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Type-II superconductors owe their magnetic and transport properties to vortex pinning, the immobilization
of flux quanta through material inhomogeneities or defects. Characterizing the potential energy landscape for
vortices, the pinning landscape (or short, pinscape), is of great technological importance. Aside from measurement
of the critical current density jc and of creep rates S, the ac magnetic response provides valuable information
on the pinscape which is different from that obtained through jc or S, with the Campbell penetration depth λC

defining a characteristic quantity well accessible in an experiment. Here, we derive a microscopic expression for
the Campbell penetration depth λC using strong-pinning theory. Our results explain the dependence of λC on the
state preparation of the vortex system and the appearance of hysteretic response. Analyzing different pinning
models, metallic or insulating inclusions, as well as δTc and δ� pinning, we discuss the behavior of the Campbell
length for different vortex-state preparations within the phenomenological H -T phase diagram and compare our
results with recent experiments.

DOI: 10.1103/PhysRevB.93.064515

I. INTRODUCTION

In a type-II superconductor, the magnetic field H penetrates
the material in the form of vortices [1,2], individually capturing
a superconducting flux quantum �0 = hc/2e and together
forming a triangular Abrikosov lattice generating the magnetic
induction B inside the sample. In ideal superconductors, an ap-
plied current density j generates a Lorentz force FL = jB/c,
setting the vortex lattice in motion. The resulting velocity
v produces an electric field E = vB/c which renders the
current transport dissipative [3]. The material’s response then
is characterized by the flux-flow resistivity ρff � ρnB/Hc2,
with ρn the normal-state resistivity and Hc2 the upper critical
field. In real materials, chemical impurities or crystallographic
defects immobilize vortices, thereby restoring dissipation-
free electric transport for currents j below a critical value
jc. Achieving large critical currents jc is a prime task in
optimizing superconductors for technological applications.
Recently, analytic, numerical, and experimental studies have
been used in a concerted effort to investigate the fundamental
mechanisms governing vortex pinning [4,5]. Such a program
relies on a proper characterization of the material’s pinning
landscape or pinscape. Aside from measurement of the critical
current density jc, the analysis of the material’s ac magnetic
response [6,7] as quantified through the Campbell penetration
depth λC provides valuable information on the bulk pinning
parameters. In this paper, we present a microscopic foundation
for the Campbell penetration length λC which allows to
connect the result of ac magnetic response measurements to
microscopic parameters of the pinscape.

When measuring a material’s ac response, a small magnetic
field hac is applied on top of a large dc field B0. In Campbell’s
original phenomenological approach [6,7], the ac field forces
vortices to oscillate within their pinning potentials which are
conveniently characterized by an effective harmonic potential
well αu2/2, with u denoting the vortex displacement. A
measurement of the Campbell length λC ∝ α−1/2 then informs
about the curvature of this “single-vortex” potential. Later,
the ac magnetic response has been further discussed in the
context toy models [8,9] assuming a piecewise parabolic

potential. In the wake of the discovery of high-temperature
superconductivity [10], the frequency response of the vortex
state has attracted renewed attention, especially in the context
of vortex creep [11–15]. Recent experimental developments in
the field have been reviewed in Refs. [16,17].

A phenomenological approach as described above cannot
relate the measured penetration depth λC to the microscopic
parameters of the pinscape. In particular, it is unclear how such
a simple description can deal with the Bean critical state [18].
The latter is realized at j = jc where the pinning landscape
acts with its maximal force Fc against the Lorentz force FL and
establishes a self-organized critical state resembling a sandpile
[19], with avalanche-type motion of vortices triggered upon
increasing the magnetic field. The phenomenological model
[17] describes this situation by a vanishing curvature α(j →
jc) → 0, resulting in a formally diverging Campbell length
and hence a full penetration of the ac signal. Such a divergent
signature has not been observed in experiments [17]; rather,
it has been found that the Campbell length can even decrease
when going from a field-cooled state (FC) to a Bean critical
(or zero-field-cooled, ZFC) state [20].

Vortex pinning, including jc, is usually described within
either of two frameworks, weak collective pinning due to the
joint action of many weak defects or strong pinning produced
by a low density of strong impurities [21,22]. Within our
microscopic description, we make use of strong-pinning theory
and relate the measured penetration depth λC to microscopic
parameters of the pinscape. Most interestingly, it turns out that
jc and λC are determined by different microscopic parameters:
while the critical current density jc involves the characteristic
jump in energy of strong-pinning theory, the Campbell length
involves the jump in the pinning force. The scaling jc ∼
cξB/λ2

C used in the past then picks up a nontrivial dependence
on the strong-pinning (or Labusch) parameter κ > 1, e.g.,
jc ∼ (cξB/λ2

C)(κ − 1)3/2 at the onset of strong pinning when
κ − 1 � 1 and jc ∼ (cξB/λ2

C)κ for very strong pinning κ �
1. The quantitative power of strong-pinning theory provides
further interesting results such as the dependence of λC on the
vortex state (e.g., field cooled versus zero field cooled) or the
appearance of hysteretic behavior upon temperature cycling.
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Furthermore, mapping out the behavior of λC within the H -T
phase diagram allows to draw interesting conclusions on the
character of the pinning centers. While our analysis focuses on
bulk characteristic parameters of the pinscape, different types
of scanning techniques have been used recently to obtain a
direct microscopic image of the potential landscape seen by
individual vortices [23,24].

In the following, we first review the general approach to
the ac response (Sec. II) and then introduce the strong-pinning
formalism in Sec. III. We derive a quantitative relation between
the Campbell length and the microscopic pinning potential and
discuss the generic dependence of λC on the state preparation
(e.g., FC versus ZFC) as well as hysteretic effects. In Sec. IV,
we analyze the pinning characteristics of four types of defects,
namely, insulating and metallic inclusions as well as δTc

and δ� pins. In Sec. V, we compare our findings with
recent measurements [20] on SrPd2Ge2 and find good overall
agreement using a pinscape with a scaling characteristic of
insulating defects. A brief account of parts of this work can be
found in Refs. [25,26].

II. ac MAGNETIC RESPONSE

We analyze the magnetic response of a bulk supercon-
ducting sample subject to a static field H and a parallel
ac perturbation with a small amplitude hac � H . While the
magnetic field H induces a vortex lattice with an average
induction B0 in the sample, the small ac field induces motion
of these vortices. We choose a geometry with a superconductor
filling the half-space X > 0 with the sample surface, magnetic
field, and Z axis arranged in parallel. This corresponds, up
to finite-size effects, to a sample in a slab geometry arranged
parallel to Z where demagnetization effects are absent. We
will briefly discuss the geometry of a thin plateletlike sample
(arranged in the XY plane) at the end of the section.

On the macroscopic level, the vortex lattice can be described
as an elastic medium and its response to the ac perturbation
is reflected in a macroscopic displacement field U (X,t) of the
flux lines. We use capital letters when describing macroscopic
coordinates and displacements and denote their microscopic
counterparts (below) by lower-case symbols. Starting from
an initial field B0(X) and current j0(X) at time t = 0, the
vector potential δA = U (X,t)B0(X) associated with the vortex
lattice displacement U induces time-dependent corrections of
the form

δB(X,t) = −B0(0)∂XU (X,t), (1)

δj (X,t) = c

4π
B0(0)∂2

XU (X,t). (2)

The above expressions are valid in the linear-response regime
where U is the smallest length and (∂XB0)U � B0(∂XU ).
Integrating Eq. (1) over X, we find the flux φ(t) (per unit
of length along Y ) that has penetrated the surface,

φ(t) =
∫ ∞

0
dX δB(X,t) = B0U (0,t). (3)

The distribution of this flux within the sample generates an
additional induction δB(X,t) on top of the dc field B0(X) (see
also Sec. III C).

Having reduced the change in fields and currents to the
macroscopic displacement field U (X,t) of vortices, we can
find the dynamical response of B(X,t) through the equation
of motion of the flux-line lattice

ηU̇ = FL(j,U ) + Fpin(X,U ), (4)

which balances the dissipative Bardeen-Stephen term with
η = BHc2/ρnc

2 against the sum of Lorentz and pinning
force densities FL = (j0 + δj )B0/c and Fpin = F0 + δFpin.
The static initial state is characterized by a pinning force F0

that exactly compensates the Lorentz force j0B0/c and the
right-hand side vanishes identically (for a field-cooled sample,
both F0 and j0 vanish individually). Hence, the dynamic
equation (4) assumes the form

ηU̇ − B2
0

4π
∂2
XU − δFpin(X,U ) = 0. (5)

Making use of Eq. (1), the external drive δB(X = 0,t) =
hace

−iωt determines the boundary condition ∂XU (X,t) =
−(hac/B0)e−iωt . It remains to find an expression for the change
in pinning force density δFpin(U ).

