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Compressibility as a probe of quantum phase transitions in topological superconductors
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While there have been recent reports of zero-energy modes in single-particle tunneling density of states, their
identity as Majorana modes has not been unequivocally established thus far. We make predictions for the local
compressibility κloc, tuned by changing the chemical potential μ in a semiconducting nanowire with strong
spin-orbit coupling and in a Zeeman field in proximity to a superconductor, which has been proposed as a
candidate system for observing Majorana modes. We show that in the center of the wire, the topological phase
transition is signaled by a divergence of κloc as a function of μ, an important diagnostic of the phase transition. We
also find that a single strong impurity potential can lead to a local negative compressibility at the topological phase
transition. The origin of such anomalous behavior can be traced to the formation of Andreev bound states close
to topological phase transitions. Measurable by a gate-tunable scanning electron transistor, the compressibility
includes contributions from both single-particle states and collective modes and is therefore a complementary
probe from scanning tunneling spectroscopy, which is sensitive to only the single-particle density of states.
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I. INTRODUCTION

The non-Abelian statistics of Majorana fermions, their
role in topological quantum computation, and the possibility
of realizing them in condensed-matter systems has attracted
considerable attention [1–5]. Majorana fermions can emerge
in systems such as topological insulator-superconductor inter-
faces [6,7], quantum Hall states with filling factor [4] 5/2,
p-wave superconductors [8], semiconductor heterostructures
[9,10], half-metallic ferromagnets [11,12], and ferromagnetic
metallic chains [13]. As shown by Kitaev [14], Majorana
fermions can emerge at the ends of a one-dimensional (1D)
spinless p-wave superconducting chain when the chemical
potential is in the topological regime.

A realization of the Kitaev chain based on a quantum
nanowire made of a semiconductor-superconductor hybrid
structure has been proposed [9,10]. In the presence of Rashba
spin-orbit coupling, the parabolic bands for the two spin
projections get separated. In addition, a Zeeman field h

opens up a gap leading to an effectively spinless 1D system
when the chemical potential μ lies in the Zeeman gap. The
proximity-induced superconductivity with a gap � can result
in the topological phase [9,10,15,16]. In this regime, the wire
can be realized as a Kitaev chain and should have two Majorana
localized zero-energy modes at the ends. The nanowire can
undergo a quantum phase transition from a topologically trivial
superconducting phase to the topological one (or vice versa)
by changing the chemical potential or the magnetic field.

There have been recent reports of observations of Majorana
fermions in tunneling and the fractional Josephson effect
[16–19]. Reference [20] reported significant progress in cre-
ating the Majorana states where spatial location of Majoranas
are detected using a scanning tunneling microscope. All of
these experimental observations of the existence of Majorana
fermions assume that the system is in the topological phase
and attribute the zero-energy density of states to the proposed
Majorana modes. However, since there could be several other
sources for the zero-bias anomaly [21–23], the existence of
Majorana modes has so far not been unequivocally established.

We propose here a definitive method to determine whether
or not the nanowire is in the topological or trivial state through

measurements of the gate-tuned local compressibility. We
further discuss the dramatic changes that occur in the local
compressibility as a function of the chemical potential μ in
the presence of a potential defect or a weak link.

The paper is in two parts: In the first part, we discuss
the local compressibility in the presence of a weak link and
a site defect specifically in the Kitaev model, which shows
a topological to trivial p-wave superconducting transition at
|μ| = μc = 2t , where t is the hopping parameter between
neighboring sites in the wire.

In the second part, we discuss a microscopic model of
a nanowire with spin-orbit coupling in proximity to an s-
wave superconductor and investigate its local compressibility
response to link and site defects. We analyze in detail a specific
cut through the phase diagram that shows two phase transitions
upon increasing μ from a a trivial p-wave superconductor to a
topological p-wave superconductor at μ = μ−, and a second
one from a topological p-wave superconductor to a trivial
superconductor with s- and p-wave pairing at μ = μ+. We
will see below that the transition at μ− is captured by the
simplified Kitaev model; the transition at μ+ is qualitatively
different.

