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Higgs amplitude mode in massless Dirac fermion systems
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The Higgs amplitude mode in superconductors is the condensed-matter analogy of Higgs bosons in particle
physics. We investigate the time evolution of Higgs amplitude mode in massless Dirac systems induced by a weak
quench of an attractive interaction. We find that the Higgs amplitude mode in the half-filled honeycomb lattice has
a logarithmic decaying behavior, qualitatively different from the 1/

√
t decay in the normal superconductors. Our

study is also extended to the doped cases in honeycomb lattices. As for the three-dimensional Dirac semimetal
at half filling, we obtain an undamped oscillation of the amplitude mode. Our finding is not only an important
supplement to the previous theoretical studies on normal fermion systems but also provides an experimental
signature to characterize the superconductivity in two- or three-dimensional Dirac systems.
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I. INTRODUCTION

A conventional superconductor can be described by a
charged complex order parameter �(r,t) = |�(r,t)|eiφ(r,t).
Its collective fluctuations around equilibrium include the
oscillations of the phase and amplitude [1]. The phase
mode, being coupled to the electromagnetic field, moves
to a plasma frequency of the metal as a manifestation of
the Anderson–Higgs mechanism [2–4]. The amplitude mode
oscillates with angular frequency 2|�0|, analogous to the
“vibration” of the longitudinal component of the Higgs field
in particle physics [5]. In this sense, the amplitude mode in
superconductors is sometimes also called the Higgs mode or
the Higgs amplitude mode in the literature [1,5–9].

The Higgs amplitude mode in superconductors, although
theoretically predicted many years ago [10], has only been
directly observed recently by the time-resolved terahertz (THz)
pump-probe technique in a clean superconducting film [6,7],
and by measuring the excess subgap optical conductance
in disordered films near the superconductor-insulator phase
transition [8]. The time evolution of the Higgs mode in the
collisionless, dissipationless regime was studied intensely. It
was revealed that the Higgs mode oscillates at a frequency
of 2�∞ with a 1/

√
t decaying property in the weak-coupling

limit, where �∞ is the asymptotic value of the superconducting
gap [9,11–13]. However, previous works all assume that the
density of states (DOS) near the Fermi level is almost a
constant within the Debye cutoff energy ωD . This assumption
obviously fails for honeycomb lattices or Dirac semimetals
at half filling. Their DOS is either linear [two-dimensional
(2D)] or quadratic [three-dimensional (3D)] at low energy,
respectively, and vanishes at the Dirac point [14,15]. Since
superconductivity is strongly affected by the DOS near the
Fermi level [16], it would be theoretically interesting to
study the time evolution of the Higgs mode in these systems.
On the experimental side, the availability of the honeycomb
optical lattice [17] and the tunable attractive interaction by
Feshbach resonance [18] give a possible test ground for this
study. Besides, the expected unique feature of the Higgs mode
in a superconducting Dirac semimetal can be used as an
important experimental characterization to distinguish it from
normal superconductors [19,20].

In this paper, we study the quenched dynamics in the weak-
coupling limit by using the Anderson pseudospin formal-
ism [21]. We find that the Higgs mode has a log-decay behavior
in the half-filled honeycomb lattice. To understand this be-
havior, we further study the pseudospins’ phase dynamics and
analytically solve the linearized equations of motion [9,11,13].
The doped cases are also studied numerically. In the low-
doping limit, a double-frequency feature is found. The larger
frequency increases noticeably and its peak broadens with
the doping level. In the high-doping limit, we are back to the
1/

√
t decaying property, as in a normal superconductor. When

considering the 3D Dirac semimetal at the neutral point, we
find that the Higgs mode exhibits an undamped oscillation,
with all the pseudospins precessing synchronously.