Referring to Campbell’s original work [6,7], one usually
assumes that vortices oscillate reversibly in an effective
parabolic pinning potential αU 2/2, what results in the phe-
nomenological pinning force density

δFpin(U ) = −α U. (6)

Using this ansatz, the equation of motion (5) can readily be
solved for the displacement field U (X,t), from which the field
and current dynamics follow via Eqs. (1) and (2). One finds
that the field oscillations

δB(X,t) = hace
−X/λCe−iωt (7)

decay into the sample with the characteristic length λC(ω) =
[B2

0/4π (α − iηω)]1/2, which reduces to the Campbell length

λC =
(

B2
0

4πα

)1/2

(8)

at low frequencies ω → 0. The Campbell length thus relates
the ac penetration depth with the pinning properties of vortices
through the curvature α of the effective pinning potential, a
relation that has widely been used to characterize the pinning
landscape.

However, inferring the properties of the pinning landscape
from the experimental measurements based on a simple phe-
nomenological model is prone to misjudgments. We therefore
proceed with a microscopic approach based on strong-pinning
theory [21,27] in order to determine the macroscopic response
of the vortex state. Thereby, the macroscopic equation of
motion Eq. (5) can equally well be obtained from a microscopic
route by averaging the equation of motion of individual
vortices over an area much larger than a2

0 , with a0 the
intervortex distance. The evaluation of the change in pinning
force δFpin(X,U ) involves a proper average of the microscopic
action of single pinning centers, a task we address in the
following.

Before doing so, we briefly touch upon geometric aspects of
the problem. For the slab geometry chosen here (with magnetic
fields along Z and currents along Y ), the contributions from
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shear and tilt deformations average to zero and only the bulk
compression modulus c11(k = 0) = B2

0/4π enters in Eq. (5).
In the platelet geometry, as opposed to the slab geometry, the
field is arranged perpendicular to the largest sample dimension
and demagnetization effects change both the size and effective
direction of the ac field component. For a sample thicker than
2λC, the ac component is screened and the effective drive heff

ac
is enhanced by (w/d)1/2 and redirected parallel to the surface
(here, w and d denote the width and thickness of the sample)
(see, e.g., Refs. [28,29]). The penetration of the ac field then
corresponds to tilting the vortices within a depth λC away from
the surface and the relevant distortion modulus appearing in
Eq. (5) is the bulk tilt modulus c44(k = 0) = B2

0/4π .

III. STRONG PINNING

A. Formalism

Within strong-pinning theory as originally discussed by
Labusch [27] and later by Larkin and Ovchinnikov [21], a low
density np of pinning sites produces a finite pinning force by
inducing large plastic deformations on the pinned vortices.
We consider a lattice of vortices (directed along z) with
equilibrium coordinates rμ = (xμ,yμ) and an isolated defect
at the origin defined through its pinning potential ep(r,z) �
ep(r)δ(z), with r = (x,y); as pins act independently, the action
of a finite density of pins is trivially summed over. The
interaction of the pin with the vortex lattice gains the system a
local energy density

εp(r,z; u) =
∑

μ

ep(r)δ(z) δ2{r − [rμ + u(rμ,z)]}, (9)

where rμ + u(rμ,z) is the real position of the μth flux line
with u(rμ,z) its microscopic displacement field away from the
equilibrium position rμ (see Fig. 1) . Variational minimization
of the elastic deformation and pinning energies results [21,30]
in an inhomogeneous differential equation; its solution can
formally be expressed through a self-consistency condition

u(rp)

rp
rν

u(rν, z)u(rp, z)

FIG. 1. Schematic view of the vortex distortion near a pinning
center. The pinned vortex (red) with asymptotic position rμ = rp

is deformed to rp + u(rp,z) by the presence of the pin (black
dot). Nearby vortices with ν 	= μ (blue) are deformed as well with
their deformation u(rν,z) transported by the elastic Green’s function
G(rν − rp,zν − z). The full pinning problem can be reduced to a
self-consistency equation for the deformation u(rp) ≡ u(rp,0) of the
pinned vortex at the height z = 0 of the defect.

involving the lattice’s elastic Green’s function Gαβ(r,z):

uα(rν,zν) =
∫

dz d2r Gαβ(rν − r,zν − z)[−∂uβ
εp(r,z,u)].

(10)

Here, α and β index the in-plane components x and y, and ν is
a vortex label and we assume summation over double indices.
Inserting Eq. (9) into Eq. (10) and defining the pinning force
profile fp(r) = −∇r ep(r), we find to dominant order in u

uα(rν,zν) =
∑

μ

Gαβ(rν − rμ,zν)fp,β [rμ + u(rμ,0)]. (11)

For a pinning potential with a trapping range smaller than
the intervortex distance a0 and pinning at most one vortex, only
one term is relevant in the above summation and we arrive at

uα(rν,zν) = Gαβ(rν − rp,zν)fp,β [rp + u(rp,0)], (12)

with rp = rμ the equilibrium position of the vortex in the
vicinity of the pinning site. Evaluating (12) for this vortex at
rν = rp and zν = 0, we obtain the self-consistency condition

uα(rp) = Gαβ(0,0)fp,β [rp + u(rp)] (13)

for the displacement uα(rp) ≡ uα(rp,0) of the vortex pinned
at the defect height z = 0. This expression can be further
simplified by exploiting the isotropy of the local Green’s
function Gαβ(0,0) = δαβ/C̄ with the effective elasticity C̄

defined through

C̄−1 = 1

2

∫
BZ

d2k dkz

(2π )3
Gαα(k,kz). (14)

The integration of the reciprocal-space elastic Green’s function
[21,31,32]

Gαβ(k,kz) = kαkβ/k2

c11(k,kz)k2 + c44(k,kz)k2
z

+ δαβ − kαkβ/k2

c66k2 + c44(k,kz)k2
z

(15)

over the vortex lattice Brillouin zone (BZ) involves the
dispersive compression [c11(k,kz)] and tilt [c44(k,kz)] as well
as the nondispersive shear moduli (c66) (see also Ref. [30]).
Here, k = |k| is the norm of the in-plane momentum k =
(kx,ky). Performing the integration in Eq. (14) using Eq. (15)
provides us with the expression

C̄ = ν
a2

0

λ

√
c66c44(0,0). (16)

The determination of the numerical factor ν requires an
accurate evaluation of the linear response of a vortex to a
local force. Simple estimates for ν can be obtained through the
approximate evaluation of the integral in Eq. (14) or by calcu-
lating the deformation energy of a single flux line embedded in
a rigid cage potential [33]. In the first case, we neglect the com-
pression term in Eq. (15) since c66 � c11. Using c44(k,kz) =
c44(0,0)/[1 + λ2(k2 + k2

z )] (see Refs. [30,32]), and assuming
k2λ2 � k2

zλ
2 and k2λ2 � 1, we can extend the integral over kz

to infinity and limit the planar integral to the circularized Bril-
louin zone k2 < 4π/a2

0 . Using these approximations, we arrive
at a numerical ν = 4. The alternative estimate is based on a
flux line with elasticity εl = ε0 trapped within a cage potential
Vcage = πε0(u/a0)2 set up by the neighboring vortices [33],
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where ε0 = (�0/4πλ)2 denotes the vortex line energy. Min-
imizing the total energy

∫
dz[εlu

2/2 + Vcage(u)] ≡ C̄u2/2,
we obtain C̄ = 4

√
2πε0/a0, which corresponds to a factor

ν = 4
√

2 when recast into the form (16).
Making use of the effective elasticity C̄, Eq. (13) can be

written in the form

C̄u(r) = fp[r + u(r)], (17)

where we have dropped the subscript in the vortex–pin distance
rp → r . It is the appearance of multiple solutions of this
nonlinear self-consistency equation which is at the origin of
the strong-pinning phenomenon. Inserting the solution u(r) of
Eq. (17) back into Eq. (12), the displacement field uα(rν,zν)
of all vortices can be determined.