Our main results are the following:
(1) We find very different behavior of the local compress-

ibility κloc at the edge of the wire and in the center in a clean
wire. While the edge harbors Majorana modes which show a
zero-bias anomaly, the density of states in the center is fully
gapped. The compressibility, on the other hand, shows a sharp
singularity near the center of the wire at the topological to
trivial phase transitions (see Figs. 1 and 5) and its behavior at
the edge is considerably muted.

(2) A single impurity can dramatically change the local
response: a strong impurity leads to the formation of an
Andreev bound state (ABS) that remarkably produces a local
negative compressibility with a dip at the topological to trivial
phase transitions as μ is tuned. An extra peak associated with
the bound state appears in κloc above the transition. For the
Kitaev model as well as for the realistic model mentioned
above with a transition at μ−, the ABS is formed in the trivial
phase. On the other hand, for the realistic model with the
transition at μ+, the ABS is formed in the topological phase.
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FIG. 1. (a) The local particle density nloc (red dashed line) and
the local compressibility κloc (blue solid line) vs chemical potential
μ/t in the center of the wire for a Kitaev chain with no defects.
The compressibility diverges logarithmically at the quantum critical
point μ = ±2t . (b) The singularity in κloc is weakened at the edge
of the wire. (c),(d) The local density of states Nloc(ω) in the trivial
(μ = 2.1t , blue circle) and topological (μ = 1.5t , red star) phases. (c)
Obtained in the center; (d) obtained at the edge of the wire. Results are
presented for chain length N = 256 at T = 0 with slightly broadened
δ functions in Nloc(ω).

(3) A link impurity with a hopping parameter different in
strength but with the same sign as the hopping in the regular
chain merely suppresses the divergence in κ at the transition
for both the Kitaev chain and the realistic model. On the other
hand, a link impurity with opposite sign produces zero-energy
Majorana modes upon fine tuning, as discussed below.

Our predictions can be verified by measuring the com-
pressibility as a function of a gate-tunable chemical potential
as well as simultaneous measurements of the local density of
states using scanning tunneling spectroscopy.

II. KITAEV MODEL WITH DEFECTS

We consider a 1D tight-binding Hamiltonian for spinless
fermions with attractive interactions between fermions on
nearest-neighbor sites,

H = − t
∑

i

(c†i ci+1 + H.c.) − μ
∑

i

c
†
i ci

− |U |
2

∑
i

c
†
i cic

†
i+1ci+1, (1)

where c
†
i (ci) is the creation (destruction) operator for an

electron on a site i, t is the near-neighbor hopping parameter,
μ is the chemical potential, and |U | is the pairing interaction.
If we approximate the interaction term using a p-wave mean
field gap function, defined by

�i = |U |〈c†i c†i+1〉, (2)

we obtain the Kitaev 1D spinless tight-binding Hamiltonian
with p-wave superconducting pairing [14].

In this paper, we consider the effect of defects which
we model as on-site impurity potentials Vi or weak links ti
between nearest-neighbor sites (i,i + 1),

H =
∑

i

(Vi − μ)c†i ci −
∑

i

ti(c
†
i ci+1 + H.c.)

−
∑

i

�i(c
†
i c

†
i+1 + H.c.). (3)

In the clean limit, ti = t , �i = �, and Vi = 0, and the system
reduces to the 1D Kitaev chain [14].

Bogoliubov–de Gennes (BdG) approach

We go beyond the T matrix by using the inhomogeneous
Bogoliubov–de Gennes (BdG) method to study the effects of
link defects and on-site impurities, which is able to capture
the inhomogeneous variation of the order parameter around
the defect. From the information about the eigenvalues and
eigenfunctions, we calculate the local density of states and
the local compressibility, as discussed below. Even though
this is a one-dimensional problem, we are justified in ignoring
the quantum fluctuations, primarily because we envisage the
system as proximity coupled to a bulk superconductor which
damps out the fluctuations.