II. MODEL AND FORMALISM

We start by considering the negative-U Hubbard model on
a honeycomb lattice:

Ĥ = −
∑
〈ij〉,σ

â
†
iσ bjσ + H.c. − U

∑
i

n̂i↑n̂i↓ − μ
∑
iσ

n̂iσ , (1)

where âi (b̂i) is the on-site annihilation operator on sublattice
A (B), n̂iσ is the number operator on lattice site i with spin
index σ , μ is the chemical potential, and U is the the on-site
attractive interaction. We choose nearest-neighbor hopping as
the energy unit throughout this paper.

To study the dynamics, we write out the corresponding
mean-field Hamiltonian in k space after a unitary transforma-
tion: âkσ = 1√

2
(eiθk ĉkσ + d̂kσ ), b̂kσ = 1√

2
(−ĉkσ + e−iθk d̂kσ ):

HMF = −
∑

k

(μ − |γk|)ĉ†kσ ckσ −
∑

k

(μ + |γk|)d̂†
kσ dkσ

−�∗(t)
∑

k

(ĉ†k↑c
†
−k↓ + d̂

†
k↑d

†
−k↓) + H.c., (2)

where âkσ (b̂kσ ) is the Fourier component of âi (b̂i), eiθk =
γk/|γk| with γk = ∑

k eik·δ and δ being the three real-space
nearest-neighbor vectors, the time-dependent order parameter
�(t) = U

Nc

∑
k〈a†

k↑a
†
−k↓〉 = U

Nc

∑
k〈b†k↑b

†
−k↓〉, in which Nc is
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the number of unit cells and 〈· · · 〉 denotes the time-dependent
quantum-mechanical expectation value.

We define two sets of Anderson pseudospins:

Ŝ
(+)
k = 1

2
(ĉ†k↑,ĉ−k↓)σ

(
ĉk↑
ĉ
†
−k↓

)
,

Ŝ
(−)
k = 1

2
(d̂†

k↑,d̂−k↓)σ

(
d̂k↑
d̂
†
−k↓

)
,

with their corresponding local fields b(±)
k (t) = (�R(t),

�I(t),μ ∓ |γk|). It is straightforward to check that the pseu-
dospin operators satisfies the commutation relationship of
the angular momentum (with � = 1). By using the above
definition, the Hamiltonian can be written as the sum of the
“Zeeman energy” of pseudospins in their corresponding local
fields:

HMF = −2
∑

k,i=±
b(i)

k · Ŝ
(i)
k . (3)

From the Hamiltonian, we can get the equations of motion
of pseudospins: ∂

∂t
S(i)

k (t) = −2b(i)
k × S(i)

k (t), where i = ± and

S(i)
k (t) ≡ 〈Ŝ

(i)
k 〉 are the expectation values of the Anderson

pseudospin operators. The time-dependent gap can be written
by using pseudospins as

�(t) = U

2Nc

∑
k,i=±

(
S

(i)x
k + iS

(i)y
k

)
.

For simplicity, we can also label the pseudospins by energy
state εj rather than k, so that we can combine the two sets of
pseudospins as a single set. Explicitly, the equations of motion
and time-dependent gap can be rewritten as

∂

∂t
Sj (t) = −2bj (t) × Sj (t), (4)

�(t) = U

2Nc

∑
j

[
Sx

j (t) + iS
y

j (t)
]
, (5)

with

bj (t) = (�R(t),�I (t),εj ), (6)

where εj ∈ (−ωD,ωD), and Sj can be viewed as the classical
spin with length 1

2 . Writing like this, the additional DOS
information is needed. It satisfies D(ε) ∝ |ε − μ|, for we
have a 2D linear dispersion near the Dirac point before
superconducting; see Fig. 1(c).