The self-consistency equation (17) is easily derived as the
minimizer of the total free energy including contributions from
elasticity and pinning [34]:

epin(r) = 1
2 C̄u2 + ep(r + u). (18)

Indeed, minimizing Eq. (18) with respect to the displacement
u leads to Eq. (17). On the other hand, the derivative with
respect to r produces the effective force profile

fpin(r) ≡ −∇r epin(r) (19)

associated with the total energy (18): evaluating the total
derivative ∇r epin(r), we can express the gradient −∇r ep(r)
through the bare pinning force −∇r ep(r) = fp(r), and mak-
ing use of Eq. (17), we find that

fpin(r) = fp[r + u(r)] = C̄u(r). (20)

Hence, a multivalued solution of Eq. (17) at a given r entails
multivalued solutions for the energy profile epin(r) as well as
the force profile fpin(r).

For the geometry introduced in Sec. II and discussed in
the following, we simplify the formalism further by assuming
that all vortex trajectories with impact parameter 2|y| < t⊥
experience maximal pinning, i.e., that of a vortex hitting the
defect head-on with y = 0. For a small pinning center, the
transverse length t⊥ is of the order of the vortex core size ξ

(the coherence length), while t⊥ is determined by the pin size
for a large defect. With this simplification, the problem reduces
to one effective dimension with Eqs. (17) and (19) taking the
form

C̄u(x) = fp[x + u(x)] = fpin(x), with (21)

fpin(x) ≡ −depin(x)/dx. (22)

The self-consistency equation (21) can be easily tested
for multivalued solutions; these appear when the derivative
du/dx ≡ u′(x) turns infinite. Taking the total derivative of
Eq. (21) with respect to x, we find that

u′(x) = 1

C̄/f ′
p[x + u(x)] − 1

(23)

diverges with increasing pinning force for the first time
when the maximal force derivative f ′

p matches the elasticity
C̄. This onset of strong pinning then is defined by the

fpin

x− x+

epin

pinned

a

a b c

−x+ −x− x

x

unpinned
c

b

FIG. 2. Left: Energy and force profiles at strong pinning κ > 1
with multivalued solutions within the intervals [−x+, − x−] and
[x−,x+]. Stable pinned (green) and unpinned (blue) branches are
connected by unstable solutions (dashed). Right: Vortex shapes
associated with pinned (a,b in green) and unpinned (b,c in blue)
branches for different positions away from the pin.

Labusch criterion κ = 1, where κ ≡ maxx[f ′
p(x)/C̄] denotes

the Labusch parameter. At small values of κ < 1, i.e., when
f ′

p(x) < C̄ for any x, the force profile fpin(x) is single valued
and u′(x) always has the same sign as f ′

p[x + u(x)]. Within the
strong-pinning framework, this weak-pinning regime κ < 1 is
associated with a vanishing average pinning force Fpin = 0 and
hence jc = 0. At the same time, the absence of force jumps
is associated with a divergent Campbell length λC = ∞ (see
following). These results are modified if collective phenomena
are included in the model, a topic that goes beyond this work.

For κ > 1, the pinning force profile fpin(x) turns multi-
valued with inflection points at ±x− and ±x+ (0 < x− < x+)
where Eq. (23) diverges (see Fig. 2). Between the two inflection
points x±, two stable and one unstable branch exist, the latter
being characterized by u′(x)/f ′

p[x + u(x)] < 0. The two stable
branches are smoothly connected to a vortex trapped by the pin
and a vortex detached from the pin, respectively. Hence, we
shall use the terminology “pinned” and “unpinned” branches
for these two solutions. The pinning region |r| < x−, where
only the pinned branch exists, defines the transverse trapping
length t⊥ = 2x−. For strong pinning, the pinscape produces
a finite macroscopic pinning force density by asymmetrically
populating the different branches of fpin(x).

Hence, the Labusch criterion [27] κ = f ′
p(xm)/C̄ = 1, with

maxx[f ′
p(x)] = f ′

p(xm) realized at xm, serves as a quantitative
separation between the regimes of weak (κ < 1) and strong
(κ > 1) pinning. As pinning vanishes altogether at κ < 1, one
often uses the distinction between weak, intermediate, and
strong “strong-pinning” regimes with different jc scalings jc ∝
(κ − 1)2 and jc ∝ κ2 at the two extremes. With the formalism
of strong pinning at hand, we are now ready to discuss the
physical implications of vortex pinning by a low density of
pinning centers.

B. Critical current

For randomly and homogeneously distributed pinning sites
with a small density np (see following for a quantitative
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U >0

x

fpin

x+−x−−x+

fup
pin

fup
pin

fp
pin

U<0

U<0

x−

FIG. 3. Occupation of the pinned (f p
pin) and unpinned (f up

pin)
branches in the critical state (blue). A macroscopic displacement
of all vortices to the left, U < 0, results in a new branch occupation
(green), with vortices populating the pinned (unpinned) branch below
−x− (x+) while the corresponding states on the unpinned (pinned)
branch get depleted; this change in occupation leads to a decrease
of the macroscopic pinning force density. On the other hand, for a
uniform shift of all vortices to the right with U > 0, vortices within
a distance U to the left of the branch edge irreversibly jump to the
other stable solution (see inset). This process does not lead to a net
change in branch occupation and the pinning force remains at its
critical value.

criterion), the macroscopic pinning force density Fpin results
from proper averaging of the microscopic forces (22),

Fpin = np〈fpin〉 = np

t⊥
a0

∫
dx

a0
fpin(x)

∣∣∣
o

(24)

with fpin(x)|o ≡ fp[x + uo(x)] referring to the occupied
branches uo in the effective force profile fpin(x). In the
zero-field-cooled (critical) state, the pinning landscape acts
with the critical force density Fpin = −Fc against the Lorentz
force density jB0/c, thus defining the critical current density
jc = cFc/B0. This maximal pinning force density is achieved
when the pinned branch up(x) is occupied in a maximally
asymmetric way between −x− to x+ (see Fig. 3). Combining
Eqs. (22) and (24), we arrive at a microscopic expression for
the critical current jc = −(c/B0)Fc:

jc = cnpt⊥
�0

�epin, (25)

where �epin denotes the sum of the jumps in epin(x) between
pinned and unpinned branches at the positions −x− and x+.
More precisely,

�epin = (
eup

pin − ep
pin

)∣∣
−x−

+ (
ep

pin − eup
pin

)∣∣
x+

, (26)

where the superscripts “up” and “p” denote unpinned and
pinned branches. While Eq. (25) provides a quantitative
expression for the critical current density within strong-
pinning theory, we may use t⊥ ∼ ξ and �epin ∼ fpx+ ∼ f 2

p /C̄

(with fp the typical strength of the bare pinning force and
x+ ∼ κξ ) to arrive at a qualitative estimate for the critical
current jc ∼ cnpξf 2

p /�0C̄. Together with the scaling C̄ ∝
(�0/4πλ)2/a0 = ε0/a0 of the effective elasticity at low fields,
we arrive at

jc ∼ jdp (npa0ξ
2) (κξ/a0)2, (27)

with the depairing current jdp = c�0/(12
√

3π2λ2ξ ) and the
small parameter npa0ξ

2 � 1 defining the regime of three-
dimensional (3D) strong pinning (see Ref. [22]). The field scal-
ing jc ∝ 1/

√
B0 is in agreement with the results obtained in the

early work on strong pinning by Ovchinnikov and Ivlev [35].

C. Campbell length

The Campbell penetration depth λC is another measurable
quantity characterizing the pinning landscape. In a micro-
scopic derivation of λC, we have to find the dynamical change
in pinning force δFpin[U (X,t)]. The latter is determined by the
change in branch occupation due to the macroscopic displace-
ment U of the vortex lattice. As shown in the following, the
macroscopic Campbell length relates to �fpin, the sum of the
jumps in fpin(x) between occupied and unoccupied branches,

1

λ2
C

= 4πnpt⊥
B0�0

�fpin, (28)

and hence probes another quantity than jc [Eq. (25)]. We derive
this result for two initial states of particular importance, the
zero-field-cooled (or Bean critical) state and the field-cooled
state.

