, we found that the mean-field behavior of the
nematic degrees of freedom should occur in the entire regime
where there is a significant softening of the elastic modulus.
This is in excellent agreement with the experiments, where
Curie-Weiss behavior of the nematic susceptibility was mea-
sured across a rather large temperature range [9,12,47,48] (up
to 300–350 K for some iron-based superconductors), which
coincides with the temperature range in which a significant
reduction of the elastic modulus was observed.
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APPENDIX A: MOMENTUM DEPENDENCE OF
THE ELASTIC CONSTANT cs(q)

The elastic part of the free energy of a tetragonal system is
given by

Fel = c11

2

(
ε2
xx + ε2

yy

) + c33

2
ε2
zz + c44

2

(
ε2
xz + ε2

yz

)
+ c66

2
ε2
xy + c12εxxεyy + c13(εxx + εyy)εzz, (A1)

where εij = ∂iuj +∂j ui

2 , and ui is the ith component of the
phonon displacement field.

The dynamic matrix M is defined from Fel =
1
2ui(q)Mij (q)uj (q). It can be expressed as

Mij =
∑
m,l

qmql

∂2Fel

∂εim∂εlj

. (A2)

For a tetragonal system the dynamic matrix is given by

M(q) =

⎛
⎜⎝

c11q
2
x + c66q

2
y + c44q

2
z (c12 + c66)qxqy (c13 + c44)qxqz

(c12 + c66)qxqy c66q
2
x + c11q

2
y + c44q

2
z (c13 + c44)qyqz

(c13 + c44)qxqz (c13 + c44)qyqz c44(q2
x + q2

y ) + c33q
2
z

⎞
⎟⎠. (A3)

064520-7



U. KARAHASANOVIC AND J. SCHMALIAN PHYSICAL REVIEW B 93, 064520 (2016)

The phonon frequencies ω in a tetragonal system can be determined from the dynamic matrix M , via det(ω2ρ − M(q)) = 0,
where ρ denotes the density. A vanishing elastic constant corresponds to a vanishing sound velocity. Here, we are interested in
the case c11 − c12 → 0.
The soft directions, along which the sound velocity vanishes correspond to the two lines in the xy plane (i.e., qz = 0): qx = qy and
qx = −qy . Along these directions we have that ω2ρ = (c11 − c12)q2

x → 0. Now, if one calculates the dispersion in the vicinity
of such a line, for example qx = qy , one finds that

ω2ρ ≈ (c11 − c12)
(qx + qy)2

2
+ (qx − qy)2

2

[
c11 + c66 − (c11 − c66)2

c12 + c66

]
+ c44q

2
z ,

(A4)

where qz � qx and qx − qy � qx . Choosing the angle parametrization such that qx = q sin θ cos (φ + π
4 ) and qy =

q sin θ sin (φ + π
4 ), we get ω2ρ ≈ cs(q)q2

+, with q+ = (qx + qy) being the soft momentum and

cs(q) = (c11 − c12)

2
+ μ1 sin4 θ sin2 2φ + μ2 cos2 θ, (A5)

with

μ1 = 1

8

[
c11 + c66 − (c11 − c66)2

c12 + c66

]
, μ2 = c44. (A6)
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and B. Büchner, Nat. Mater. 14, 210 (2015).

[41] M. D. Watson, T. K. Kim, A. A. Haghighirad, N. R. Davies,
A. McCollam, A. Narayanan, S. F. Blake, Y. L. Chen, S.
Ghannadzadeh, A. J. Schofield, M. Hoesch, C. Meingast, T.
Wolf, and A. I. Coldea, Phys. Rev. B 91, 155106 (2015).

[42] T. Terashima et al., Phys. Rev. B 90, 144517 (2014).
[43] A. V. Chubukov, R. M. Fernandes, and J. Schmalian, Phys. Rev.

B 91, 201105 (2015).

[44] A. V. Chubukov, D. V. Efremov, and I. Eremin, Phys. Rev. B
78, 134512 (2008).

[45] A. V. Chubukov, Physica C 469, 640 (2009).
[46] S. Maiti and A. V. Chubukov, Phys. Rev. B 82, 214515

(2010).
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