The quenched dynamics is as follows: at t � 0, the system
is in equilibrium with the initial interacting strength Ui . From
the spin Hamiltonian, the initial spins are parallel to their local
fields [Fig. 1(a)]. At t = 0+, we change the interaction strength
to Uf , then the local fields change immediately for the sudden
change of �(t). Therefore, the current spin configuration is no
longer stable. According to Eq. (4), they will precess around
their local fields [Fig. 1(b)], which in turn will change the
gap and the local fields simultaneously by Eqs. (5) and (6).
We denote �0i and �0f as the corresponding equilibrium gap
when the interaction strengths are Ui and Uf , respectively. In
the following, they are used to describe the quenched dynamics
for convenience.
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FIG. 1. Quenched dynamics illustration and three doping cases
for honeycomb lattice. (a) When t � 0, the system is in the BCS
ground state, and the pseudospins align in the direction of their local
fields. (b) At t = 0+, we change the interaction strength abruptly to
force the system out of equilibrium. The pseudospins start to precess
around their local fields, while the local fields also change due to their
dependence on pseudospins. (c) The half-filling case μ = 0, where
εk ≡ ±|γk|. (d) The high-doping limit μ  �0f . (e) The low-doping
limit μ ∼ �0f .

III. THREE DOPING CASES FOR HONEYCOMB LATTICE

We consider the dynamics of three doping cases for a
honeycomb lattice as shown in Figs. 1(c)–1(e): half-filled,
high-doping limit, and low-doping limit.

A. Half filled

Without loss of generality, we choose the initial gap �0i

to be real. The particle-hole symmetry guarantees the gap to
be real throughout the evolution [12]. The problem is to solve
a system of coupled differential equations (4) with the initial
condition

Sj (0) =
⎛
⎝ �0i

2
√

�2
0i + ε2

j

,0,
εj

2
√

�2
0i + ε2

j

⎞
⎠,

where in this case the gap and local fields are related with the
pseudospins as �(t) = Uf

2Nc

∑
j Sx

j (t) and bj (t) = (�(t),0,εj ).
The DOS in the half-filling case is proportional to |ε|.

We numerically simulate Eq. (4) with N = 50 000 energy
levels and the Debye cutoff energy ωD = 0.5. The method we
use is the Runge–Kutta of the eighth order with an adjustable
time step to have sufficiently high precision. We also tried
other numbers of energy levels to verify that the results are
unaffected by the finite-size effect. We also adopt the weak-
coupling limit (�0f � ωD) and the weak-quench limit (δ�0 ≡
�0i − �0f � �0f ). To satisfy this, we quench from �0i =
0.013 to �0f = 0.012. The result is shown in Fig. 2: the data
are well fit by a log-decay function:

�(t)

�0f

= a + 2bδ�0

�0f

cos(c�0f t + d)

ln(e�0f t)
. (7)

The envelope functions a ± 2bδ�0/�0f ln(e�0f t) are used
for indicating the log-decay behavior.
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FIG. 2. Half filling. The numerical data (blue) obtained from
simulating N = 50 000 energy levels for �0i = 0.013 and �0f =
0.012, with Debye energy ωD = 0.5. The red curve is the fit by
Eq. (7), while the green dotted lines are the envelope curves.

The fitted parameters are a = 0.9975, b = 1.091, c =
1.994, d = 0.2554, e = 22.36. We find that c = 2a is almost
exactly satisfied, which means that �(t) oscillates with the
2�∞ angular frequency, indicating that it is the Higgs am-
plitude mode. However, the mode has a logarithmic-decaying
property in the present case, while it decays as 1/

√
t in normal

superconductors. This slow-decaying behavior suggests that
the Higgs mode in the half-filled superconducting honeycomb
lattice has a much longer lifetime than that in the usual
superconductors [22]. We also note that a is slightly smaller
than 1, meaning �∞ < �0f . Explicitly, we find 1 − a ≈
δ�2

0/3�2
0f . The similar behavior has been pointed out in

previous publications for normal superconductors, claiming
that the difference is of the order of δ�2

0/6�2
0f [13,23].