1. Bean critical state

The Bean critical state, as described in Sec. III B, is
characterized by the maximal or critical pinning force Fpin =
−Fc with an asymmetric branch occupation. Hence, depending
on the sign of U , the branch occupation will be affected
differently. Specifically, for a macroscopic shift of all vortices
in the direction of the Lorentz force, i.e., x → x + U with
U > 0, most vortices adiabatically follow their branch u(x) →
u(x + U ). The few vortices on the unpinned (pinned) branch
at distances less than U away from the branch edge at −x−
(x+) will be pushed beyond that boundary and irreversibly
jump to the pinned (unpinned) solution (see inset of Fig. 3).
Hence, a displacement U > 0 leads to (i) a net penetration
of vortices into the sample while (ii) leaving the branch
occupation unchanged, i.e.,

δFpin(U > 0) = 0. (29)

On the other hand, for a displacement x → x + U to the left
with U < 0, i.e., against the critical slope, all vortices adia-
batically follow their branches. The occupation of the pinned
branch then is shifted to lie between −x− + U and x+ + U (see
Fig. 3). Similarly, the unpinned branch is occupied until −x− +
U and onwards from x+ + U . The change in pinning force
δFpin(U ) is obtained from the difference of the pinning force
(24) evaluated for the critical state shifted by U , leading to

δFpin(U < 0) =npt⊥
a2

0

[ ∫ −x−

−x−+U

dx
[
f p

pin(x) − f up
pin(x)

]

+
∫ x+

x++U

dx
[
f up

pin(x) − f p
pin(x)

]]
(30)

≈ − npt⊥
a2

0

[(
f p

pin − f up
pin

)∣∣
−x−

+ (
f up

pin − f p
pin

)∣∣
x+

]
U

= − npt⊥
a2

0

�fpin U. (31)
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This drop in the critical force always appears when
vortices start moving to the left and is associated with
a reduction of U (X,t) with increasing time. In order to
follow dynamically the appearance and disappearance of this
term in the equation of motion, we introduce the max-field
U0(X,t) = maxt ′<t U (X,t). Whenever U (X,t) changes the
direction of motion from right to left, U starts deviating from
U0. The argument U in Eq. (31) should then be replaced by
U − U0. In the end, the piecewise change of the pinning force
entering the macroscopic equation of motion (5) reduces to
the simple expression

δFpin(U ) = −αsp(U − U0), (32)

and satisfies both Eqs. (29) and (31). In the above expression,
the underlying pinning potential enters solely through the
coefficient αsp = (npt⊥/a2

0)�fpin. This coefficient can be
understood as the mean curvature of the pinning energy

αsp = np〈e′′
pin〉 = −npt⊥

a0

∫
dx

a0
f ′

pin(x)|o, (33)

similar to the mean force in Eq. (24) defining the critical
current density jc.

The asymmetric response of the vortex system to an
increasing versus decreasing field is associated with a peculiar
transient initialization towards a periodic vortex motion, where
on every ac cycle vortices are pumped (and diffusively
penetrate) into the sample, asymptotically changing the dc
field from B0 to B0 + hac after many cycles. A detailed
discussion of this process is presented in Ref. [26], where
it is shown that the number of cycles needed to shift the
critical state from B0 to B0 + hac within the depth of the
Bean profile L = cB0/4πjc is about N = (πL/2�D)2, with
�D = (B2

0/2ωη)1/2 the diffusion length per cycle period 2π/ω.
After this rectification process, vortices move reversibly in
their wells as U always remains below U0. The latter reaches
the asymptotic form U0(X) = (hac/B0)(L − X). For a sample
of finite thickness d < 2L along X, d/2 replaces L is the
expression for N and U0. The reversible dynamics of vortices
after the initialization can be solved by substituting the variable
δU (X,t) ≡ U (X,t) − U0(X) into Eq. (5) and one finds

δU (X,t) = −λC(hac/B0)e−X/λC [1 − e−iωt ]. (34)

The ac response of the vortex lattice in the critical state

δB(X,t) = hace
−X/λCe−iωt + hac[1 − e−X/λC ] (35)

is regular and involves the Campbell length λC given by
Eq. (28). The asymptotic solution consists of an oscillatory
response within a surface layer ∼λC and a rectified dc part
that has penetrated deep into the bulk. This behavior is
very similar to the critical ac response discussed by Bean
[18] (Bean penetration), where large-amplitude oscillations
hac � jcλC/c generate a nonlinear response. An extended
comparison between these two scenarios is given in Ref. [26].

2. Field-cooled state

The field-cooled state is characterized by vanishing net
currents and net pinning forces. In the strong-pinning regime,
the vanishing pinning force translates into a symmetric
occupation of the branches, with jumps between the pinned and

unpinned branches located at ±xjp ∈ [x−,x+]. If this position
is away from the branch edges x±, the oscillation is always
reversible. If xjp coincides with one of the branch edges x±,
a one-cycle initialization process reshuffles few vortices near
the branch edges, after which the oscillation is reversible and
the result in Eq. (28) involves the jumps at ±x±. Hence,
no complex initialization process needs to be studied for the
field-cooled situation and the change in the pinning force is
always given by the expression

δFpin(U ) = −npt⊥
a2

0

�fpinU, (36)

with �fpin now involving two identical jumps at ±xjp.
In order to quantify the Campbell length in the field-cooled

state, the central remaining task is to determine the precise
position of the jump xjp within the interval [x−,x+] and find the
corresponding jump �fpin upon changing the temperature T .
For insulating or metallic inclusions, where pinning smoothly
increases when crossing Hc2(T ) (see following), we can follow
the branch occupation as a function of T as the system evolves
from weak (κ < 1) to strong (κ > 1) pinning through the
Labusch point κ(TL) = f ′

p(xm)/C̄|TL = 1 defining the Labusch
temperature TL (here, xm denotes the point of maximal slope
f ′

p). Above the Labusch temperature, T > TL, the force profile
is single valued, the critical current vanishes [see Eq. (25)], and
the Campbell length is formally infinite [see Eq. (28)] due to
the absence of jumps. These singular results are regularized
once collective pinning effects are considered. Upon lowering
the temperature, the system reaches the Labusch point κ(TL) =
1, where the pinning force fpin develops a vertical slope at
x0L, f ′

p[x0L + u(x0L)] = C̄ [see Eq. (23)]. The combination
with Eq. (21) and the Labusch criterion f ′

p(xm) = C̄ provides
us with the relation x0L = xm − fp(xm)/C̄|TL . Lowering the
temperature T further below TL, the pinning force fpin turns
multivalued within the intervals ±[x−,x+] (see Fig. 2).

Depending on the temperature scaling of the elastic and
pinning forces, we have identified three possible scenarios
defining the (symmetric) jump positions ±xjp in the branch
occupation (see Fig. 4). In the first case (a), the branch edges
x± move away from x0L in opposite directions, x− < x0L <

x+. The second case (b) describes the situation where both
boundaries x± become larger than x0L upon cooling, x0L <

x− < x+, while they become smaller in the third case (b′),
x− < x+ < x0L.

In the simplest case (a), vortices at x < x0L (x > x0L) follow
adiabatically the evolution of the pinned (unpinned) branch
and the occupation jumps at xjp = x0L, such that �fpin =
2�fpin|x0L enters the expression (28) for the Campbell length,
with �fpin|x0L denoting the jump in fpin at x0L. In case (b),
the unpinned branch, initially existing for x > x0L, becomes
unstable in the interval [x0L,x−]. As a result, vortices with
x0L < x < x− now occupy the pinned branch and the force
jump appears at xjp = x−, with �fpin = 2�fpin|x− entering
λC. Similarly, in case (b′), the vortices populate the unpinned
branch in the interval [x+,x0L] where the pinned solution has
stopped existing. The Campbell length then involves the jumps
at ±x+.

The repopulation of vortices from the unpinned to the
pinned branch in case (b) [or vice versa in case (b′)] leads
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case (b’)

xjp > x0L

x0L x

case (b)

xjp = x0L

case (a)

fpin

xjp < x0L

FIG. 4. Upon lowering the temperature below the Labusch
temperature T < TL, the force profile turns multivalued with the
bistable region centered about x0L [case (a)], to its right [case (b)],
or to its left [case (b′)]. Specific microscopic pinning mechanisms
(see text) entail one of these three cases, each associated with its
force jump at xjp. These force jumps �fpin (red lines) are probed by
a measurement of the Campbell length λC.

to a hysteretic response if the system is reheated after the
cooling process. Consider a system in case (b) cooled to the
minimal temperature Tmin and subsequently reheated. Upon
cooling, vortices on the unpinned branch become locally
unstable at x−(T ) and the jump in occupation follows x−(T );
the Campbell length Eq. (28) involves �fpin = 2�fpin|x−(T )

(see the discussion above and Fig. 5). Upon reversing the
temperature sweep at Tmin, the jump is locked to x−(Tmin) as
all vortices remain stable within their branches; the Campbell
length now involves the jumps �fpin = 2�fpin|x−(Tmin). With
the temperature increasing further, vortices on the pinned
branch become locally unstable at x+(T ) � x−(Tmin) and the
jump in occupation follows x+(T ); the Campbell length then
involves the jumps �fpin = 2�fpin|x+(T ). The difference in the
force jumps then naturally leads to a hysteretic behavior of the
Campbell length λC.

