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Relaxation of the resistive superconducting state in boron-doped diamond films
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We report a study of the relaxation time of the restoration of the resistive superconducting state in single
crystalline boron-doped diamond using amplitude-modulated absorption of (sub-)THz radiation (AMAR). The
films grown on an insulating diamond substrate have a low carrier density of about 2.5 × 1021 cm−3 and a critical
temperature of about 2 K. By changing the modulation frequency we find a high-frequency rolloff which we
associate with the characteristic time of energy relaxation between the electron and the phonon systems or the
relaxation time for nonequilibrium superconductivity. Our main result is that the electron-phonon scattering time
varies clearly as T −2, over the accessible temperature range of 1.7 to 2.2 K. In addition, we find, upon approaching
the critical temperature Tc, evidence for an increasing relaxation time on both sides of Tc.
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I. INTRODUCTION

Electron-phonon (e-ph) scattering is well understood in
clean bulk normal metals and is part of standard textbooks on
solid-state physics. Within that framework, it is also embedded
in the theory of superconductivity, as well as in that of nonequi-
librium superconductivity, where the energy relaxation rate
is a crucial parameter [1], for example in applications where
hot-electron effects are exploited. In practice, one uses normal-
metal or superconducting thin films, in which there is a high
degree of impurity scattering dominating the resistivity. Thin
films with impurity scattering have been extensively studied in
the field of weak localization, where the energy relaxation is
one of the contributions to the single particle phase-coherence
length. Quite generally the impurity scattering is considered
to be elastic, only changing the direction of momentum, and
derivable from the observed resistivity at temperatures above
Tc. This common approach neglects the fact that inelastic
electron-phonon scattering is strongly affected by the presence
of impurities or strong disorder. Moreover, it overlooks that in
many cases of practical interest impurity scattering is predicted
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to be not elastic but also inelastic, i.e., contributing to the
energy relaxation and phase breaking.

In particular, various interference effects modify the tem-
perature dependence of the relaxation rate. In impure metals,
where the electronic mean free path is less than the wavelength
of a thermal phonon, the electron-phonon interaction is found
to be suppressed in comparison to the clean case [2–5], and at
low temperatures the relaxation rate evolves from the standard
T 3 dependence in pure metals to T 4 in impure metals. In
this case, the theory assumes that the impurities and defects
vibrate in phase with the host atoms of the lattice (the so-called
complete drag of impurities). More recently, it was pointed out
that in the case of even a small difference in the vibrations of
the electron scatterers and the host atoms an enhancement of
the electron-phonon interaction is expected [6]. Such disorder-
enhanced relaxation, with a T 2 dependence, was reported for
normal metals in measurements of the phase-breaking length
in a variety of metallic alloys and summarized by Lin and
Bird [7]. An alternative method to study the inelastic aspects
of impurity scattering is by heating the electrons and measuring
directly the temperature difference between the electron bath
and the phonon bath [8]. The applicability of this experimental
method to real materials depends strongly on the compatibility
with the fabrication technology.

We studied superconducting boron-doped diamond films
grown on diamond substrates. An important experimental
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advantage compared to many previous thin-film studies is that
there is no acoustic mismatch between the phonons in the film
and in the substrate, and the unified phonon bath should be
in equilibrium at the bath temperature. Superconductivity in
diamond was first found by Ekimov et al. [9] in polycrystalline
material and by Bustarret et al. [10] in single-crystal thin films.
Boron dopes into a shallow acceptor level close to the top of
the valence band that is separated from the conduction band of
diamond by Eg ≈ 5.5 eV. At low boron concentrations nB ≈
1017–1019 cm−3 the material is semiconducting. If the doping
concentration nB exceeds the critical value (>1020 cm−3),
the system passes through an insulator-to-metal transition
and shows metallic behavior [11]. At a boron concentration
of �5 × 1020 cm−3 superconductivity is observed, with an
increase in the critical temperature Tc with increasing carrier
concentration. Crystalline diamond is therefore an attractive
model system for the study of the impurity scattering at low
temperatures [6]. The boron dopants provide charge carriers
but also play the main role for impurity scattering [12].
Superconductivity has been attributed to the optical phonons
arising from the B-C stretching mode [12], and these phonons
are therefore directly related to the acceptor atoms. Taking
into account the absence of a Kapitza resistance for phonons,
the CVD-grown boron-doped diamond films form a unique
system to study electron-phonon interaction processes. We
use amplitude-modulated absorption of (sub-)THz radiation
(AMAR), introduced by Gershenzon et al. [13], suitable
for the study of electron-phonon processes in various thin
films, provided that they become superconducting at an
experimentally accessible transition temperature.

Our main result is that the relaxation of the resistive
superconducting state of boron-doped diamond is controlled
by an electron-phonon inelastic scattering rate, which varies
as T 2. In addition we find that on both sides of Tc the observed
relaxation time increases, suggesting a divergent behavior
upon approaching Tc.