The slower decaying property compared with normal su-
perconductors can be qualitatively understood by studying the
phase dynamics of the single pseudospins on different energy
levels [12]. Explicitly, we numerically calculate the precession
angle φj (t) of pseudospin Sj around the time-independent
vector b∞

j ≡ (�∞,0,εj ). As shown in Fig. 3(a), in the long-
time limit, the phase becomes linear with respect to time so
that we can characterize the precession frequency by the time-

FIG. 3. Phase dynamics for �0i = 0.013 and �0f = 0.012 at half
filling. The solid lines are for D(ε) = 1, while the dashed lines are for
D(ε) ∝ |ε|. (a). The precession phases φj for εj = 2�0f ,4�0f . They
are almost linear for the large time dynamics and φj for constant
DOS has larger “phase slope.” (b). The time averaged precession
frequency ωj . For constant DOS, ωj coincides with quasiparticle
energy spectrum. For linear DOS case, the flatter ωj ’s dispersion
gives rise to in a weaker dephasing, therefore a slower decay of the
amplitude.

averaged frequency ωj = 〈ωj (t)〉 = [φj (tmax) − φj (0)]/tmax.
In Fig. 3(b), we compare ωj for constant and linear DOS.
For constant DOS, ωj is equal to the quasiparticle spectrum

2(�2
∞ + ε2

j )
1/2

. In the region when εj � 2�0f , ωj for both
cases coincide with each other. However in the higher-energy
region, ωj for a linear DOS is much flatter than that for
a constant DOS. The decaying of the amplitude is due to
the dephasing mechanism for the precession of pseudospins.
The flatter dispersion of ωj represents a more synchronized
precession of the pseudospins, resulting in a slower decaying
of the amplitude.

To quantitatively understand the fitting equation (7), we
solve equations of motion (4) by linearizing it around

Sf

j ≡
⎛
⎝ �0f

2
√

�2
0f + ε2

j

,0,
εj

2
√

�2
0f + ε2

j

⎞
⎠

and bf

j ≡ (�0f ,0,εj ):

∂

∂t
δSx

j (t) = 2εj δS
y

j (t),

∂

∂t
δS

y

j (t) = εj√
�2

0f + ε2
j

δ�(t) + 2�0f δSz
j (t) − 2εj δS

x
j (t),

∂

∂t
δSz

j (t) = −2�0f δS
y

j (t), (8)

where δ�(t) ≡ �(t) − �0f and δSj (t) ≡ Sj (t) − Sf

j . The
above coupled differential equation can be solved by Laplace
transform: L[f (t)] → f̄ (s). In the thermodynamic and the
weak-coupling limit, we arrive at the final form of δ�(s):

δ�(s) = δ�0

2�0f

⎛
⎝ 1(

s
2�0f

) − 1[(
s

2�0f

)2 + 1
]

tan−1
(

s
2�0f

)
⎞
⎠.

(9)

By inverse Laplace transform, we get the approximate form
of �(t) (see Appendix A):

�(t) ≈ �f + 2δ�0
cos 2�f t

ln 4�f t
. (10)

B. Doping cases

In the high-doping limit (μ  �0f ) as illustrated in
Fig. 1(d), the system without attractive interaction is basically
a normal metal; therefore, we expect the Higgs mode will
have the square-root decaying behavior. To verify this, we
choose μ = 0.12 = 10�0f and simulate Eqs. (4)–(6) with
other parameters equal to those in the half-filled case. The
result is shown in Appendix B. We can that see |�(t)| indeed
decays as 1/

√
t , with the oscillation frequency equal to 2�∞.

To see how the mode change from the logarithmic decay
to the 1/

√
t decay, we investigate the low-doping limit where

μ ∼ �0f [Fig. 1(e)]. By simulating Eqs. (4)–(6) with several
different values of μ, we find that there are two frequencies
in the low-doping case: one is the Higgs frequency 2�∞, and
the other is slightly larger than the first one, resulting in a
beat pattern as shown in Fig. 4(a). As μ increases, we find
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FIG. 4. Low-doping case. The quench parameters are the same
as in Fig. 2. (a) The two slightly different frequencies give rise to a
beat pattern of the amplitude mode. (b) The frequencies obtained by
discrete Fourier transform (DFT) of |�(t)|. Both frequencies increase
as μ increases, while the larger one increases more noticeably.
Besides, the larger-frequency peak also broadens and will eventually
disappear as μ increases, accomplishing the gradual transform from
logarithmic decay to square-root decay. (c) The frequencies data (red
dots) collect by DFT of different values of μ, they fit quite well by
the empirical formula (blue line).