In order to provide a quantitative insight into the evolution
of x± away from (but close to) x0L, we expand the bare pinning
force around xm,

fp(x) ≈ fp(xm) + f ′
p(xm)(x − xm) − γ

3
(x − xm)3, (37)

with f ′′
p (xm) = 0 and γ ≡ −f ′′′

p (xm)/2 > 0. These two con-
ditions originate from the definition of xm as the location
maximizing f ′

p(x). Using the above expression in combination
with Eqs. (21) and (22) allows us to find the inflection points
x± in u(x) [or fpin(x)] characterized through a vanishing de-
nominator on the right-hand side of Eq. (23). A straightforward
calculation provides the result

x± = x0 ± 2

3

√
C̄

γ
(κ − 1)3/2, (38)

0

Tc

Tmin

T3

T2

T1

TL

T1

T2

xjp

T3

Tmin

T3

T1

TL

case (b)x−(Tmin) xx0L

x−(Tmin)

FIG. 5. Illustration of the evolution of the force profile at different
temperatures TL > T1 > T2 > T3 > Tmin [case (b) in Fig. 4], and
the associated hysteresis in the force jump position xjp (inset) upon
cooling from TL down to Tmin and subsequent heating. Upon cooling,
the force jump probed by the Campbell length is positioned at the
branch edge xjp = x− (blue). During reheating, the jump’s position
first remains fixed at xjp = x−(Tmin) (green). At the temperature T2,
the edge at x+ coincides with the position x− previously reached at
Tmin. When the temperature increases above T2 the force jump follows
the other branch edge at x+ (red).

where x0(T ) = xm − fp(xm)/C̄|T is a generalization of x0L =
x0(TL). Case (a) is realized when x0(T ) = x0L to order
(κ − 1)2, i.e., the relevant jump is at x0L. Solving the self-
consistency equation (21) for u±(x0L) and using the relation
�u|x0L ≡ [u+ − u−]x0L = �fpin|x0L/C̄, we find the force jump

�fpin|x0L = 2
√

3C̄

√
C̄/γ (κ − 1)1/2. (39)

However, case (a) is a special situation since the term linear
in (κ − 1) in the expansion of x0 [see Eq. (38)] has to vanish.
For the generic cases (b) and (b′), the relevant jumps are at
x− and x+, respectively. Solving the cubic self-consistency
equation (21) for u(x+), we find one doubly degenerate
solution u+ for the deformation at the edge of the pinned
branch and a nondegenerate solution u− within the unpinned
branch. The force jump at x+ then amounts to C̄|u+ − u−|. A
similar analysis can be carried out for u(x−); to this order in
the expansion (37), both jumps turn out identical and take the
form

�fpin|x± = 3C̄

√
C̄/γ (κ − 1)1/2. (40)

Within the same approximation, the Campbell length in the
Bean critical state involves one jump at −x− and one at x+;
since both jumps are equal, the result for the zero-field-cooled
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state coincides with that for the field-cooled states of cases (b)
and (b′). On the other hand, the nongeneric case (a) features
a smaller Campbell length since the associated jump centered
between x− and x+ is larger by a factor 2/

√
3 ≈ 1.155.

Away from the Labusch point, the degeneracy of the cases
(b) and (b′) is removed and all force jumps are different,
with λC|FC(b′) < λC|ZFC < λC|FC(b). Simple expressions can be
provided in the limit κ � 1, where the force jump at xjp

assumes the approximate value �fpin|xjp � C̄xjp (note that the
pinned branch is well described by fpin = −C̄x away from
the Labusch point). These jumps appear at x+ = κξ for case
(b′) and x0L � ξ for case (a). The jump at x−(κ) for case (b)
depends on the tail of the force profile fp(x) far from the pin.
For a power-law decay fp(x) ∝ −(ξ/x)n, we find x−(κ) �
ξκ1/(n+1), while for an exponential tail fp(x) ∝ − exp(−x/ξ ),
we have x−(κ) � ξ ln(κ). We then find

λ2
C|FC(b′)

λ2
C|ZFC

� 1

2
,

λ2
C|FC(b)

λ2
C|ZFC

� κξ

2x−(κ)
,

λ2
C|FC(a)

λ2
C|ZFC

� κ

2
, (41)

with

1

λ2
C|ZFC

� 4πnpt⊥
B0�0

C̄κξ. (42)

If one neglects the weak dependence of t⊥ = 2x− on κ ,
the two last relations in (41) tell that the information on
the pinning force fp disappears from the Campbell length
in the field-cooled cases (a) and (b). More precisely, following
the discussion above, the residual weak dependence of x− on
κ provides information on the decay of fp(x) at large x > ξ .

Applying the same estimates as in Sec. III B to the zero-
field-cooled Campbell length in Eq. (42), we arrive at the
qualitative scaling

λ2
C|ZFC ∼ λ2

npa0ξ 2 κ
> λ2. (43)

Similar to the critical current (see Sec. III B), the Campbell
length involves the small parameter npa0ξ

2 � 1 characteristic
of the 3D strong-pinning limit [22].

3. High fields

In the discussion above, we have analyzed the interaction
of pinning centers with a single flux line. In high fields, where
the vortex separation a0 is comparable to the maximal pinning
length x+ ∼ κξ , this picture needs to be modified as the peri-
odicity of the pinning potential has to be properly accounted
for. In the vicinity of Hc2, the pinning potential is dominated
by the lowest harmonic ep(x) ∝ [1 − cos(2πx/a0)], and the
corresponding force takes the form fp(x) ≈ −f0 sin(2πx/a0).
Analyzing the characteristic lengths for the present situation,
one finds that (i) the position xm of steepest slope in fp

coincides with a0/2, (ii) x0L = xm − fp(xm)/C̄ = xm because
fp(xm) = 0, and (iii) x0(T ) = x0L because of symmetry argu-
ments. Furthermore, the branch edges ±x− have disappeared
and those at ±x+ overlap with the next period, i.e., |x+| > a0/2
(see Fig. 6). As a result, in a zero-field-cooled sample, the
high-field limit of the Campbell length λC is always determined
by the single jump at a0/2, �fpin = �fpin|a0/2; in analogy to
our previous nomenclature, we call this the case (a′) and note
that this nonhysteretic behavior becomes the generic case at

field cooled

−a0/2
0

x+ a0

x

zero-field cooled

−a0

FIG. 6. Branch occupation at high fields when the vortex system
is prepared in the field-cooled (left) and zero-field-cooled (right)
states. At high fields, the unpinned branch has disappeared and the
Campbell length involves a single jump in force �fpin = �fpin|xjp

at xjp = −a0/2 (xjp = x+) indicated with a blue (red) dashed
line for the (zero)-field-cooled system. Coordinates are equivalent
modulo a0.

high fields. In the zero-field-cooled (or Bean critical) state, the
penetration depth λC involves the slightly smaller jump at x+,
�fpin = �fpin|x+ , and hence λC|FC � λC|ZFC.

Again, simple closed-form expressions can be found at
small values of κ � 1. Near the Labusch point, the results (39)
and (40) remain valid [with γ = (4π3/a3

0)f0 and x0L → a0/2],
from which expressions for λC follow immediately. At large
κ , the low-field result �fpin � C̄κξ is cut off by the lattice
period when κξ > a0 and hence �fpin � C̄a0, resulting in a
Campbell length

λ2
C � B0�0

4πnpt⊥

1

C̄a0
∼ λ2

npa0ξ 2

ξ

a0
, (44)

a factor κξ/a0 larger than the low-field result (43). However,
for such strong pinning the applicability of the elastic theory
becomes questionable. Indeed, as suggested by numerical
analysis [36,37], the elastic theory might break down due to
plastic instabilities of the vortex lattice. It has been shown
[36] that a vortex detaches from an infinitely strong-pinning
center via loop formation and subsequent vortex cutting and
reconnection, which is a highly nonelastic process. Similarly,
a computational study based on a time-dependent Ginzburg-
Landau solver [4,37] has demonstrated that small pinning
centers are not capable of holding multiple vortices at the
same time. Indeed, rather than trapping a second flux line,
the defect trades one vortex for the next, with the first vortex
pushed out of the pinning well by the following one. These
insights suggest that the maximal pinning distance x+ should
be limited to a0, producing a force jump �fpin � C̄a0. This
result coincides with the one above and the Campbell length
is still given by Eq. (44). The situation is more subtle when
considering the value of jc at high fields and strong pinning.
Assuming the elastic theory to remain valid, one obtains a
jump in energy �epin = f0a0 and jc is reduced by a factor
a0/κξ < 1 as compared to the low-field result (27) (note that
multiply overlapping pinned branches appear when κξ > a0).
Accounting for plasticity, the jump in energy is even further
reduced �epin ≈ C̄a2

0/2, and the critical current takes the
universal form jc ∼ jdp(npa0ξ

2), a factor (a0/κξ )2 smaller
than the low-field result (27).