We diagonalize Eq. (3) by defining the operator γi =∑
n [cnun(i) − c

†
nv

∗
n(i)] that leads to BdG equations

(
h0 −�†

� −h0

)(
un(j )
vn(j )

)
= En

(
un(j )
vn(j )

)
, (4)

where the excitation eigenvalues En � 0. h0un(i) = (−μi +
Vi)un(i) − ti[un(i + 1) + un(i − 1)] and �un(i) = �iun(i +
1) + �i−1un(i − 1). The self-consistency condition is given
by

�i = U
∑
En>0

un(i)vn(i + 1) tanh(En/2T ). (5)

The density of particles on site i is

ni = 〈c†i ci〉 =
∑

n

{|un(i)|2f (En) + |vn(i)|2[1 − f (En)]},
(6)

where f (En) is the Fermi function. The local single-particle
density of states (LDOS) is given by

Ni(ω) =
∑

n

[|un(i)|2δ(ω − En) + |vn(i)|2δ(ω + En)]. (7)

Here, ω is measured relative to the chemical potential μ.

III. RESULTS: CLEAN KITAEV MODEL

For a clean wire with periodic boundary conditions, i.e.,
a loop, the Hamiltonian in Eq. (3) can be diagonalized to
give H = ∑

k Ekγ
†
k γk using the Bogoliubov transformation

γk = ukck + vkc
†
−k with |uk|2 = 1/2(1 + εk/Ek) and |vk|2 =

1 − |uk|2. The quasiparticle excitation energy is given by Ek =√
ε2
k + |�k|2 where �k = 2it sin(k) and εk = −μ − 2t cos(k).
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FIG. 2. The spectral function Ak(ω) (intensity encoded in yellow, above a dark blue background which sets the zero) in the (a),(b) topological
and (c) trivial phases is shown in the upper row with the corresponding density of states N (ω) in the bottom row for a closed loop. The δ functions
in Ak(ω) and N (ω) are broadened. At μ = 0, the coherence factors reduce to |uk|2 = (1/2)[1 − cos(k)] and |vk|2 = (1/2)[1 + cos(k)], which
yields a symmetrical N (ω) = (1/2)δ(ω − 2t) + (1/2)δ(ω + 2t) around the chemical potential. For μ > 0, there is greater spectral weight for
negative energies or “holelike” states; the opposite is true for negative μ. (g) N (ω; μ) across the topological phase transition as a function of μ

through the closing of the gap and its reopening at μ = ±2t .

A. Compressibility at the topological phase transition

From the number equation at temperature T for the total
number of particles N , we have

N = 1

2

∑
k

[
1 − εk

Ek

tanh (Ek/2T )

]
. (8)

We obtain the isothermal compressibility at finite temperature
κ(T ) = ( ∂N

∂μ
)
T ,V

to be

κ(T ) =
∑

k

|�k|2
2E3

k

tanh (Ek/2T ) +
∑

k

Yk

ε2
k

E2
k

, (9)

where Yk = 1/4T sech2(Ek/2T ) is the Yoshida function.
The low-temperature compressibility diverges logarithmi-

cally at the quantum critical point κ ∼ log[1/|(|μ| − 2t)| +
T ], as shown in Fig. 1(a). For an open wire, the behavior of
κ in the center of the wire, far from the edges, is essentially
captured by Eq. (9) that was derived for a closed loop. At
T = 0, the divergence occurs at μc = ±2t caused by the gap
in the topological phase | μ |< 2t closing at the topological
phase transition [14] and reopening again in the trivial phase
|μ| > 2t . At T = 0 and for fixed μ, deep in the topological
phase (|μ| � 2t), κ ∼ �2/t3 for t � � whereas κ ∼ 1/� for
t � �.

