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We consider an isolated vortex in the two-dimensional proximity-induced superconducting state formed at the
interface of a three-dimensional strong topological insulator (TI) and an s-wave superconductor. Prior calculations
of the bound states of this system famously revealed a zero-energy state that is its own conjugate, a Majorana
fermion bound to the vortex core. We calculate, not the bound states, but the scattering states of this system,
and ask how the spin-momentum-locked massless Dirac form of the single-particle Hamiltonian, inherited from
the TI surface, affects the cross section for scattering Bogoliubov quasiparticles from the vortex. As in the case
of an ordinary superconductor, this is a two-channel problem with the vortex mixing particlelike and holelike
excitations. As in the ordinary case, the same-channel differential cross section diverges in the forward direction
due to the Aharonov-Bohm effect, resulting in an infinite total cross section but finite transport and skew cross
sections. We calculate the transport and skew cross sections numerically, via a partial wave analysis, as a function
of both quasiparticle excitation energy and chemical potential. Novel effects emerge as particlelike or holelike

excitations are tuned through the Dirac point.
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I. INTRODUCTION

In 1964, Caroli, de Gennes, and Matricon [1,2] calculated
the bound state spectrum of a vortex in a type-II s-wave
superconductor, the well-known Caroli-de Gennes-Matricon
states. In 1968, Cleary [3,4] expanded on this work by
calculating the scattering states. He considered the problem of
a single vortex and used a partial wave analysis to compute the
cross section for quasiparticles scattering therefrom. In 2008,
Fu and Kane [5] considered a new type of superconductor
[6,7], the proximity-induced superconducting state at the
interface of a topological insulator (TT) [§-22] and an s-wave
superconductor (sSC). Since the excitations of the TI surface
are spin-polarized massless Dirac fermions, proximity to the
s-wave superconductor yields an exotic superconducting state
at the TI-sSC interface, with novel quasiparticle excitations.
Applying the Caroli-de Gennes-Matricon analysis to this new
superconductor, Fu and Kane [5] calculated the bound state
spectrum of a single vortex and showed that there exists a zero
energy bound state that is its own conjugate, an example of a
Majorana fermion [23-30].

In this paper, we consider the scattering states, playing
Cleary to Fu and Kane’s Caroli-de Gennes-Matricon. We ask
how quasiparticles with excitation energy greater than the
superconducting gap, E > A, scatter from a vortex in this
novel superconducting state at the TI-sSC interface. Employ-
ing a partial wave approach similar to Cleary’s analysis for an
ordinary superconductor [3], we calculate the cross section
for this topological case. We have used such an approach
previously, for the case of an ordinary (nontopological) d-wave
superconductor, in Refs. [31-33]. That d-wave case involved
the extra complication of linearizing about an off-origin nodal
point, which resulted in a noncentral effective potential that
mixed angular momentum eigenstates. The current s-wave
topological case is simpler in the sense that the Bogoliubov-de
Gennes (BdG) Hamiltonian [2] commutes with the total angu-
lar momentum operator, such that each angular-momentum-
indexed eigenstate can be calculated independently. Spin-up
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and spin-down are mixed by the massless Dirac Hamiltonian
inherited from the TI surface, and particle and hole are mixed
by the superconducting order parameter in the BdG equation,
but radial functions for different angular momenta are not
mixed by the vortex. Thus, ours is a 4 x 4 matrix problem in
spin-particle-hole space for each angular-momentum-indexed
eigenstate. Solution of the resulting fourth-order differential
equations and application of proper boundary conditions yields
the scattering cross sections that we seek.

We begin in Sec. II by writing down the Dirac-Bogoliubov-
de Gennes equation, separating variables in polar coordinates,
and defining a hard-cutoff model for the vortex. In Sec. III,
we solve the resulting radial equations in each of the three
regions defined by our model: inside the vortex core, inside the
vortex but outside the core, and outside the vortex. In Sec. IV,
we consider the asymptotic form of our eigenstates and use
them to construct incident plane waves and outgoing radial
waves, thereby defining scattering amplitudes in terms of a
set of angular-momentum-indexed coefficients. By matching
solutions at region boundaries and imposing appropriate re-
strictions at small and large distances, we develop an algorithm
for obtaining these coefficients and therefore the scattering
cross sections. Numerical results obtained by applying these
algorithms for parameter values of interest are presented in
Sec. V. Conclusions are discussed in Sec. VI.

II. FORMULATION
A. Dirac-Bogoliubov-de Gennes equation

We seek the scattering states for a vortex in the proximity-
induced two-dimensional (2D) superconducting state at the
interface of a strong 3D topological insulator (TI) and a
conventional s-wave superconductor (sSC). Our approach is
to solve the Bogoliubov-de Gennes equation [2]

H® = E® (1)

©2016 American Physical Society


http://dx.doi.org/10.1103/PhysRevB.93.064514

ADAM C. DURST

@

A(r)e

_ [Ho) -
H‘[ i — Ho(~A)

A(r)e'? i|

in the presence of a single vortex that twists the phase of the
order parameter once around the origin, depletes its magnitude
A(r), and contributes the vector potential A. For the case at
hand, this is sometimes referred to as the Dirac-Bogoliubov-
de Gennes (DBdG) equation [34,35] since the single-particle
Hamiltonian for the TI surface, Hy, has the massless Dirac
form

Ho(A) = v - (—iV — eA/c), A3)

where v is the slope of the Dirac cone and ¢ = (07,07) are
spin-space Pauli matrices. In the above, p is the chemical
potential, we have adopted units where A = 1, and o(r,0)
is the four-component (spin-up-particle, spin-down-particle,
spin-up-hole, spin-down-hole) wave function. Note that the
TI surface Hamiltonian mixes spin-up and spin-down and the
order parameter term mixes particle and hole. Therefore the
eigenstates of the Hamiltonian will be superpositions of all
four components, with neither spin nor charge well defined.
Note also that A is a proximity-induced order parameter [36],
dependent upon the transmittance of the TI-sSC interface, and
of a form inherited from that of the s-wave superconductor
[5,35].

At this stage, it is convenient to apply the unitary transfor-

mation
-0
e’z 0
U= o |, 4
|: 0 e’g] @

which strips off the phase of the order parameter at the
expense of imposing antiperiodic boundary conditions on the
transformed wave function.