For mid-range magnetic fields, neither the single vortex
nor the sinusoidal force profile is accurate. Starting from the
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limit of high fields, in addition to the basic sinusoidal force
profile, further higher-order harmonics need to be taken into
account. As the field is sufficiently lowered, the position xm

of the maximal slope in the (bare) force profile detaches from
a0/2, and a second (unpinned) branch develops.

4. Comparison between different regimes

It is interesting to analyze the scaling behavior of the
Campbell length as a function of the strong-pinning parameter
κ . Indeed, when expressing λ2

C [Eq. (28)] in units of λ2/νp,
with νp = npa0ξ

2 the dimensionless small density parameter,
we find

νp

λ2
C

λ2
∼ C̄ξ

�fpin

ξ

t⊥
, (45)

where we have used that C̄ ∼ ε0/a0 (see Sec. III A). When
pushing the system across the Labusch point κ = 1 into
the strong-pinning regime, we find a universal scaling [see
Eqs. (39) and (40)]

νp

λ2
C

λ2
∼ 1√

κ − 1
, (46)

which is valid at all fields and for the different vortex states
FC and ZFC (see Fig. 7). Combining this result with the
standard scaling [22] of the critical current density jc ∼
jdpνp(ξ/a0)2(κ − 1)2 in the vicinity of the Labusch point, we
arrive at the relation jc ∼ (cξB0/λC)(κ − 1)3/2 which strongly
differs from the scaling jc ∼ cξB0/λC obtained within a
phenomenological approach. At intermediate values of κ , we
can write �fpin ∼ C̄xjp with xjp = x−, x0L � ξ, x+ for the
cases FC (b), FC (a), and ZFC/FC (b′). For the cases FC (b)
and (a) the further change in νpλ2

C/λ2 is small, ∝ ξ/t⊥ and

ν p
(λ

C
/λ

)2

2

∝ 1/(κ − 1)1/2

κ

(b)
(a)
FC

ZFC
(b’)

1

1

FIG. 7. Schematic view of the κ dependence of the parameter
νp(λC/λ)2, with νp = npa0ξ

2 � 1 the small dimensionless density
parameter. Upon crossing the Labusch point κ = 1 and entering
the strong-pinning regime, all curves first decrease as 1/(κ − 1)1/2.
Subsequently, the cases FC (a) and FC (b) decay weakly ∝ ξ/t⊥
and ∝ ξ 2/t⊥x−, respectively. The cases ZFC and FC (b′) decay more
rapidly ∝ ξ/κt⊥. At large κ , the decrease slows down when x+ � κξ

and x− reach the scale a0; note that t⊥ = 2x− within our analysis.
The field-cooled cases (b) and (b′) exhibit a hysteretic response upon
reversing the direction of κ (see dashed line). The hysteresis loop
shown for case FC (b) merges with the curve FC (b′) when taking κ

back to unity. Similarly, reversing κ on curve FC (b′) one approaches
the curve FC (b) (not shown).

∝ ξ 2/t⊥x−, respectively, while a pronounced decrease appears
for the ZFC and FC (b′) cases, ∝ ξ/κt⊥. At large κ � 1, the
quantities x−, x+, t⊥ saturate as they reach the scale a0, with a
corresponding change in the expression for νpλ2

C/λ2. Finally,
case FC (b′) assumes that x+ � κξ decreases with increasing
κ and naturally terminates when this condition is violated. The
scaling behavior of νpλ2

C/λ2 and the appearance of hysteretic
behavior upon reheating is illustrated in Fig. 7. The low-
field scaling discussed above changes over to the high-field
behavior (see Sec. III C 3, νpλ2

C/λ2 ∝ 1/
√

κ − 1, 1 at small
and large κ > 1, respectively) when the intervortex distance
a0 approaches ξ . These results can be used to characterize
the pinscape by combining theoretical input on κ(T ,H ) for
various pinning models (see following) with experimental data
for λC. Such information is of great value when simulating
vortex dynamics within a numerical approach, e.g., using
time-dependent Ginzburg-Landau theory [4,5].

IV. PINNING MODELS

In order to proceed further towards quantitative predictions
of the Campbell response, we have to specify all relevant
quantities entering the pinning problem. In particular, the
temperature and field dependencies of the vortex elasticity C̄

and the pinscape energy ep have to be determined. This is the
central topic of this section and will allow us later to follow the
evolution of the effective force fpin upon cooling and reheating
the system in the field as typically done in an experiment. Here,
we focus on the comparison between different pinning models
and defer the comparison to experiments to Sec. V.

The T and H dependencies of the effective elasticity C̄ and
of the pinning energy ep is mainly determined by the Ginzburg-
Landau parameters λ and ξ , with the superfluid density
ns ∝ λ−2 scaling both with temperature and field, λ−2 �
λ−2

0 (1 − T/Tc)[1 − B/Hc2(T )] � λ−2
0 (1 − τ − b0), while the

coherence length scales with temperature only, ξ−2(T ) =
ξ−2

0 (1 − τ ). Here, we have used the scaling of the upper critical
field Hc2(T ) = �0/2πξ 2(T ) and have introduced the reduced
temperature τ = T/Tc and the reduced field b0 = B0/Hc2(0).
Note that the superfluid density vanishes on approaching
Hc2(T ) where 1 − τ − b0 = 0. In this section, we shall not
burden our expressions with the more complicated details of
the H and T dependencies in the superconducting phase but
rather extrapolate the Ginzburg-Landau scaling valid near Tc

to the entire phase diagram. In Sec. V, where we confront our
predictions with experimental data, a more accurate scaling
will be chosen.

The Labusch parameter is given through the ratio of
pinning curvature and elasticity κ = maxx[−e′′

p(x)]/C̄. For
small defects, we approximate the curvature −e′′

p ≈ e0Vpin/ξ
2,

with e0 the typical gain in energy density and Vpin the relevant
pinning volume, hence

κ ≈ e0Vpin

ξ 2C̄
. (47)

In the following, we consider four different pinning models
(metallic and insulating inclusions, as well as δTc or δ�

pinning) and evaluate the behavior of κ within the H -T phase
diagram.
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A. Elasticity C̄

We first evaluate the effective elasticity C̄, a quantity
that is independent of the chosen pinning model. Starting
from its definition (14) and the subsequent discussion, the
effective elasticity C̄ = (νa2

0/λ)[c66c44(0,0)]1/2 involves the
nondispersive shear (c66) and the bulk tilt [c44(0)] moduli as
well as the London penetration depth λ. Inserting the standard
expressions [30,38] for the elastic moduli

c44(0,0) = B2
0

4π
and c66 � ε0

4a2
0

[
1 − B0

Hc2(T )

]
(48)

and using the scaling ε0 ∝ (1 − τ − b) while c66 ∝ (1 −
B0/Hc2)2(1 − T/Tc) = (1 − τ − b)2/(1 − τ ) we find that

C̄ = ν

(
�0

4πλ0

)2
√

b0

2ξ 2
0

(1 − τ − b0)3/2

(1 − τ )1/2
. (49)

The factor (1 − τ − b0)3/2 describes the softening of the lattice
near the Hc2 line.