To obtain κ at the edge of the wire, we have to solve the
inhomogeneous problem using the BdG method as described in
Sec. II A and Eq. (6). We obtain the local compressibility κloc ≡
κi = ∂ni/∂μ by differentiating the local density with respect
to the global chemical potential μ. We see from Fig. 1(b) that
the singularity in κ at μc is completely suppressed at the edge
of the wire.

B. Single-particle density of states

It is useful to contrast the behavior of the compressibility κ

from the single-particle density of states (DOS). The spectral

function Ak(ω) = |uk|2δ(Ek − ω) + |vk|2δ(Ek + ω) and DOS
N (ω) = ∑

k Ak(ω). On the other hand, κ captures both the
contributions from the single particles as well as pairs.

As seen in Fig. 2, the DOS shows a gap in both the
topological and the trivial phases, except at the transition.
However, κ is nonzero everywhere because of the contribution
from the pairs. Once again, for an open wire, the local density
of states (LDOS) in the center of the wire essentially reflects
the behavior of the closed loop, as shown in Fig. 1(c), where
both the topological and trivial phases have a finite gap that
closes only at μc. However, at the edge [see Fig. 1(d)],
while the trivial superconductor continues to remain gapped,
there are zero-energy Majorana modes in the topological
superconductor, as is well known from Kitaev’s solution.

All of the results presented in the figures are at zero tem-
perature and can easily be generalized to finite temperatures
from Eqs. (6) and (7).

IV. RESULTS: KITAEV MODEL WITH DEFECTS

A. Weak link

In the presence of a “positive” weak link, i.e., a link with
a hopping parameter that is only different in magnitude but of
the same sign as the regular hopping in the wire, the divergence
of the local compressibility at the transition μ = ±μc is
suppressed, as shown in Fig. 3(a). A “negative” link defect
with the opposite sign of the hopping parameter has a dramatic
effect; for t0 = −t , a Majorana bound state is formed at the
two ends of the link [see Figs. 3(b) and 3(c)]. For all values of
t0, there are multiple resonances [see Fig. 3(d)] that should be
detectable by a scan probe.

B. Local potential

In the presence of an on-site impurity V0, there are several
interesting features in the behavior of the local particle density
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FIG. 3. (a),(b) The local compressibility κloc as a function of the
chemical potential μ/t for a link defect measured on either side of the
link. The link defect is characterized by a hopping parameter t0 	= t

different from the reference value. (a) Three cases: (i) no defect t0 = t

(black dotted line), (ii) positive link defect with same sign hopping
as the reference but with t0 = 0.3t (blue thick solid line), and (iii)
cut wire with t0 = 0 (blue thin line). The singularity in κloc at the
topological phase transitions at μ = μ± is weakened in the presence
of a positive link defect. (b) Negative link defect for several values
of the hopping parameter t0 at μ = 0.6t . (c) Local density of states
(LDOS) for a negative link defect showing a bound state (Majorana)
at zero energy in the topological phase μ = 0.1t,0.6t (blue) and away
from zero in the trivial phase μ = 2.1t (red). In all panels, �0 = 1.0t .
(d) t = −t0 corresponds to the Majorana state in the topological phase
(μ = 0.6t) and others are resonances corresponding to the Andreev
bound states.

and compressibility as summarized in the density plot of the
local compressibility κloc in the V0 − μ plane [see Fig. 4(a)].

(1) Upon comparing with the results for the clean system,
we see that for a repulsive potential V0 > 0, the local density

nloc, which is obtained by integrating Ni(ω) up to zero, is
reduced for all μ [Figs. 4(b) and 4(c)], as expected. This occurs
because spectral weight shifts above the Fermi level in the
presence of a repulsive potential, as depicted in Fig. 4(d) for
one particular value of μ.