V=Ud W(O+2r)=—-V(0). (5)
This antiperiodic wave function satisfies H'WV = EW
H’EUHU’I:—ivu&-%—,uu—}—v&-Px—i—An, 6)

where we have introduced a second set of Pauli matrices
{r1,72,73} that act upon particle-hole space, and have defined
the superfluid momentum function

P, =

| =

vo— SA =P %)
C

B. Separation of variables in polar coordinates

It is straightforward to show that H' commutes with the
total angular momentum operator

J= il 4o 8)
=—i—+ =
0 2

so there exists a complete set of simultaneous eigenstates

JU, =nV¥, 9)

H'V, =EV,. (10)
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Note that Eq. (9) is satisfied by any solution of the form

fur (rel=2"
f;w(r)ei(n—&-%)ﬁ 1
ey | (an

gnl(r)ei('l““%)e

W, (r,0) =

where f,4, fu, &nt, and g, are as-yet-undermined scalar
radial functions and the antiperiodic boundary conditions
require n to be an integer. Plugging a solution of this form
into Eq. (10) reduces it to a set of four coupled first-order
ordinary differential equations for the four radial functions. In
matrix form, these radial equations become

0Z

Pyt M(p)z (12)
0
1 B ~
Lrh io 0 —iA
1 p ~
. i —meth A 0
(p) = L2 n—1—ph . ’
0 iA 5 ip
- il pp
iA 0 —ig ek

13)

where z = [ fur, fuy,8n1+8n l]T and we have defined dimen-
sionless parameters by writing all energies in ratio with the
gap maximum A and all lengths in product with kg = Ay /v:

k Ap) A P.(p) By (14)
= Kor = — s = —
P 0 o Ao s(p ko
E+pu E—pu
= = . 15
« Ao p Ao as)

Our task moving forward is to solve these radial equations
(see Sec. IIT) and use the resulting eigenstates to construct the
scattering cross section (see Sec. IV).

C. Model

It is clear from the above that our results will depend on
the excitation energy of the incident quasiparticle, E, and the
chemical potential, u, as well as the radial dependence of the
superflow and gap functions, P(p) and A(p), in the vicinity
of the vortex. As per Eq. (7), and noting that VO = /r, the
superflow function initially falls off like 1/2p and then is
fully suppressed at radial distances large compared with the
London penetration depth, A. The gap function is suppressed
at distances small compared with the the superconducting
coherence length, £, and then restored to A at larger distances.
While the detailed form of these functions can be complex and
material dependent, we attempt to capture the essential physics
within a tractable calculation by adopting a simple model with
hard cutoffs at the two length scales:

~ _J1/2p for p < koA

Pi(p) = { 0 for p > ko (16)
~ _JO for p < ko§
Alp) = {1 for p > ko&’ a7

For the type-Il (A > &) case that we consider, this model
defines three distinct regions: (i) inside the vortex core (r < &),
where the order parameter vanishes but there is nonzero
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superflow; (ii) inside the vortex but outside the core (§ <
r < A), where both the order parameter and the superflow
are nonzero; and (iii) outside the vortex (r > A), where the
order parameter is nonzero but the superflow vanishes. In the
following section, we solve the radial equations in each of
these regions, with solutions to be matched at the boundaries.

III. SOLUTION OF RADIAL EQUATIONS

A. Inside vortex core

Inside the vortex core (r < &), Py(p) = 1/2p, and A = 0.
Without an order parameter to couple particle and hole, the
two sectors decouple and the M matrix of Eq. (13) becomes
block diagonal.

% ia 0 0

i —itl 0 0
P

0o 0 —ip -t

The particle sector of Eq. (12) reduces to two coupled first-
order equations

(i—f>f — iaf, (19)
ap o) fm =i
(i+"+1>f —iaf, (20)
8,0 0 nl — nts

which combine to yield

92 " 10
3> pap
which is just the Bessel equation for variable |«|p and index

n. Solutions for f,, are therefore integer Bessel functions of
order n and argument |«|p

fur(p) = Ay u(leel p) + ALY (|l p), (22)

where Al and A2 are complex constants to be fixed by
boundary conditions. Substituting back into Eq. (19) and
making use of the Bessel function identity [37] (d/dx —
v/x)Z,(x) = —Z,11(x) reveals that

i (p) = i AL Dy (el p) + i A2 Y, (alp),  (23)

where the constants are the same as above. Similarly, the hole
sector of Eq. (12) reduces to

+a2—”—2>f =0 @1
pz nt — Y

(8 "_1) B (24)
o nt = —IP&n
b, ) enl
(a +”> B (25)
— 4+ — )gny = —iBgny.
55 T )an 8nt

Solutions are once again integer Bessel functions, this time of
argument |S|p. We therefore find that

gt (0) = A2J,1(1B1p) + ALY, 1(1B1p) (26)

gny(p) = —i A, Ju(1B1p) — i ALY, (IBlp), 27

where A} and A? are additional complex constants. Since
solutions inside the vortex core must be well-behaved at the
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origin, the coefficients multiplying the Y-Bessel functions must
be set to zero;

A2 =AY =0. (28)

Finally, combining all four components, we can write down
the vector solution of Eq. (12) inside the vortex core:

Xu(p) = A,%,(0) + A3%,(p) (29)

Ju(Ja|p) 0

1,y | idagr(leelp) 3,0 _ 0
WO=1""0 =1 ey | Y

0 _l‘ln(|ﬂ|p)

B. Inside vortex, outside core

Outside the vortex core, but still inside the vortex (§ <
r<a=x), I3X(,o) =1/2p,and A = 1. Thus, the particle and hole
sectors are coupled by the order parameter, and the M matrix
is no longer block diagonal.

% ia 0 —i
i« - —i 0
M) = | S am g | (31)
P
i 0 —ip =

p

In this region, the radial functions are most simply attained
through direct integration of Eq. (12). We posit a solution of
the form

¥a(p) = Blyl(p) + B2y2(0) + By (p) + Biyi(p), (32)

where the B] are as-yet-undetermined complex constants and
we define four linearly-independent initial conditions at p =

ko&

1
0
0

—_ o O

Yi(p = ko&) = (33)

0 0

1 0

b 0 9 b 0

0 0 0 1

We then use an RK4 Runge-Kutta algorithm to numerically
propagate each of these solutions out to p = kgA. Continuity
at both boundaries will later be used to determine the constants.

C. Outside vortex

Outside the vortex (p > 1), ISS(p) =0, and A = 1. This
is the bulk of the superconductor, so the order parameter still
couples the particle and hole sectors, but there is no superflow.
Thus, the radial equations take the form

9 B
2 (— —l—Ao)z (34)
ap 2
n—3 0 0 0
0 —-(m+3 0 0
B=1 9 0 n—j 0 55)
0 0 0 —(m+d
0 « 0 -1
e 0 -1 0
Ao=ilg | o _g (36)
10 -8 0
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In this region, we seek solutions which, in the asymptotic
limit (0 — 00), can be used to construct incident plane
waves and outgoing radial waves and thereby obtain scattering
amplitudes. We therefore solve Eq. (34) via asymptotic series
expansion [38] about the irregular singular point at p — 0.