that both frequencies increase. However, the Higgs frequency
increases only slightly, while the lager frequency increases
more remarkably and the peak broadens [Fig. 4(b)]. Physically,
the decay of the Higgs mode is due to its interaction with the
bottom part of the particle-hole continuum [11,24]. As we
doped away from half filling, those states most responsible
for the damping increase, resulting a faster-decaying behavior.
When μ is large enough (about 2�0f ), the second peak can
hardly be discerned and the transform from the logarithmic
decay to square-root decay is accomplished. We also find a
very interesting empirical formula, associating the difference
of the two frequencies δω with the chemical potential μ as
δω
�0f

= 2( μ

�0i
)2.

IV. DIRAC SEMIMETAL CASE

We extend our calculation to the 3D Dirac semimetal case.
The DOS is proportional to ε2 when the Fermi level is on
the Dirac point. We numerically solve the collective motion
of pseudospins with all the parameters equal to those in the
half-filled honeycomb-lattice case. We find that the Higgs
amplitude mode in this case exhibits an undamped oscillation
as shown in Fig. 5(a). To explain this, we study the phase
dynamics φj (t) of each pseudospin Sj (t) that precesses around
its own time-independent vector b∞

j . From Figs. 5(b) and 5(c),
we can see that all the pseudospins precess with the same
angular frequency 2�∞. Therefore, for the two instances
of time separated by T = π/�∞, the whole pseudospin
configuration is identical. Since �(t) depends explicitly on
the sum of the x components of all the pseudospins, it
must be periodic and undamped. Compared with the 2D case

FIG. 5. 3D Dirac semimetal case. The quench parameters are
equal to those in Fig. 2. (a) The Higgs mode shows an undamped
oscillation. (b) Precession phase of a single spin on energy levels εj =
2�0f , 4�0f . (c) The precession of different pseudospins synchronize.

at half filling, the particle-hole continuum most responsible
for the damping consists of an even smaller fraction of the
whole phase space. Therefore, the damping originating from
the interaction with those states is negligible. We note that
the above discussion is for the singlet-pairing case. However,
triplet pairing is also possible, which has three independent
Higgs mode [25]. Studying the time evolution of these Higgs
modes would also be interesting.

V. DISCUSSION AND SUMMARY

For the 2D superconducting Dirac fermion case, the
quenched process can be realized on two-component cold
Fermi gases trapped in a honeycomb optical lattice [17],
with an attractive Hubbard U tunable by the Feshbach
resonance [18]. The Higgs mode in this case can be detected
with rf-absorbtion techniques [26,27]. As for the Higgs
amplitude mode in the 3D case, the observation is made
possible by the recent discovery of superconductivity in Dirac
semimetals [19,20], together with the development of the
ultrafast THz pump-probe spectroscopy [28]. In principle,
the measurement should be similar to the already discovered
Higgs mode in clean NbN films [6]. One can use an intense
monocycle THz pump pulse to generate the Higgs amplitude
mode in the superconducting Cd3As2 thin film. Immediately
after that, a probe pulse also irradiates the sample. By
measuring the pump-probe delay time and the wave form of
the transmitted probe pulse, one can resolve the time evolution
of the Higgs mode inside the sample [6,7].

In summary, we find the Higgs amplitude mode in a half-
filled honeycomb lattice has a logarithmic decaying behavior.
It can be understood by studying its phase dynamics and by
analytically solving the linearized equations of motion. The
dynamics of doped cases in honeycomb lattice is also studied.
As for the three-dimensional Dirac semimetal case, we find
that the Higgs mode exhibits an undamped oscillation when
the Fermi level is at the Dirac point.
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APPENDIX A: INVERSE LAPLACE TRANSFORM
OF EQ. (9)

By doing the Laplace transform of the linearized equations
of motion, we get the following equation for δ�(s) up to linear
order in δ�0:

δ�(s)
∑

j

1(
s2 + 4�2

0f + 4ε2
j

)(
�2

0f + ε2
j

) 1
2

= sδ�0

s2 + 4�2
0f

∑
j

ε2
j(

s2 + 4�2
0f + 4ε2

j

)(
�2

0f + ε2
j

) 3
2

.