(2) The behavior of local compressibility κloc and density
nloc is remarkably different for V0 < μc and for V0 > μc. In the
former case, while the divergences in κ for the clean problem
are cut off in the presence of the impurity, singularities in the
local κloc nevertheless survive at μ = ±μc. These singularities
are of unequal strengths, as seen in Fig. 4(b) for small
impurity potential |V1| < μc. This can be understood from
the changes to the local density of states by the presence of the
impurity. While the states for both μ = +μc and μ = −μc are
shifted to positive energies, there is a marked difference in the
spectra. In particular, the local density of states for μ = −μc

shows a sharpening and the possible formation of a bound
state.

(3) For larger impurity strengths V0 > μc, the effect is
quite nontrivial. The local particle density is found to decrease
around the topological phase transition even as μ increases.
Correspondingly, the local compressibility κloc becomes neg-
ative and shows a dip at the transition [Fig. 4(b)]. The reason
for the decrease of the local density and the corresponding
negative local compressibility is tied to the formation of an
Andreev bound state (ABS) around the impurity that starts
to form above zero energy close to the topological phase
transition.

(4) The bound state formation is induced by the sign change
of the order parameter in this unconventional superconductor.
As seen in Fig. 4(b), for a small superconducting gap, the
bound state is at a finite energy and is broadened into a
resonance. For a fixed V0 as μ increases, the gap increases and
the bound state becomes sharper and moves to zero energy at
μ = V0 [Fig. 4(e)]. At this point, the zero-energy bound state
is detectable as an additional peak in κloc.

FIG. 4. (a) Density plot of κloc in the μ/t-V0/t plane. (b) The local particle density nloc (red) and κloc (blue) for a local potential defect
V0 = t < μc = 2t (solid) and for the clean system V0 = 0 (dotted). (c) Same as (b), but for a stronger potential defect V0 = 3t > μc = 2t

(solid) compared to the clean case (dotted). Close to the topological phase transition μ ≈ μc, κloc becomes negative and an extra peak appears
in the trivial phase. (d) Local density of states (LDOS) in the trivial superconductor for various values of V0 and μ = 2.2t . (e) LDOS in the
trivial superconductor for a fixed V0 = 3t and for various values of μ. For μ = V0, there is a zero-energy bound state but this is not a Majorana
mode (see text).
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FIG. 5. (a) Proposal for measuring local compressibility using an SET (single-electron transistor) in the suggested setup [9,10] of a
nanowire (NW) with spin-orbit coupling in proximity to a superconductor (SC) with an applied magnetic field. (b) Phase diagram of 1D
spin-orbit coupled superconductor as a function of Zeeman field h/t and the chemical potential μ/t [24]. Five different phases can be
identified: trivial superconducting (tS), topological superconducting (TS), FFLO, normal gas (NG), and insulator (INS) phase. (c) The band
structure for a wire with spin-orbit coupling in a magnetic field. As attraction is turned on, different pairing symmetries emerge depending on
the location of μ (the Bogoliubov bands have not been shown). Within the first band, the system is described by the Kitaev model that captures
the transition from the trivial p to topological p-wave SC. Once the second band is crossed, both interband s-wave and intraband p-wave
channels become operative.

(5) For a negative impurity potential, the ABS forms below
the Fermi level and more states shift below the Fermi energy to
enhance the local density for all μ. In contrast to the scenario
of the positive impurity potential, the ABS does contribute to
the local particle density for a negative impurity. As a result,
the local particle density starts to increase as μ decreases,
until a sharp ABS is formed. This once again causes the local
compressibility to become negative around the topological
phase transition.

V. REALISTIC MODEL FOR MAJORANA FERMIONS

Turning now to the second part of the paper, we consider a
more realistic model of a one-dimensional wire with spin-orbit
coupling in proximity to a bulk s-wave superconductor. As has
been discussed previously in the literature, this system can be
described by the Hamiltonian

H = −
∑
i,σ

(μ − Vi)c
†
iσ ciσ −

∑
iσ

ti(c
†
iσ ci+1σ + H.c.)