Note that were it not for the particle-hole coupling,
the solutions for each sector would be half-integer Bessel
functions. Thus, it makes sense to try vector solutions with the
same e'*i” / /P leading behavior, expanding in powers of 1/p.
Labeling each of the four such solutions by j = {1,2,3,4}, we
try
et X

aj —l‘ﬂ’ 37

7 mZ:o "0 37

where the A ; and aﬂ, are constant scalars and constant vectors
respectively. Plugging into Eq. (34), we obtain the following
vector recursion relations for m = 0

2/ (p) =

(Ao —ir;)a) =0 (38)
and form =1,2,3, ...
A 1\ -
(Ao —ikrj)a), = —(B +m— E)a;]n—r 39

Note that Eq. (38) is just the eigenvalue equation for the matrix
Ay, which requires that iA; and aj are the eigenvalues and
eigenvectors of Ay. Solving this eigensystem reveals that

E\2
A= (A—O) -1+
E\2
M=) 1%
A3 = —A
A= —A (40)
and
a b a b
a —b —a b
a) = ) al = . al = p aj = 4| @D
b —a —b a
where
1
a= b= (ax—Aa. 42)

V201 + (@ = A%

Though Eq. (39) has the form of a recursion relation, its
utility in obtaining the rest of the vector coefficients, aj,, is
considerably more subtle than for a typical (scalar) recursion
relation because it is a matrix relation between vectors.
To illustrate this subtlety, let us define A’ = Ay —i}; and
B/, = —(B + m — 1/2) such that Egs. (38) and (39) can be
written as

Aag =0 43)
A/am = B;nam—l s (44)

where we have suppressed the j superscripts. It is clear from
Eq. (43) that A’ is singular, with a null space (one-dimensional,
as long as the A; are distinct) defined by ay. Thus, Eq. (44)
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can only be satisfied if B/, a,_; lies in the (typically three-
dimensional) column space of A’ and is therefore orthogonal
to the left null space of A’, defined by the vector by where

A''by = 0. (45)

So in addition to constraining a,,, Eq. (44) constrains a,,_; by
requiring that

b/B,a, ; =0. (46)

This is particularly worrisome for m = 1, since we have no
room to adjust ay as it is fully specified (up to a multiplicative
factor) by Eq. (43) and defined explicitly in Eq. (41). In order
for a solution of the desired form to exist, it must be the case
that the eigenvectors, aé, satisfy

b/B)ag = 0. (47)

Fortunately, they do. We can see this by solving Eq. (45) to
find the left null space [39] vectors for j = {1,2,3,4}. In each
case we see that by = t3a9. Noting that B] = —no3, writing
the components of ag as ag;, and plugging into Eq. (47), we
find that

biB|ay = —najr03a0 = —n(a, — a — ay +aly), (48)

which is zero since ag; = *ag, and agz = Fag, for each of the
eigenvectors in Eq. (41).

Having checked this, we can obtain a; from ay via Eq. (44).
Since B/ a is in the column space of A’, there exists an a, that
satisfies the recursion relation. In fact, there are many, since we
can always add to it a vector in the null space of A’ to generate
another. Multiplying by the Moore-Penrose pseudoinverse
[39], A’;,, obtained via singular value decomposition of A’,
provides the smallest such vector, since it lacks a null space
component. But this freedom to add a null space component
is precisely what we need in order to ensure that a; satisfies
Eq. (46) for m = 2. For general m = 1,2,3, .. ., given a vector
a,,—1 that satisfies Eq. (46), our algorithm to find a,, is as
follows: (i) Use the pseudoinverse to calculate the row space
component.

a™ =A% B, a, . (49)

=

(i) Apply the condition in Eq. (46) for m — m + 1 and
compute the extent to which it fails.

yin =biB),, " (50)

This is the component of the right-hand side of the next
iteration of the recursion relation that does not lie within the
column space of A’. (iii) Add just enough of the null space
vector, a, to cancel this component.

L
a, =aP +all A=, (51
byB;, 120
The result is the vector
b/B' A, B a,_
a, = Ap/Bla, 1 — ==L, (52)
bOBm+laO

which satisfies Eq. (44) for the current iteration as well as
Eq. (46) for the next one. Repeating this algorithm for each
successive iteration, and for each of the four j’s, yields the
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vector coefficients in the asymptotic series solutions defined
in Eq. (37).

When computing the asymptotic series solution for the
simpler case of the half-integer Bessel functions [38], one
finds that the series actually terminates at a maximum value of
m. It turns out that (at least within the numerical precision
of our computation), our asymptotic series terminates as
well, with mp,, = |n|, where n is the eigenvalue of total
angular momentum defined in Eq. (9). This is quite fortunate
and perhaps, in hindsight, not altogether surprising, as our
problem can be thought of as two coupled half-integer Bessel
equations, one for the particle sector and one for the hole
sector. Thus, within numerical precision, these asymptotic
series solutions are exact, valid everywhere outside the vortex.
A linear combination of our four series solutions yields the
general solution to the radial equations in the region outside
the vortex (p > koA). Hence, we write

z,(p) = Clz}(p) + C22(p) + C222(p) + Clzk(p), (53)

where the C; are complex constants (to be determined by
matching boundary conditions) and each of the four finite
asymptotic series solutions are expressed via

ajmp—l71 (54)
\/ﬁ m=0

z)(p) =

with eigenvalues A ; and vector coefficients aj, determined via
the algorithm above.

IV. CONSTRUCTING THE CROSS SECTION

A. Asymptotic wave function

With the radial functions in hand, our next step is to consider
the asymptotic form of the wave function and use it to construct
an incident plane wave and outgoing radial wave, from which
we can extract the scattering amplitudes and cross sections. In
the asymptotic (p — o0) limit, we use the outside-the-vortex
radial functions [Eq. (53)] and need only retain the leading
(m = 0) behavior.

?"T 4 eihip

— n{ | _ J J

z,(p) = =) C/——a). 55

()= o ; 7% (55)
gn¢

The transformed (2m-antiperiodic) eigenstate, W,(p,0), is
obtained by plugging the radial functions into Eq. (11), which
can then be multiplied by the inverse transformation matrix,

U~! = ¢/™92, to yield the 27 -periodic eigenstate
J
It . N a0
. ezO X LelriP a] ez@
an — etn@ fn\L "0 — eln@ Z C,j, j()2 o | (56)
Enre ‘o VP | ane
8nl ag,

where the aéi are the components of the aé vectors. The full
asymptotic wave function is then given by a sum over these
angular momentum eigenstates. Summing over n and writing
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out the four terms explicitly, we obtain

_ i Jind Cleu\]p a e’ +C2€M2p —belf
- n \/ﬁ b 6719 n \/ﬁ a 6716
n=—oo
—a
a b
—ilip i6 —id2p i0
3€ —ae 1€ be
+ G, AL Z—ie +C, 75 |a i | [ (57
— a

where the infinite sum is, in practice, truncated at some 7,
beyond which additional contributions are small. Typically,
quasiparticles of larger incident energy require contributions
from more angular momentum eigenstates.