B. Small defects

We consider a defect in the form of a small inclusion of
radius ρ � ξ . A vortex placed a distance x away from this pin
will experience an energy decrease

ep(x) = −
∫

dx ′e0(x ′) [1 − |ψ0(x − x ′)|2]. (50)

The shape of the vortex solution ψ0(x) can be obtained within
Ginzburg-Landau (GL) theory [39]; at low fields, it is well
described by the expression [40,41] |ψ0(x)|2 = x2/(x2 + 2ξ 2),
producing a Lorentzian shape for the pinning potential

ep(x) = − e0Vpin

1 + x2/2ξ 2
. (51)

In the high-field limit 1 − B0/Hc2 � 1, we approximate the
vortex solution [42] by the one-dimensional harmonic

|ψ0(x)|2 = 1
2 [1 − cos(2πx/a0)], (52)

and evaluating Eq. (50), we arrive at a periodic pinning profile

ep(x) = −e0Vpin

2
[1 + cos(2πx/a0)]. (53)

C. Insulating defect

For an insulating inclusion, the typical energy that a vortex
state gains by aligning a flux line with the defect is determined
by the condensation energy density and the pin volume. The
former derives from a minimization of the Ginzburg-Landau
[39] (GL) functional fGL = α|ψ |2 + β|ψ |4/2, providing an
order parameter |�0|2 = |α|/β; inserting this back to fGL,
we obtain e0 = −|α|2/2β. While in standard GL theory the
temperature dependence derives from α(T ) = α0(T − Tc) =
−α0Tc(1 − τ ), close to the Hc2(T ) line we can adopt a lowest
Landau level approximation of the GL functional [43] by
replacing this temperature dependence with a temperature
and field dependence α(T ,B) = −α0Tc(1 − τ − b0) (the order
parameter then assumes the role of the amplitude of the
space-modulated solution). The combination with the expres-
sion for the (zero-temperature) thermodynamic critical field

2

κ
1

1

T/Tc 1 T/Tc 1

1T/TcT/Tc 1

(a)

H
/H

c2
(0

)
H

/H
c2

(0
)

(c)

(b)

(d)

4

3

1

FIG. 8. Generic density plot of the strong-pinning parameter
κ(T ,H ) for four different pinning models. The Labusch criterion
κ = 1 determines the transition line (bold), where the pinscape
changes from weak (κ < 1) to strong (κ > 1) pinning. Depending
on the parameters, this separatrix assumes a different shape and
location in the diagram. For insulating (a) and metallic (b) inclusions,
the pinscape is weak upon crossing Hc2(T ) and turns strong at low
fields/temperatures [see Eqs. (55) and (56), respectively]. For defects
inducing a local change in Tc (c) or in the mean-free path � [via a
local change of the effective mass, panel (d)] the pinscape is strong
upon entering the superconducting phase [see Eqs. (58) and (61),
respectively]. For a good visibility of all the features, we have used
the parameters ρ3 = 2ξ 3

0 and δTc/Tc = δ�/� = 0.5.

H 2
c0/4π = α2

0T
2
c /β then produces an overall temperature and

field scaling of the condensation energy of the form

e0(T ,B0) ≈ H 2
c0

8π
(1 − τ − b0)2, (54)

in agreement with the discussion in [44]. Combining this result
with the effective elasticity C̄ in Eq. (49), we make use of
Eq. (47) to find the following explicit dependence on b0 and τ

of the strong-pinning parameter:

κ ≈ ρ3

ξ 3
0

√
1

b0
(1 − τ )3/2(1 − τ − b0)1/2. (55)

For insulating pins, the strong-pinning parameter reveals two
important asymptotic regimes [see Fig. 8(a)]. First, κ vanishes
along the entire Hc2 line defined through 1 − τ − b0 = 0.
As a consequence, the insulating defects act as weak pins
upon crossing Hc2(T ). Second, κ grows as b

−1/2
0 at low fields

(a consequence of the softening of C̄ at low fields), thus
guaranteeing that the defect turns into a strong-pinning center
with κ > 1.

D. Metallic defect

A similar thing happens in the case of a metallic defect
which affects the superconductor via the proximity effect.
For a metallic inclusion, the order parameter is substantially
suppressed within a volume ∼ξ 3 around the pin. This provides
the possibility for the flux-line lattice to gain the condensation
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energy density (54) over a larger volume Vpin → V eff
pin ≈

(4π/3)ξ 3. In this case, the real size of the defect drops out
of the final result and the strong-pinning parameter

κ ≈
√

1

b0
(1 − τ − b0)1/2 (56)

shows a qualitatively similar behavior as the insulating pin
in Eq. (55) [see Fig. 8(b)]: the metallic pins are weak upon
entering the superconducting phase when traversing the Hc2

line and they turn strong at low temperatures and fields where
κ ≈ b

−1/2
0 .

E. δTc pinning

A very different pinning behavior is observed when defects
locally change the critical temperature Tc → Tc − δTc. Such
a local variation in Tc has to be included in the quadratic term
of the GL energy functional and adds a correction α0δTc|ψ |2.
Making use of the above results for |ψ |2 and H 2

c0, we arrive at
the following expression for the local energy gain:

e0(T ,B0) ≈ H 2
c0

4π

δTc

Tc

(1 − τ − b0). (57)

The combination with the expression (49) for the elasticity C̄

provides the scaling for κ in the form

κ ≈ ρ3

ξ 3
0

δTc

Tc

√
1

b0
(1 − τ )3/2(1 − τ − b0)−1/2. (58)

As a result, κ is divergent both at low fields b0 → 0 and near the
Hc2(T ) line. On the other hand, the factor (1 − τ )3/2 suppresses
κ near Tc. This leads to a peculiar weak-pinning lobe extending
from (Tc,H = 0) into the phase diagram [see Fig. 8(c)].
Lowering the temperature at a constant field (horizontal cut) or
changing the field at a constant temperature (vertical cut), the
system might cross the Labusch point twice, changing from
strong to weak and back to strong pinning. As observed by
Larkin and Ovchinnikov [21], the strengthening of pinning
near Hc2(T ) manifests itself in a sharp increase of the critical
current, a feature known as peak effect [45,46].

F. δ� pinning

Finally, we address the pinning due to local changes
of the mean-free path � → � − δ�. The dependence of the
Ginzburg-Landau functional on the mean-free path appears
in the gradient term (�2/2m)|∇ψ |2. Indeed, a microscopic
calculation [47] provides the additional factor χ (ρ�), ρ� =
�vF/2πTc� � ξ0/�, with χ ≈ 1 and χ ≈ [π2/7ζ (3)]/ρ� in the
clean and dirty limits, respectively. As a result, the coherence
length ξ (T ) depends on disorder via

ξ 2 ≈ ξ 2
0 χ (ρ�)/(1 − τ ) (59)

with ξ0 the T = 0 clean-limit coherence length. The
(quenched) fluctuations in � translate into fluctuations in the
gradient term and entail a change in the energy density e0 of
the form

e0(T ,B0) ≈ H 2
c0

4π

δ�

�
(1 − τ )(1 − τ − b0). (60)

We then arrive at a Labusch parameter in the form

κ ≈ ρ3

ξ 3
0

δ�

�

√
1

b0
(1 − τ )5/2(1 − τ − b0)−1/2, (61)

exhibiting a qualitative similar behavior as the one found for
δTc pinning but with a larger exponent 5

2 for the (1 − τ ) factor
( 3

2 for δTc pinning), pushing the weak-pinning lobe deeper into
the phase diagram [see Fig. 8(d)].

V. COMPARISON TO EXPERIMENTS

Equipped with a microscopic expression for the Campbell
penetration depth, we discuss experimental signatures that
provide strong support for our new results. Following, we focus
on few original studies by Campbell [6,7] and Lowell [8,48] as
well as more recent studies by Prozorov and co-workers (see
Refs. [17,20,49]).

A. General comparison

We have identified four major experimental signatures that
find a natural explanation within our analysis of ac magnetic
response.

a. Low versus high dc fields. In early work, e.g., by
Campbell [6] or Lowell [8], it has been noted that the ac
magnetic response does not depend on the state preparation
(field cooled or zero field cooled). A simple (piecewise linear)
force model was put forward [7,48] in support of this result.
The dependence of the ac magnetic penetration depth λC on
the vortex-state preparation was first reported by Prozorov and
co-workers [17]. In recent years, different Campbell lengths
for the field-cooled and zero-field-cooled states have been
observed [20,49] in a wide range of materials, including
niobium, MgCNi3, SrPd2Ge2, the high-temperature super-
conductor Bi2Sr2CaCu2O8, Pr1−xCexCuO4, and the organic
superconductor β ′′-(ET)2SF5CH2CF2SO3. The new results
provided by our strong-pinning analysis are compatible with
both types of observations: at high dc fields, the typical setup of
early experiments, the Campbell lengths are (almost) identical
(see Sec. III C 3), while they are different (sometimes even
parametrically) at low fields (see Secs. III C 1 and III C 2).