+ HSO + HZ + HInt, (10)

where c
†
i (ci) is the creation (destruction) operator for

an electron on a site i, ti is the nearest-neighbor
hopping, and μ is the chemical potential. The spin-
orbit coupling and the Zeeman field terms are given
by HSO = 1

2

∑
i,σ,σ ′ αi[c

†
i+1σ (iσy)σσ ′ciσ ′ + H.c.] and HZ =

−h
∑

iσ c
†
i+1σ (σz)σσ ′ciσ ′ , respectively. Parameters αi refer to

the Rashba spin-orbit coupling and h to the Zeeman field. Vi

is the on-site impurity potential. The interaction term HInt =
−|U | ∑i c

†
i↑ci↑c

†
i↓ci↓, where U is the pairing interaction. In

the clean limit, αi = α, ti = t , and Vi = 0.
We solve the model in Eq. (10) within the Bogoliubov–de

Gennes (BdG) self-consistent approach and calculate the local
particle density nloc and the local density of states Nloc(ω), as
discussed in Sec. II in Eqs. (6) and (7).

As shown in Ref. [24], the model in Eq. (1) has several
different phases: trivial superconducting phase (tS), topo-

logical superconducting phase (TS) with Majorana fermions
at the ends of the chain, Fulde-Ferrell-Larkin-Ovchinnikov
phase (FFLO) with spatially oscillating order parameter �

and nonzero magnetization, insulator phase (INS) with finite
energy gap, and normal gas (NG) phase without pairing and
energy gap [see Fig. 5(b)]. We are interested in a particular
slice of the phase diagram in order to investigate the behavior
of the compressibility across the topological to trivial phase
transitions. We consider the Zeeman field h = 1.35t and
spin-orbit coupling α = t that show two transitions from
the topological to the trivial phases as a function of the
chemical potential μ at μ− and μ+. We find the quasipar-
ticle excitation energy E2

±(k) = ε2
k + α2 sin2(k) + h2 + �2 ±

2
√

h2(ε2
k + �2) + α2 sin2(k)ε2

k , where εk = −2t cos(k) − μ.

When h > 0, the gap (E− = 0) closes at |μ±| = (2t ±√
h2 − �2), which corresponds to the phase transitions. The

system is in the topological phase when μ− < |μ| < μ+ and
in the trivial phase for μ < −μ+ or μ > μ+ [see Fig. 5(c)].
For the parameters chosen, μ− ≈ 0.84t and μ+ ≈ 3t . It is
important to note that the system is effectively a “spinless”
p-wave superconductor as long as the chemical potential
crosses only a single band and the transitions are from the
topological phase to a trivial p-wave phase. Once both bands
are crossed, the trivial phase has contributions from both s-
(interband) and p-wave (intraband) paring channels [5].

A. Compressibility at the topological phase transition

Similar to the discussion of the Kitaev chain, from the
self-consistent BdG solutions of Eq. (10), we obtain the local
particle number nloc, and its dependence on the global chemical
potential μ yields the local compressibility κloc = ∂nloc/∂μ.
We find that in the center of the wire, the local compressibility
shows a logarithmic divergence arising from the gap closing
linearly between the topological to the trivial phase transitions
[Fig. 6(a)]. In contrast, the singularities are weakened on
the edge of the wire [Fig. 6(b)]. It is useful to contrast
the compressibility which captures the single-particle and
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FIG. 6. (a) The local particle density nloc (dashed line) and the
local compressibility κloc (solid line) vs chemical potential μ/t

in the center of the wire. The compressibility has sharp peaks
at the transition between the trivial (tS) and topological (TS)
superconducting phases. (b) The singularity in κloc is weakened at the
edge of the wire. (c),(d) The local density of states Nloc(ω), measured
relative to the chemical potential μ, in the trivial (μ = 0, blue circle)
and topological (μ = 1.5t , red star) phases. Results presented for
chain length N = 256 at T = 0 with slightly broadened δ functions
in Nloc(ω).

the pair (collective modes) density of states (DOS) from
the behavior of the single-particle density of states Nloc(ω). As
seen in Figs. 6(c) and 6(d), the DOS shows a gap in both the
topological and the trivial phases except at the transition where
the gap gets closed. However, the compressibility is nonzero
in spite of a single-particle gap because of the contribution
from the pairs, as was also the case for the Kitaev chain.