B. Current density functional

Setting up the scattering problem requires a definition of the
incident and outgoing quasiparticle current, which is provided
by the quasiparticle current density functional, j,,[®]. This is
obtained via continuity

3Pgp
ot
with the particle density

Pop =P O = [UVUT'W] = VIUUTW = ¥y, (59)

V=0 (58)

where W = U® is the transformed (2m-antiperiodic) wave
function. We therefore see that

T
V-jqu—%(ww)z—%w—wz—f. (60)
The time derivatives are obtained by noting that
l_a_\y =H'Y, (61)
ot
where
H = —ivtso -V — uts + A (62)

since P; = 0 outside the vortex. Plugging into Eq. (60), we
find that

Vijp=V- -¥onw) (63)

and thereby obtain a simple expression for the current density
functional

o[ @] = 10513, (64)

where we have transformed back to the 2m-periodic wave
function, ®, and made use of the fact that U commutes with
5’ 3.

Written in terms of the four components, ®;, of the wave
function, this becomes

Jgp @] = 2v(Re[ @Dy — PFD4 [k + Im[ DD, — D5D4]F).

(65)
So if P, — ®3d, = Q1e™ where Q is areal number, then
Jgp[®] = Qu(cos ¢x + sin @) (66)

and therefore points in, or opposite to, the direction specified
by angle ¢, depending on the sign of Q. If ¢ is equal to 9,
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our angular variable, then such a current describes particle flux
into (or out of) the origin, in the £+ direction, where

f = cos X + sin 6, 67)

as is appropriate for an incoming (or outgoing) radial wave.
Whereas, if ¢ is equal to 6y, a constant angle, and Q is positive,
then the resulting current describes particle flux in the fixed k
direction, where

k = cos 6k + sin6p§, (68)

as is appropriate for an incident plane wave. In the sections that
follow, we shall design our incident plane waves and outgoing
radial waves such that they produce the correct quasiparticle
currents.

C. Incident plane waves

In a normal metal, excitations of a given energy are divided
into particle excitations above the Fermi surface and hole
excitations below the Fermi surface. In a superconductor,
particles and holes near the Fermi surface are mixed together,
but the resulting quasiparticle excitations can still be described
as either particlelike or holelike depending on whether the
wave vector yields a single-particle dispersion that is greater
than or less than the chemical potential. In the present case
of a proximity-induced superconductor at the TI surface, the
single-particle dispersion is that of a massless Dirac cone, with
particlelike excitations satisfying

tvk — p =4/ E? — A} (69)

and holelike excitations satisfying

ok —p = —/E2 — A2, (70)

Comparing these forms with that of the eigenvalues in Eq. (40),
the physical meaning of those eigenvalues becomes clear.
Eigenvalues A and A3 correspond to particlelike excitations,
with a wave number k; = koA that satisfies Eq. (69). Eigen-
values A, and A4 correspond to holelike excitations, with a
wave number k, = ko), that satisfies Eq. (70). Since the vortex
couples particlelike and holelike excitations, the scattering
problem we consider is a two-channel problem wherein the
scattering event allows for a change of channels. Incident
particlelike excitations yield outgoing particlelike excitations
and holelike excitations, and incident holelike excitations do
the same. Thus, in what follows, we must consider two cases:
that of an incident particlelike plane wave and that of an
incident holelike plane wave.

First, let us consider a particlelike plane wave incident in
the k = cos BoX + sin 6y direction defined by the constant
angle 6y. Following Ref. [3], we note that the 2 -antiperiodic
representation of the wave function for such such a plane wave
has the form

_i%
ae 2

- 6o
it ae?

p _ i ik;-r
\-IJPW(,O,Q)—e 2 e _it%
be >

-0
be>

; (71)
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where k| = ko)»lf(, k; -r=Xx;pcos(d —6y), and the com-
ponent structure of the four-vector is inherited from that
of eigenvector aj. This form satisfies the DBAG equation
outside the vortex, is 2 -antiperiodic in the angular variable
0, is 2m-periodic in the incident angle 6y, and (as we will
show below) yields a current in the Kk direction. As in the
ordinary superconductor case considered by Cleary [3], the
half-angle phase twist in the prefactor accounts for the Berry
phase (Aharonov-Bohm effect) acquired upon circling the
vortex, even at large distances. Multiplying by U~! yields
the 2 -periodic (in ) representation

a
6,
ikor|ae™”

Doy (p.0) =e b ei? . (72)

b e—if it
Looking at the components, we see that
PID; — DiPy = (a* — bHe'™® (73)
so via Eq. (65), the resulting quasiparticle current is
Jgpl®h w1 = 2(a® — b*)uk. (74)

A little manipulation of Egs. (40) and (42) reveals that a® —
b? > 0 for all allowed excitation energies (E > Ag). Thus, as
per our definition, incident current is in the +k direction.

In the other case, that of the holelike plane wave, also
incident in the k direction, the wave function is just as above
except that k; is replaced by k, = kokzﬁ and the component
structure of the four-vector is inherited from that of eigenvector
a] rather than a). In the 27-periodic representation, this
incident holelike wave function takes the form

b
x| —b e
Shy(p.0) =T S, (75)
—a e~ it
which yields precisely the same incident quasiparticle current
. B 71— 90,2 _ 23k
Jop[@pw] = 2(a” — b)vk. (76)

In both cases, it is helpful to make use of the following
series expansion of the ¢’%/ T factor:

ik;r ijpcos(0—6p)

e =e

oo
= > mi"Ju(l2j1p)e™ 0
n=—0o0
_ O ein0=6) |: _i%yjei'\jp

- n;oo NZavuTl RV

—iAjp

+ (=1 e }
NG

(77)

where we have expanded in integer Bessel functions, taken the
asymptotic limit, and defined y; = sgn(1;) and n,, = sgn(n)".
If we plug the series into Eqs. (72) and (75), precisely as
written for components 1 and 3, but with n shifted ton + 1 for
components 2 and 4, we find that the particlelike plane wave
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takes the form

a
x . . .
e*tﬂ/leﬂn% el)tlp a el@

VIl P Ze‘”

oo
Oy (p.0) = > &

n=—0o0

a
el iVie=inb p—itip —a el?
+(-1)'—— _ 78
T 7 et (78)
and the holelike plane wave takes the form
N b
. e~ GV2pinb pitap —bel?
Dy (p.0) = ") —— i
m n;oo V2l B |ae
—a
b
prapette et I g
V2rhal o |ae [
a

Note that these expressions now bear a striking resemblance
to our general expression for the asymptotic wave function,
Eq. (57), with the particlelike plane wave contributing only to
the particlelike terms (1 and 3) and the holelike plane wave
contributing only to the holelike terms (2 and 4).