II. DETERMINATION OF THE ENERGY-RELAXATION
TIME IN THIN SUPERCONDUCTING FILMS

The method introduced by Gershenzon et al. [13] (AMAR)
allows us to measure the energy relaxation rate between
electrons and phonons. A superconducting film is brought into
a regime where the film is in a superconducting resistive state
(cf. Fig. 1).

A small dc current IDC is applied and the voltage VDC

is monitored, while an amplitude-modulated signal from a
submillimeter source is directed at the film. The modulation
frequency for the amplitude is ωm. The absorbed radiation
power causes an increase of the electron temperature Te

(cf. Fig. 2), which leads to an increase of the film resistance δR

followed by a voltage signal proportional to the bias current
δV = IδR. It is found that this method provides a frequency-
dependent rolloff (cf. Fig. 3), which is taken as the measure
of the energy-relaxation rate. Application of a perpendicular
magnetic field brings the film into a resistive state at various
temperatures, which makes it possible to measure the energy-
relaxation rate as a function of temperature, although over a
limited range of temperatures. The technique has been applied
to various materials, usually providing different temperature
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FIG. 1. Current-voltage curves at different temperatures near
the critical temperature T r

c in zero magnetic field. Under the RF
power an operation point (I = 20 μA and V = 1 mV) shifts along
the equivalent load resistance line that produces the voltage signal δV .
The inset shows the equivalent circuit for determining an output signal
of the superconducting film upon the absorption of the amplitude-
modulated radiation.

dependences of the relaxation rate, for example T 2 in Nb
film [13], T 1.6 in NbN [14], and T 3 in TiN [15] and in
NbC [16].

Inelastic relaxation times are important in nonequilibrium
superconductivity, in hot-electron effects in normal metals, and
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FIG. 2. Coupling between the thermodynamic subsystems in the
case of (a) a thin metal or superconducting (SC) film on an insulating
substrate; (b) a boron-doped diamond film on a diamond substrate,
illustrating, in comparison to (a), the absence of a Kapitza resistance.
The electron reservoir under illumination can be described by the
Fermi-Dirac distribution function f (E) with an effective electron
temperature Te exceeding the phonon temperature Tph. In practice,
the metal film is in a resistive superconducting state which is due to
the vortices, phase and/or amplitude fluctuations. It is assumed that
the electron temperature Te, increased by DC power and by RF power,
controls the changes of the resistivity of the superconducting state.
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FIG. 3. The frequency dependence of the sample response at
different bath temperatures Tb. The experimental data are measured at
a temperature in the middle of the superconducting transition (where
∂R/∂T = max) at the same bias current. The temperature of the
resistive transition shifts when a magnetic field normal to the film
plane is applied. The data of each curve were normalized to 0 dB
for convenience. The solid lines are a least-square fit with Eq. (2).
The fit standard error of the rolloff frequency does not exceed 10%.
The inset shows the energy relaxation time vs the normalized temper-
ature (T/T r

c ), where the critical temperature T r
c is the temperature of

the middle point of the resistive transition. The experimental results
correspond to both types of measurements: case A (red triangles) and
case B (black squares).

in magnetoresistance due to quantum-interference processes.
In the latter, the normal-metal phase-breaking time τφ is
limiting the phase coherence of elastically scattered electron
waves. It is usually assumed to be limited by inelastic
electron-phonon scattering and at lower temperatures by
electron-electron scattering. Gershenzon et al. [13] have
made a comparison of results based on weak-localization
experiments with those obtained with the AMAR method.
The outcome, for strongly disordered niobium films with
the elastic mean free path in the 1-nm range and a Tc

of 3.2 to 8.5 K, is that the results are comparable in the
temperature range from 10 to 20 K. At lower temperatures
the weak-localization results differ quite strongly, both in the
temperature dependence and in the absolute value, which is
attributed to electron-electron scattering as the limiting process
for weak localization. It supports the assumption that an
elevated electron temperature can be assigned to the electron
system in comparison to the phonon temperature. Although
the complexities of electron-electron scattering, in particular
in relation to its material dependence, have meanwhile become
much more detailed [17–21], we assume that the basic premise
of the existence of an electron temperature is justified.

A boron-doped diamond film is considered a thermo-
dynamic system composed of two interacting subsystems:
electrons and phonons which are coupled via electron-phonon
interaction [22]. If the film is exposed to amplitude-modulated
radiation, the temperature of the electron subsystem will
change accordingly. The amplitude of the temperature re-
sponse will depend on the modulation frequency and the
time constant of the electron subsystem. This time constant
will be a function of the electronic specific heat and the heat
conductance between the electrons and the phonons in the film.

Due to the absence of a film-substrate interface for phonons
between the doped layer and the substrate, we assume that
the escape time of nonequilibrium phonons into the substrate
is very short, considerably less than the resistance-relaxation
times we find.