This is one of our central results. It highlights the fact that
by measuring both the local tunneling DOS at the edge of the
wire and the local compressibility at the center of the wire
as a function of μ, it is possible to unequivocally determine

when the wire is in the topological phase with Majorana modes
localized at the edges. As a control, μ can be varied to bring
the wire into a trivial phase with a finite compressibility and a
gapped single-particle DOS.

We next discuss the effect of a weak link and a single
potential disorder on the local compressibility. We show that
it is necessary to distinguish the transition from the trivial
superconductor (tS) with an order parameter with p symmetry
to a topological superconductor (TS) occurring at μ− from
the one occurring at μ+ from the TS to tS but with order
parameters with both s and p symmetry.

B. Weak link

In the presence of a weak link, defined by a hopping t0 	= t ,
the local particle number nloc becomes inhomogeneous. We
calculate the local compressibility on either side of the link
defect κloc = ∂nloc/∂μ by differentiating it with respect to the
global chemical potential μ.

For a positive link defect, i.e., t0 has the same sign as t , we
find that the peaks in the local compressibility are weakened at
the transition point [Fig. 7(a)]. In the limit t0 = 0, the wire is
cut, and the singularity in κloc is completely suppressed, though
the compressibility remains finite. We also consider the case
of a link with negative hopping parameter, i.e., t0 = −t . Such
a negative link can be produced by a local π junction. The
behavior of κloc as a function of μ is remarkably different
from the positive defect. In the topological phase, a sharp
peak appears in the local compressibility measured on either
side of the link [Fig. 7(b)] at a particular value of μ0; for the
chosen parameters, μ0 = 2t . This is due to the formation of
a zero-energy bound state [Fig. 7(c)] at μ0. It is important to
note that this zero-energy bound state is formed only in the
topological phase. At the same time, it does not correspond
to a Majorana mode based on the structure and symmetries
of the corresponding eigenfunctions. For μ 	= μ0, the bound
state moves away from zero energy and no longer contributes
to the singularity in the compressibility.

In contrast, for the Kitaev chain or for the realistic model
at μ−, the zero-energy modes are indeed Majorana modes.

FIG. 7. (a),(b) The local compressibility κloc as a function of the chemical potential μ/t for link defects measured on either side of the link.
(a) Positive link defect [spin-orbit coupling α0 	= α and hopping parameter t0 	= t different from the reference values shown for three cases: (i)
no defect (black dotted line), (ii) α0 = t0 = 0.3t (blue thick solid line), and (iii) cut wire with α0 = t0 = 0 (blue thin line)]. The singularity in
κloc at the topological phase transitions at μ = μ± is weakened in the presence of the link defect. (b) Negative link defect with t0 = −t (blue
solid line). The sharp peak in κloc within the topological phase arises because of the formation of a zero-energy bound state on either side of
the link defect. (c) Local density of states (LDOS) for a negative link defect showing a bound state at zero energy at μ = 2t (blue) and away
from zero μ = 2.3t (red).
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FIG. 8. (a) The local particle density nloc and κloc for a local
potential defect V0 > μ+. Close to the topological phase transitions
μ = μ±, κloc becomes negative. In addition, extra peaks (shown by
circles) appear in the topological and trivial phases. (b) Density plot of
κloc in the μ/t–V0/t plane. (c)–(e) Local density of states for various
values of V0 and μ. (c) Formation of an in-gap state in the presence
of an on-site impurity in the trivial phase (μ = 0 < μ−) with s and
p wave parings. (d) Formation of a non-trivial bound state in the
topological phase close to the topological phase transition at μ =
0.9t > μ− as impurity strength V0 increases. The bound state starts
to be formed when V0 > μ−. (e) The bound state in the topological
phase for μ = 1.2t .