D. Outgoing radial waves

Now we need only subtract each plane wave from the
total asymptotic wave function and identify what remains as
scattered waves.

Let us begin with the case of an incident particlelike plane
wave. Subtracting Eq. (78) from Eq. (57) reveals four possible
scattered radial waves

a b
eikir a el eikar b ei?
P — P . -
AD?P = Fp, VAL it + Fip 77 | a it
b —a
a b
e~ ikir —a et e ikar b ei?
+Fi3 7 |be + Fua 7 |ae (81)
—b a
with scattering amplitudes
Flj((ﬂ) = \/ng Z S,I,jei"(p, (82)
n

where j = {1,2,3,4}, ¢ =60 — 6y, and

I | ind e tin 12 2 inf
sit=C " — —— e = C2e'"

n n 27T|A‘1| n n

13 3 inf elin 14 4 ind

3 _ 3 inby n _ inby
S = Cne —_ (—1) Sn = Cne . (83)

" V27 A
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But if we consider the current due to each of these terms, via
Eq. (65),

F 2
Japl @51 = 2(a® — b2)vﬂf'

. | Fia(o)|?
.]qp[q)gz] = 2(02 - bz)v%r

. | Fia(),
Jqp[q>§3] = _2(02 - bz)v%r

Jop @5, = =2(a® — b

2
| F1a(@)| ; 84)
r

and recall that a®> — b? > 0, it is clear that only the first two
terms, with current in the £ direction, yield outgoing radial
waves. The last two terms, with current in the —f direction,
describe incoming radial waves, which must be set to zero.
Doing so imposes our asymptotic boundary condition and
requires that 53 = s!* = 0 for all n, which specifies two of
our previously undetermined coefficients

, in
Ch=(D'e""——= C,=0. (85)
21 A

Thus, for the case of an incident particlelike plane wave, the
full wave function is

a a
ae L L
dP(p,0) = e T b ot + F11(<P)7 b et
b e—ieeiﬁo b
b

etker —bel?

7 ae’ |’

—da

+Fi2(p) (86)

where Fji(¢) is the amplitude for same-channel scattering
while F(¢) is the amplitude for cross-channel scattering.

For the case of an incident holelike plane wave, the
analogous calculation proceeds just as above, except now it
is the second and fourth terms that get a contribution from the
plane wave. The resulting wave function takes the form

b a
x| —b e et | g eif
d"(p,0) = et T a4 e if + F21(§0)7 b e—if
—a e7 0l b
b

ik .
etrr —b 610

+F22(¢)7 a et |’ 87)
—a
where
Foj@)= g2 ) sie™ (88)
. . —iTy
sfl = C,ie”’e" s,%z = C,zle”’eo — (89)

V2 Tkl

064514-7



ADAM C. DURST

And in this case, the no-incoming-radial-waves condition
requires that

;T
L7Y2

2 h]
Note that the scattering amplitudes defined herein, Fi;, Fi»,
F>1, and Fy, depend on the still-undetermined complex
constants C,l, and an. Thus, our next step is to determine these
constants (and all others) by imposing boundary conditions.

C:=0

3 Cl = (—1)e i (90)

E. Matching solutions at boundaries

The solutions to the radial equations obtained in Sec. III
were determined as a function of four complex constants per
angular momentum index 7, in each of three regions of our two-
dimensional space (0 < p < ko&, ko§ < p < koA, and kot <
p < oo) for a total of twelve constants per n. As defined in
Egs. (29), (32), and (53), these are A;, B}, and C;, where j runs
from 1-4. They are specified via twelve constraints (per n):
square integrability as p — 0 (two constraints); continuity of
four-vector solution at p = ko (four constraints); continuity
of four-vector solution at p = koA (four constraints); and no
incoming radial waves as p — oo (two constraints). Of these,
the first two have already been used to specify A% and A# as per
Eq. (28), and the last two have already been used to specify C>
and Ci as per Egs. (85) and (90). This leaves eight constants
(per n) to be determined by the eight continuity constraints

X (ko&) = Yu(ko&)  Yn(kor) = z,(koh), oD

which are easily recast in the form of the following 8 x 8
matrix equation

- 0 07[Al
LR s (e A R A U O | W
0 o||B!
0 O0||B?
0 0 B}
0 0 -y -y -y -y} z 2||B
0 0 C!
L0 0 Jlcz]
.
0
0
0
= ) (92)
q

where q = —C3z}(koh) — Clz} (ko)) and x{ is shorthand for

the four-component column vector x;(ko£). We solve the
above numerically, for each n, to obtain the eight-vector
of constants, including the C! and C? that determine the
scattering amplitudes.

F. Cross sections

With the scattering amplitudes defined and the constants
determined, we can proceed to write down expressions for
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the differential, total, transport, and skew cross sections.
Neglecting the rapidly oscillating cross terms between the
two scattering channels (as per Ref. [3]), we can define the
differential cross section in terms of the currents associated
with the incident plane wave and each of the outgoing radial
waves:

d_g — jqp[q)Sl] -r +jqp[<DS2] - r
dg Jop[®pwl-k

Plugging in the currents via Egs. (74) and (84), and noting that
common factors of 2(a?> — b%)v cancel out, this reduces to

93)

do 2 2
0= [Fer()]” + | Fra(e)] 94)
@
Fij(p) = g D _sie"™. (95)
n

where ¢ = 1 for the incident particlelike case and ¢ = 2 for
the incident holelike case.
Integrating over ¢ = 6 — 6, gives the total cross section

(" do 20 & g
o B PRI

The transport cross section, defined with an extra factor of 1 —
cos ¢ to weight transport-relevant backscattering more heavily
than forward scattering, is then given by

T do
o) = / d—(l —cos@)dg
-n a¢

2
S S — (#5220
0

j=1 n

The skew cross section, weighted with a factor of sin¢ and
thereby sensitive to the skewness of the scattering, is obtained
via

/” do .
o, = — sinpd@
—x do

Sk 2D 3D B AT PR

Our computations of all of the above, for relevant parameter
values, are presented in Sec. V.