b. Finite λC in the critical state. The phenomenological
theory, on which the interpretation of most ac experiments
has been based so far, predicts [17] a divergent Campbell
length for the zero-field-cooled state λC ∝ (1 − j/jc)−1/4, as
the curvature α(j ) ∝ (jc − j )1/2 of the pinning well vanishes
on approaching the critical state. Not only is the experimentally
observed Campbell length in the Bean critical state finite, but
in some materials it is even smaller than that of the field-cooled
state λC|ZFC < λC|FC. Both features are well understood within
the strong-pinning framework. The Campbell length λC results
from an averaging of the local curvature which can (depending
on the pinning parameters) get reduced when changing the
branch occupation from the field-cooled state to the zero-field-
cooled state. In the latter situation, the application of an ac
field will first generate flux pulses that penetrate the sample
and change the dc field inside the material [26]. At the end of
this transient initialization, the response of the vortex system
is perfectly regular and characterized by a finite Campbell
length λC.
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c. Hysteresis upon thermal cycling of λC|FC. The strong-
pinning framework of ac magnetic response predicts the
appearance of hysteretic Campbell lengths for the field-cooled
samples upon thermal cycling. Such hysteretic behavior has
been observed in experiments by Prozorov and co-workers
(see Ref. [25]).

d. Universality of λC|ZFC for different critical states. Within
our microscopic analysis, the direction of the Lorentz force
±jc does not affect the asymptotic (i.e., large times t � 2π/ω)
oscillatory response of the vortex lattice in the critical state.
Hence, the Campbell length is independent on whether the
external field H is reached from below (ramping up) or
from above (ramping down). This independence has been
experimentally demonstrated [17]. We note that the transient
behavior before reaching the asymptotic periodic regime may
exhibit differences between the two ramping directions, as an
opposite dc shift is expected when ramping the field down to
H , with the number of cycles needed to reach the asymptotic
behavior depending on the depth of the critical state. This
prediction could be verified in an experiment.

B. Comparison to SrPd2Ge2

Finally, we provide a semiquantitative comparison of
our microscopic analysis of the Campbell length λC with
measurements on a single-crystal germanide superconductor
SrPd2Ge2 with Tc = 2.7 K and Hc2 = 0.49 T. Vortex pinning
in this ternary compound, parent to the iron- and nickel-
pnictides, is likely to be strong [20,50]. Its ac response has
been investigated with a tunnel-diode technique in Ref. [20].
We focus on two traces of λC recorded at different applied dc
fields 0.02 and 0.3 T and taken from Fig. 4(a) of Ref. [20]. In
Fig. 9 (left), we show an enlarged view of these traces, with
the zero-field-cooled data in blue and the thermally cycled
field-cooled data (see arrows for the temperature direction) in
red. At high fields 0.3 T ≈ 0.6Hc2, the Campbell lengths are
almost identical, but with λC|ZFC slightly larger than λC|FC.
The low-field trace at 0.02 T ≈ 0.04Hc2 is much richer: the
field-cooled and zero-field-cooled Campbell lengths clearly
differ from each other. Moreover, the Campbell length of
the field-cooled state shows a strong hysteresis upon thermal
cycling. The heating branch (arrow to the right) deviates
from the cooling branch and approaches the zero-field-cooled
Campbell length at higher temperatures. Finally, all Campbell
length curves feature a minimum at around 1.2 K.

The theoretical analysis of λC (see right of Fig. 9) requires
the knowledge of the pinscape ep(x) for all fields B0. We
interpolate between the two limits of low [Eq. (51)] and high
[Eq. (53)] fields by periodically summing the low-field profile

χ (x) =
∞∑

n=−∞

1

1 + (x + na0)2/2ξ 2
(62)

and applying the normalization (neglected in Ref. [25])

ep(x) = e0Vpin
χ (x) − χ (0)

χ (a0/2) − χ (0)
. (63)

For a better comparison to experiment, we replace the simple
Ginzburg-Landau scaling 1 − τ used in Sec. IV by the more
accurate two-fluid-model scaling 1 − τ 2; the latter properly
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FIG. 9. Comparison between the Campbell length obtained from
experiments (left) and from numerics (right). On the experimen-
tal side, we show representative traces for high (H = 0.3 T ≈
0.6Hc2) and low fields (H = 0.02 T ≈ 0.04Hc2) (see Refs. [20,25]).
The corresponding theoretical curves are obtained from (i) solv-
ing Eq. (21) numerically for an insulating pin (see Sec. IV C),
(ii) determining the relevant jumps in the force profile, and (iii)
evaluating λC through Eq. (28). The sharp upturn appearing at
T ≈ 0.65Tc upon reheating the field-cooled state in low fields is
due to the change in the jump position xjp as it reaches the branch
edge x+ (corresponding to T2 in Fig. 5).

captures the saturation of the phenomenological parameters at
low temperatures. In order to find the temperature and field
dependence of λC, we numerically evaluate the force profile
fpin(x) and the relevant jumps �fpin for the zero-field-cooled
and field-cooled situations. For the latter, we make use of
a numerical routine that follows the branch evolution and the
associated occupation upon lowering the system’s temperature
and its subsequent heating.

The quantity (npξ 3
0 )1/2λC/λ0 solely depends on the ratio

ρ/ξ0, with ρ the radius of the insulating defect. This parameter
governs the extent of the strong-pinning region within the
H -T diagram. It turns out that choosing an insulating defect
of radius ρ ≈ 1.82 ξ0 (ρ ≈ 1.6 ξ0 in Ref. [25]) [see Eq. (54)]
provides a good description of the experimental data. Indeed,
the results shown on the right of Fig. 9 reproduce all relevant
features of the experiment: these are the closeness between the
ZFC and FC Campbell lengths at high fields, as well as their
sequence in magnitude λC|ZFC > λC|FC, as predicted by point b
in Sec. V A. At low fields, the sequence in magnitude changes
λC|ZFC < λC|FC (see point c in Sec. V A) and the field-cooled
Campbell length turns hysteretic (point d in Sec. V A).

Making use of the phenomenological parameters charac-
terizing the germanide superconductor [20], λ0 = 426 nm and
ξ0 = 25 nm, we find that a defect density np ∼ 1014 cm−3

(corresponding to a distance between defects of order 10 ξ0)
provides the correct magnitude of λC and is consistent with
the small density condition npa0ξ

2 � 1.

VI. CONCLUSION

We have investigated the linear ac magnetic response of
type-II superconductors in the Shubnikov phase as character-
ized through the Campbell length λC, the penetration depth
of the ac signal. Starting from the microscopic theory of
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strong pinning, we have shown that the Campbell length
involves specific jumps in the (multivalued) pinning force
profile corresponding to abrupt changes in the occupation
of the force branches. With this new tool at hand, we
have discussed the generic behavior of the Campbell length
(i) near and away from the Labusch point describing the onset
of strong pinning, (ii) at low and high magnetic fields, and
(iii) for both field-cooled (FC) and zero-field-cooled (ZFC)
state preparations. Several new features have been observed:
first, the FC and ZFC states probe different force jumps
and hence result in (possibly even parametrically) different
Campbell lengths. Second, in the critical state, a transient
initialization changes the dc field by hac after which the
response follows a regular ac dynamics with a finite Campbell
length. Third, for the field-cooled state, we predict a possible
hysteretic response of the Campbell length upon thermal
cycling. On the road towards quantitative predictions, we have
studied the scaling behavior of four types of defects (insulating
and metallic inclusions, δTc and δ� pinning) and have
constructed H -T scaling diagrams for the pinning strength
κ . Finally, we have confronted our theory with experimental
data and have found good qualitative and even semiquantitative
agreement.

The framework presented here provides a quantitative
relation between the macroscopic Campbell length λC and
the underlying microscopic pinning landscape. The power of

this approach lies in the ability to distinguish between different
vortex configurations, e.g., field-cooled- and zero-field-cooled
states or an arbitrary state “in-between,” allowing for a
spectroscopic analysis of the pinscape. While the measurement
of λC combined with theoretical insights provides access to
bulk averaged parameters of the pinscape such as the defects’
nature (insulating, metallic, δTc or δ� type), its density np,
and shape ep(r), recent experiments using scanning STM and
scanning SQUID techniques allow for space-resolved imaging
of the pinscape [23,24]. Together, these novel techniques
provide valuable input for advanced numerical simulations
of (driven) vortex matter, e.g., based on (time-dependent)
Ginzburg-Landau theory [4,5]. The outcome of such simu-
lations may then be used to better understand the signatures
observed in experiments [51], thus closing the loop in a fruitful
comparison of theory, experiment, and numerical simulation.
In future work it will be interesting to uncover other types of
experimental signatures providing further information on the
strong-pinning landscape.
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