When are these zero-energy modes Majorana modes or
simply Andreev bound states? In order to get some insight
about these modes, we test the corresponding eigenfunctions
uσ (i) and vσ (i). If the eigenstates satisfy the symmetry condi-
tions uσ (i) = v�

σ (i) or uσ (i) = −v�
σ (i), it is a Majorana mode;

otherwise, it is an ABS that is fine tuned to be at zero energy.

C. Local potential

In the presence of an on-site impurity V0, there are several
interesting features in the behavior of the local particle density
and compressibility, as shown in the density plot in Fig. 8(b).

1. Negative local compressibility

A repulsive potential V0 � μ− can have a nontrivial effect
on the local density and compressibility. The local particle
density is found to decrease around the topological phase
transition at μ = μ− even as μ increases. Correspondingly,
the local compressibility κloc becomes negative and shows a
dip at the transition. For impurity strength somewhat larger
than V0 � μ+, in addition to the dip at μ = μ−, a second
dip appears at μ = μ+ where also the local compressibility
κloc becomes negative [Fig. 8(a)]. The reason for the decrease
of the local density and the corresponding negative local
compressibility is tied to the formation of an ABS above
zero energy that starts to form close to the topological phase
transitions.

2. Bound states

As seen in Fig. 8(c), in the presence of an on-site impurity,
the peaks at the gap edge are suppressed and the gap size
is reduced. This can be understood from the fact that the
trivial phase has both s- and p-wave paring, and disorder
affects the p-wave component more drastically than the s-wave
component; however, the spectrum remains gapped. In the
topological phase where the system is effectively a “spinless”
unconventional (p-wave) superconductor, a bound state is
formed due to the sign change of the order parameter in this
unconventional superconductor.

Figure 8(d) shows the formation of the zero-energy bound
state when V0 � μ−. For a fixed V0 as μ increases, the bound
state becomes sharper and moves to zero energy. At this point,
the zero-energy bound state is detectable as an additional
feature, shown by a circle in κloc [Fig. 8(a)]. With further
increase of μ, the ABS moves below the chemical potential
[Fig. 8(e)]. Similarly, a zero-energy ABS forms also in the
trivial p-wave phase for the impurity strength V0 > μ+.

For a negative impurity potential, the ABS forms below the
Fermi level and more states shift below the Fermi energy to
enhance the local density for all μ. In contrast to the scenario
of the positive impurity potential, the ABS does contribute to
the local particle density for a negative impurity. As a result,
the local particle density starts to increase as μ decreases,
until a sharp ABS is formed. This once again causes the local
compressibility to become negative around the topological
phase transition.

VI. CONCLUSIONS

Our theoretical proposals based on the compressibility, in
conjunction with scanning tunneling spectroscopy, are pow-
erful diagnostics for detecting topological phase transitions
in 1D spin-orbit coupled superconductors. Specifically, in
the presence of local defects, the local compressibility can
be measured using single-electron transistor (SET) spectro-
scopies [25]. Reference [25] has, in fact, used the SET in
a different context to measure the inverse compressibility
locally on a graphene sample as a function of the backgate
voltage or carrier density. We expect the same technique can be
applied to the spin-orbit coupled nanowires—superconductor
devices to detect the topological phase transition guided by
our predictions.

Two of the most promising directions to experimentally
investigate are (a) the sharp peak in the compressibility at the
topological phase transition tuned by the Zeeman field in the
clean wire, and (b) the negative compressibility induced by
the on-site impurity in the topological phase. In general, it
will be useful to see the interplay between local scanning and
local compressibility spectroscopies for giving insights into
single-particle and collective modes [26,27].
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