G. Divergent same-channel forward scattering

One difficulty intrinsic to the single-vortex scattering prob-
lem, common to both the ordinary [3] and topological cases,
is that the same-channel scattering amplitude (and therefore
differential cross section) diverges in the forward (¢ = 0)
direction. This is a direct consequence of the Aharonov-Bohm
effect, identified in Aharonov and Bohm’s original paper [40],
and comes about because even in the asymptotic (p — 00)
limit, the quasiparticle acquires a nontrivial Berry phase upon
circling the vortex. This aspect of the influence of the vortex
is therefore infinite ranged (within the single-vortex model)
and affects both the scattered wave and the incident plane
wave, which cannot quite be separated in the forward direction,
resulting in the divergence. [40-42]
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For us, the practical consequen_ce is that, while the cross-
channel scattering coefficients, s;/, vanish for large |n|, the
same-channel coefficients, s,/ , do not, and therefore cannot
all be computed numerically. Fortunately, the same-channel
coefficients do approach a constant value for large positive n
and a different constant value for large negative n. Thus, while
the total cross section is infinite, the form of Eqgs. (97) and (98)
reveal that the transport and skew cross sections remain finite.
We can therefore obtain o and o by running our numerics up
to some |n| = nnax beyond which differences between nearby
coefficients are negligible.

Furthermore, once these large-|n| constants are known, we
can break the same-channel scattering amplitude into two

pieces:

1 D ing L ND ing

75 25 e+ g s e

n n
99

a divergent piece with an infinite number of simple terms that
can be summed analytically, and a nondivergent piece with
a finite number of terms that can be calculated and summed
numerically. Recall that the same-channel coefficients have
the form

_ D ND __
Fijj=Fj+ I~ =

e_i%yj
—’
2]

where y; = sgn(A ;) and the C 7 are calculated numerically for
each n. Our numerics reveal that, in all cases, the resulting

537 coefficients approach iy;/,/m|A ;| for large positive n and
—1/,/m|A | for large negative n. Thus, if we define

si = Cem — (100)

1 iy; for n >0
s,? = ——(=1+iy))/2 for n=0 (101)
VTIA ] -1 for n <0
and subtract as follows
sNP = sii — P = Cieinh Lyjsgn(n), (102)
V2|
D

then the resulting sN coefficients will, by construction,
vanish for large |n|, allowing us to numerically compute the
nondivergent part of the scattering amplitude, F f;’ D Then the

divergent part, which does not depend on the C] coefficients,
is obtained by calculating the resulting geometric series
analytically:

D __ D ing —e|n|
Fj; = lim — E s, e"e
e—0 Vko

—eii%yf
= — 27 D(p)+ y;S , 103
o] [27 D(p) + v;S(9)] (103)
where
1 sinh €
D(p) = = 8(p) (104)
e—>0 27 coshe — cos @
S(¢) = lim — 509 e (105)
e—>0coshe —cosgp 1 —cosg

Here we made use of a convergence factor, e /"l, to sum the
series and then took the € — 0 limit. Note that both D(¢)
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Particle-like Excitations

- AZO

Chemical Potential

_ AZO

Hole-like Excitations

FIG. 1. Depiction of the TI surface Dirac cone, &(k,,k,), inter-
sected by three constant-¢ planes. The central plane denotes the
chemical potential u, while the top and bottom planes are shifted
up and down from p by /E2 — AZ. States at the intersection of the
Dirac cone with the upper (lower) plane are the particlelike (holelike)
excitations of the proximity-induced superconductor. Variation of the
chemical potential shifts all three planes up and down, while variation
of the quasiparticle excitation energy E varies the separation between
the planes.

(which reduces to a Dirac § function) and S(¢) diverge for
¢ = 0. Adding this divergent part to the nondivergent part
yields a same-channel scattering amplitude, and via Eq. (94), a
differential cross section, that diverge in the forward direction,
but can be computed nevertheless. As we shall see in the
following section, this divergence is weak enough that the
transport and skew cross sections remain finite (except at
special values of our input parameters).

V. RESULTS

A. Parameter regimes

The algorithms developed in Secs. II-IV were implemented
numerically to compute the differential, transport, and skew
cross sections for both particlelike and holelike incident
quasiparticles scattering from a single vortex. Results were
obtained as a function of quasiparticle excitation energy,
E, and chemical potential, u, for coherence length and
penetration depth values consistent with a typical type-1I
superconductor, & = v/4A( and A = 5&. To illustrate the role
of E and p variation in this problem, we plot, in Fig. 1, the TI
surface Dirac cone, &(ky,ky) = vV k)% + kf, intersected by
three planes. The central plane denotes the chemical potential,
and the top and bottom planes are shifted up and down from
wby VE? — A(z). As per Egs. (69) and (70), the particlelike
(+) and holelike (—) states satisfy ¢ = u =+ E* — A} and
therefore reside at the intersection of the Dirac cone with
the upper and lower planes, respectively. Changing w shifts
the three planes up and down together, while changing E
brings them closer together and farther apart. Since the states
that participate in the scattering are those on the upper and
lower circles of intersection, parameter variation of either type
changes the radii of these circles and thereby modifies the
scattering.
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15t Regime 1: A, >0> 4, —

u=E -4
1}
05t Regime 2: 4, >4, >0
a 4=0
ner Regime 3: 4, >4 >0

/1=—\fE:—A:o_

15t  Regime 4: 4, >0> 4

T I I L

2 " L 1 L 1
1 11 1.2 1.3 14 15 1.6 1.7 1.8 1.9 2

E/A,

FIG. 2. Four parameter regimes in chemical potential () vs
quasiparticle excitation energy (E) space. Note that at the interface
between regime 1 and regime 2, eigenvalue A, changes sign, while at
the interface between regime 3 and regime 4, eigenvalue A; changes
sign.

Of particular interest are the parameter values that pull
either the particlelike or holelike planes through the Dirac
point, resulting in a coalescence of the circle of states to
a single point at k = 0. It is therefore convenient to define
four parameter regimes based on which planes are above
and below the Dirac point. In regime 1 (1 > vV E? — A)),
all three planes are above the Dirac point. In regime 2
0<u<~E*— A%), the holelike plane is below the Dirac
point, with the other two above it. (Note that the configuration
depicted in Fig. 1 corresponds to a point within regime 2.) In
regime 3 (—v E? — A% < p < 0), the holelike plane and the
chemical potential are below the Dirac point, leaving only the
particlelike plane above it. In regime 4 (1 < —v E? — A}),
all three planes are below the Dirac point. These four regimes
are depicted in pu vs E parameter space in Fig. 2. Note that
we include only £ > Aj in the parameter space. For E < Ay,
our eigenvalues become complex and there are no oscillatory
scattering states. Note also that as the holelike plane passes
through the Dirac point, at the interface between regime 1
and regime 2, eigenvalue ), passes through zero and changes
sign. Similarly, as the the particlelike plane passes through the
Dirac point, at the interface between regime 3 and regime 4,
eigenvalue A passes through zero and changes sign.