(A1)

In the thermodynamic limit and weak-coupling limit, we
have

∑
j f (εj ) ∝ ∫ ωD

0 f (ε)εdε ≈ ∫ ∞
0 f (ε)εdε. After integra-

tion, we get Eq. (9) in the main text.
By using the similarity theorem L−1[ ¯f (s/a)] = af (at),

we need only find the inverse Laplace transform of
f̄ (s) = 1/(s2 + 1) tan−1 s. We achieve this by evaluating the
Bromwich integral:

f (t) = 1

2πi

∫ γ+i∞

γ−i∞
dsf̄ (t)est , (A2)

where γ should be larger than the real part of any poles in the
integrand.

We choose the contour shown in Fig. 6 and use Cauchy’s
integral theorem to evaluate the Bromwich integral C0 marked
in blue. Jordan’s lemma tells us that the contributions from
big arcs 1,2, 3 are zero, and it is easy to verify that the
integrals along the small arcs γ1 and γ2 have no contributions,

O Re s

Im s

C0

Γ2

Γ1

Γ3

C1

C2

C3

C4

γ1

γ2

γ − i∞

γ + i∞

R

FIG. 6. The contour of the integral. The red cross represents the
pole at s = 0, the red points are branch points at s = ±i, the red lines
are the two branch cuts.

O Re z

Im z

ia

R

R + ia

γ1

γ2

γ3

FIG. 7. The contour for I2(t). a is a small real positive number, the
integral I2(t) (blue) is replaced by the contour in red, while integration
along γ2 and γ3 gives zero.

either. The only remaining parts are the pole at the origin and
line integrals C1 to C4. So we have

f (t) = θ (t) − 4I2(t), (A3)

I2(t) = Re

[
eit

∫ ∞

0

eixt

(x2 + 2x)
[(

ln x
x+2

)2 + π2
]dx

]
. (A4)

We use the contour in Fig. 7 to evaluate Eq. (A4), and the
only remaining contribution is from the line integral γ1. To the
leading order, we have:

I2(t) = Re

[
eit

∫ 2a

0

e−2yt

2y(ln y)2 dy

]
. (A5)

For sufficiently large t , the above integral can be calculated by
using a result by Erdélyi [29]; thus we obtain Eq. (10) in the
main text.

APPENDIX B: HIGH-DOPING-LIMIT CASE

We choose μ = 0.12 in this case. Because the exact
particle-hole symmetry is absent when μ �= 0, �(t) will ac-
quire a time-depended phase during the evolution; thus we plot
the amplitude |�(t)| in the Fig. 8. We fit the data by using the
following equation provided in many publications [9,11,13]:

|�(t)|
�0f

= a + 2bδ�0

π
3
2 �0f

√
�0f t

cos
(
c�0f t + d

π

4

)
. (B1)

FIG. 8. High-doping limit with μ = 0.12; other parameters are
same as those in Fig. 2 in the main text. The numerical data (blue)
are well fit by Eq. (B1).
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The fitting parameters are a = 1.0050, b = 0.5142, c =
2.0101, d = 0.9827. We see c = 2a is almost exactly satisfied,
indicating that this is the Higgs amplitude mode. However,
a is slightly greater than 1, meaning �∞ is slightly greater
than �0f . This is not so surprising because the relation

�∞ ≈ �0f − δ�2
0/6�0f is obtained under the condition of

strictly constant density of states. In conclusion, in the high-
doping limit, the system behaves as a normal metal without
interactions, resulting in the 1/

√
t-decaying property of the

amplitude |�(t)|.
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