In what follows, we present numerical results at various
points in the parameter space of Fig. 2. We begin with the
differential cross section at a single point in regime 1. We then
present transport and skew cross section results along two
lines across the parameter space: a horizontal line at u© = Ay
that crosses from regime 1 to regime 2, and a vertical line at
E = /2 that crosses all four regimes.

B. Differential cross section

As described in Sec. IV G, we obtain the differential
cross section in three pieces: the cross-channel term (always
nondivergent), the nondivergent part of the same-channel term,
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and the divergent part of the same-channel term. The first two
(nondivergent) pieces are computed numerically, including
angular-momentum-indexed coefficients from —nyax tO 7max,
beyond which additional coefficients are negligible. Higher
energies require more terms. We included as many as 71
terms (7max = 35) in our computations. The third (divergent
in the forward direction) piece, obtained analytically via
geometric series summation and given in Egs. (103)-(105),
is then included, and the differential cross section is computed
via Eq. (94) as a function of scattering angle, ¢ = 6 — 6.
Presented in Fig. 3(a) are results for both particlelike and
holelike incident plane waves, for a particular point at the far
left side of regime 1 in our parameter space (u = Ay, E =
1.01Ap). As expected, results diverge in the forward (¢ = 0)
direction because the vortex acts as an Aharonov-Bohm [40]
half flux. Though the divergence in the forward direction yields
an infinite total cross section via Eq. (96), it is sufficiently
suppressed by the 1 — cos ¢ factor in Eq. (97) as well as the
sin g factor in Eq. (98) that the resulting transport and skew
cross sections are generally finite.

In Figs. 3(b) and 3(c), we separate out the same-channel
and cross-channel contributions respectively. Note that cross-
channel scattering, while overwhelmed in the forward direc-
tion, is dominant in the backscattering direction and therefore
makes a significant contribution to the transport cross section.
This effect, most pronounced for E just slightly greater than
Ay, is common to our topological case as well as the ordinary
superconductor case described by Cleary [3]. It is a purely
superconducting effect, due to the mixing of particlelike and
holelike excitations by the vortex.

C. Transport cross section

Transport cross section oy is computed via Eq. (97) and we
have done so for parameter values along two linear cuts through
our parameter space. Results for fixed chemical potential
©w = Ay as a function of quasiparticle excitation energy E
(a horizontal line across Fig. 2 that brings us from regime 1
to regime 2) are plotted in Fig. 4. Figure 4(a) shows results
for a particlelike plane wave, incident with |k| = kg|A;|. The
excitation energy dependence is quite similar to that observed
for an ordinary superconductor [3], with o} falling off with
increasing E from a maximum value obtained at E = A,.
Since the particlelike plane remains above the Dirac point
throughout both regime 1 and regime 2, A remains positive
and the transition between the two regimes has little effect on
the computed o). Results are quite different for the case of
a holelike plane wave, incident with |k| = ko|X,|, shown in
Fig. 4(b). As E surpasses V2, we transition from regime 1
to regime 2, the holelike plane passes through the Dirac point,
and the incident wave vector goes through zero as X, changes
sign. The result, as seen in the plot, is a o} that diverges
at £ = \/EAO before decreasing as E increases further. [Of
course, when we run the same calculation for negative u, the
roles of particlelike and holelike incident waves are reversed,
with a divergence for the particlelike case and none for the
holelike case, as parameters are tuned from regime 3 to
regime 4 and A; (rather than A;) changes sign.] This is an
effect not seen in the ordinary superconductor case because
there the particlelike and holelike planes are typically far
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FIG. 3. Calculated differential cross section, do/d ¢, as a function
of scattering angle ¢ =60 — 6y, for uw = Ay, E =1.014,, & =
0.25v/Ay, and A = 5. Plotted in (a) is the full differential cross
section, while (b) and (c) show the same-channel and cross-channel
contributions respectively. In all panels, solid curves denote results
for an incident particlelike plane wave while dashed curves denote
results for an incident holelike plane wave.

from a band minimum. By contrast, in the topological case,
it is reasonable that the chemical potential could be tuned
close enough to the Dirac point that any of our four regimes
could be encountered. Figure 4(c) shows the fraction of o
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FIG. 4. Calculated transport cross section, o}, as a function of
quasiparticle excitation energy, E, for u = Ay, £ = 0.25v/A,, and
A = 5&. Results for incident particlelike and holelike plane waves are
shown in (a) and (b) respectively. For each case, the fraction of the
transport cross section due to cross-channel scattering is shown in
(c), plotted as a function of E.

due to cross-channel scattering (either particlelike to holelike
or holelike to particlelike). In both cases, the cross-channel
contribution is greatest for E close to A, where the separation
between the particlelike and holelike planes is minimal. In
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FIG. 5. Calculated transport cross section, oy, as a function of
chemical potential, i, for £ = \/EAO, £ =0.25v/Ag, and A = 5¢.
Results for incident particlelike (solid) and holelike (dashed) plane
waves are shown in (a). The fraction of each due to cross-channel
scattering is shown in (b), plotted as a function of u.

this situation, the system is farthest from that of the normal
state and the vortex is most effective in mixing particlelike
and holelike excitations, resulting in a greater cross section
for excitations to change channels upon scattering. Note that
nothing remarkable happens to the cross-channel fraction at
the E = \/§A0 transition point, and that the fraction curves
for both cases are quite similar, despite the divergence in o
for the incident holelike case.

Transport cross section results for fixed quasiparticle exci-
tation energy E = +/2A as a function of chemical potential
u (a vertical line through the parameter space of Fig. 2) are
plotted in Fig. 5(a). Here we cross all four parameter regimes:
4 to 3 to 2 to 1. The transition from regime 4 to regime 3
sweeps the particlelike plane through the Dirac point, resulting
in a divergence for the incident particlelike case at u = —A,.
Similarly, the transition from regime 2 to regime 1 sweeps
the holelike plane through the Dirac point, resulting in an
equivalent divergence for the incident holelike case at © = Ay.
Figure 5(b) shows the cross-channel fraction as a function
of 1, which is roughly constant around 0.3 over most of the
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FIG. 6. Calculated skew cross section, o, as a function of
quasiparticle excitation energy, E, for u = Ao, & = 0.25v/A,, and
X = 5&. Results for incident particlelike and holelike plane waves are
shown in (a) and (b) respectively.

plot, increasing somewhat for larger |1¢|. Note the particle-hole
symmetry of these o results, specifically that

oy (1) = o (—1) (106)

where the p and & superscripts denote the incident particlelike
and incident holelike cases respectively. As we shall see in the
following section, the situation is notably different for o .

D. Skew cross section

The skew cross section, o , is computed via Eq. (98), and
we present here results for parameter values along the same
two traces through Fig. 2 that we used previously in computing
the transport cross section. Excitation energy dependence for
fixed chemical potential, © = Ay, is plotted in Fig. 6. This trace
takes us from regime 1 to regime 2, with the holelike plane
passing through the Dirac point at the transition energy, E =
V2A. Figure 6(a) shows the incident particlelike case. Here,
the skew cross section is maximal, and positive, for E close
to Ag. As E increases, o, decreases, becomes negative, and
reaches a negative minimum value before gradually increasing
toward zero. Note that the transition from regime 1 to regime
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FIG. 7. Calculated skew cross section, o, as a function of
chemical potential, p, for E = ~/2A¢, & = 0.25v/ Ay, and A = 5¢.
The solid curve denotes results for an incident particlelike plane wave
while the dashed curve denotes results for an incident holelike plane
wave.

2 has little effect since the particlelike plane remains above the
Dirac point throughout. By contrast, in the incident holelike
case, shown in Fig. 6(b), the skew cross section diverges and
changes sign upon transition from regime 1 to regime 2, as the
holelike plane passes through the Dirac point.

Chemical potential dependence for fixed quasiparticle
excitation energy, E = +/2A, is plotted in Fig. 7. This trace
crosses all four regimes as w is varied from negative values
to positive. Results resemble those we observed for oy, with
the skew cross section diverging as the appropriate planes pass
through the Dirac point. For an incident particlelike plane
wave, o, diverges and changes sign upon transition from
regime 4 to regime 3, and for an incident holelike plane wave,
o, diverges and changes sign upon transition from regime 2
to regime 1. But in contrast to the particle-hole symmetry we
observed in the transport cross section results, note here that
o () # —o(—p). Rather, we find that

4v

ol (w) = =0 (—p) + (107)

E2— A —pu

This asymmetry is a consequence of the vortex, which breaks
particle-hole symmetry in the problem. The extra term above
derives from the contribution to the skew cross section from
the divergent part of the same-channel scattering amplitude,
a result of the Aharonov-Bohm scattering of the vortex. Only
upon replacing the vortex by an antivortex is a skew cross
section of the opposite sense obtained.

VI. CONCLUSIONS

In this work, we have considered the scattering of quasipar-
ticles from a vortex in the proximity-induced superconducting
state at the 2D interface of a topological insulator and an
s-wave superconductor. This system is known to support a
zero energy bound state at the vortex core, as was first shown
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by Fu and Kane [5]. Just as Cleary [3] extended the Caroli-de
Gennes-Matricon [1] bound state analysis of the vortex in an
ordinary superconductor to include the scattering states, our
purpose has been to study the scattering states of the vortex in
the topological case.

Beginning with the Dirac-Bogoliubov-de Gennes equation,
we separated variables in polar coordinates and established a
hard-cutoff model that divides the system into three regions:
inside the vortex core, inside the vortex but outside the core,
and outside the vortex. We then developed algorithms to solve
the resulting radial equations in each of these three regions.
Applying boundary conditions between regions, as well as at
the origin and at infinity, led to a definition of the scattering
amplitudes and cross sections in terms of angular-momentum-
indexed coefficients, as well as a procedure for solving for
those coefficients. As in the ordinary superconductor case,
the vortex mixes particlelike and holelike excitations. Thus,
ours is also a two-channel problem, with incident particlelike
plane waves scattering into outgoing particlelike and holelike
radial waves and incident holelike plane waves scattering
into outgoing holelike and particlelike radial waves. Also, as
in the ordinary superconductor case, the vortex acts as an
Aharonov-Bohm half flux, which leads to divergent same-
channel scattering in the forward direction. This results in an
infinite total cross section but allows for the calculation of both
the transport cross section, oy, and the skew cross section, o .

We calculated o and o, numerically, implementing the
algorithms described above, as a function of both quasiparticle
excitation energy, E, and chemical potential, . Results are
best understood by considering the Dirac cone (i.e., as drawn
in Fig. 1) and noting that the k-space location of particlelike
excitations is given by the intersection of the Dirac cone
with particlelike and holelike planes shifted up and down,
respectively, from the chemical potential by v/ E* — Aj. When
excitations of the incident channel (particlelike or holelike)
are far from the Dirac point, results are qualitatively similar
to those obtained by Cleary [3] for the case of an ordinary
superconductor [see Fig. 4(a)]. However, for parameter values
where the incident plane passes through the Dirac point and the
incident wave vector therefore approaches zero, the resulting
transport and skew cross sections divergeas 1/|A ;| and 1/ re-
spectively, where 112 = (VE? — A3 =& 1)/ A [see Figs. 4(b),
5(a), 6(b), and 7]. In an ordinary superconductor, analogous
small-wave-vector quasiparticle states (for example, those
deriving from a band minimum or maximum) are typically
far from the chemical potential and therefore out of reach. But
in the topological case that we consider, it is presumed that
the chemical potential can be tuned through the Dirac point,
which is what brings the above effects into play.

We note, as Cleary [3] did for ordinary superconductors,
that the fraction of the transport cross section due to cross-
channel scattering (particlelike to holelike or vice versa) is
maximal for quasiparticle excitation energies just above the
superconducting gap, a consequence of the fact that cross-
channel scattering, the mixing of particlelike and holelike
states by the vortex, is a purely superconducting effect. We
also note that this cross-channel fraction [see Figs. 4(c) and
5(b)] changes smoothly through the divergences in the cross
sections, unaffected by the transit of particlelike and holelike
planes through the Dirac point.
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Finally, we observe that taking u to —u exchanges
incident particlelike transport cross section for incident hole-
like transport cross section, olf' (n) = O'”P (—wm). However, the
same particle-hole symmetry is not seen in the skew cross
section, for which we find instead that af(u) = —af(—,u) +

d (see Figs. 5 and 7). The extra term is contributed

/E2 —AZ—IL
by theodivergent part of the same-channel scattering (the
Aharonov-Bohm part) and reflects the fact that the vortex
breaks particle-hole symmetry in this problem. A skew cross
section of the opposite sense is only obtained by changing the
direction of circulation of the vortex.

There are, of course, many directions in which this work
could be extended in the future. It would be instructive to repeat
this analysis using a more detailed vortex model in place of
the hard-cutoff model we introduced in Sec. II C. In addition,
while our work has focused on the single-vortex scattering
problem and the calculation of the cross sections thereof, a
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logical next step is the application of these results to the
calculation of transport coefficients in the presence of vortices,
especially thermal transport coefficients since thermal current
tracks quasiparticle current in this system. Moving forward,
it will be interesting to see if any of the divergences in the
transport and skew cross sections yield peaks in the transport
coefficients, or if they are suppressed by density-of-states
factors that vanish as the particlelike and holelike planes pass
through the Dirac point. Results will depend on a careful
treatment of the interplay of vortex scattering and disorder.
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