The resistance relaxation time is determined from 3-dB
rolloff of the frequency dependence of the amplitude of
the output voltage δV (ωm). Since the diamond film has no
Kapitza resistance, the phonons can be treated as a heat
bath in equilibrium with the cryogenic environment. Then the
dynamics of the film can be described by a single heat-balance
equation:

Ce

dTe

dt
= −G(Te − Tb) + PDC + PRF , (1)

with Ce the heat capacity of the electrons, Te the electron
temperature, Tb the phonon-bath temperature, G the heat con-
ductance from the electrons to the phonon-bath, PDC = I 2R

the Joule power dissipated in the film, and PRF the absorbed
radiation power. Equation (1) is valid under two assumptions.
The first one is that the Joule heating and the RF drive are
sufficiently weak so that the departure of Te from Tb is small
in the sense |Te − Tb| � Tb. This regime is achieved when the
distance L between the contact pads is larger than the thermal
diffusion length Ldiff = √

Dτe−ph (with D the electronic
diffusion coefficient and τe-ph the electron-phonon interaction
time). As will be shown below, the condition Ldiff � L is
satisfied in our case. In the experiments the radiation power
was modulated, so that PRF (t) = P0 + P1exp(iωmt). This
allows us to use the results of the lumped-circuit model for
hot-electron bolometers given by Karasik and Elantiev [23]
for the power of the response signal generated by the film:

Pout(ωm) = P0

1 + (ωmτB)2
, (2)

with P0 the power for low modulation frequency and

τB = τe−ph

1 + α
, with α = I 2

G

∂R

∂Te

R − RL

RT + RL

. (3)

In Eq. (3), R = V/I is the Ohmic resistance at the
operating point, and RL is the equivalent load resistance
determined by the read-out electronics and the bias circuit,
RT = R + I (∂R/∂I ). By plotting Pout(ωm) we determine the
time constant τB . Choosing the operating point so that the
current is as small as possible, while the response power is still
measurable, allows minimizing the parameter α. Physically, in
this regime the Joule heating is minimal and is assumed not
to slow down the energy relaxation process of the electron
system. Keeping the current low also reduces nonthermal
effects such as vortex creation or enhanced phase-slip rates,
which are not included in Eq. (1).

An equivalent electrical circuit for analyzing the response
of the superconducting film to amplitude-modulated radiation
is presented in the inset of Fig. 1. As a radiation source, we use
a backward-wave oscillator (BWO) with a carrier frequency
of 350 GHz. The BWO power is amplitude modulated at
frequencies of 10 to 2000 kHz. The response voltage from
the film, δV (ωm), and the frequency ωm are measured with a
spectrum analyzer. To determine the temperature dependence
of the resistance-relaxation time we varied the bath
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temperature and applied a magnetic field to get into a usable
resistive superconducting state by the creation of vortices.

A crucial ingredient of this AMAR method is the ex-
ploitation of the resistive superconducting state. The observed
relaxation is in essence the restoration of the resistive super-
conducting state after exposure to radiation with a frequency
higher than the energy gap of the superconductor. For the
results presented here we use, in practice, two types of resistive
superconducting states.

Case A: the resistive transition of a superconducting film
in zero magnetic field. Above the mean field critical temper-
ature Tc, the resistive transition is determined by amplitude
fluctuations of the order parameter and known as Aslamazov-
Larkin [24] and Maki-Thompson contributions [25,26]. Below
Tc it is, for one-dimensional superconductors, determined by
thermally activated phase slip events. For a two-dimensional
film the situation is more complex. There exists a well-defined
regime for films with a high resistance per square, where
the emergence of resistivity is controlled by the theory
of the Berezinskii-Kosterlitz-Thouless (BKT) model, which
focuses on the macroscopic phase fluctuations. In this theory
a superconducting film upon approaching Tc will first pass
another critical temperature TBKT , where vortex-antivortex
pairs unbind, providing free vortices. These free vortices will
move under the influence of a transport current and will
therefore provide a voltage across the superconductor and
make it appear resistive. The temperature dependence of the
resistivity, the exponential rise at the resistive transition, is
due to the increasing presence of free vortices. The relevant
temperature is the electron temperature, since it controls
the superconducting properties including the density of free
vortices. As shown by Kamlapure et al. [27], a detailed analysis
of the resistive superconducting properties in terms of the
BKT theory can be made, for example for NbN, provided
finite-size effects of the films are properly taken into account.
For the diamond films studied here, with a not too high sheet
resistance, the expected TBKT is close to Tc, which rules out
such an analysis based only on the phase. In the regime where
TBKT is close to Tc, the emergence of resistance is then not
exclusively controlled by the vortex density occurring in the
BKT theory but includes both phase and amplitude fluctuations
of the order parameter. Therefore, the observed resistance is
most likely due to the interplay of the time-dependent phase
differences and nonequilibrium conversion currents, as was
studied experimentally by Carlson and Goldman [28–30].
Because of this complexity a quantitative description of the
emergence of resistance in a two-dimensional superconducting
film cannot be based on a sharply delimited conceptual frame-
work [31]. It is known that for uniform systems in the limit of
� � kBT the relaxation of nonequilibrium state induced by
radiation should be called longitudinal nonequilibrium [32].
Its relaxation is controlled by the electron temperature Te,
by the mean-field critical temperature Tc, and the inelastic
relaxation rate τE . In many cases τE is the electron-phonon
time, which itself is temperature dependent. In addition there
is the temperature dependence related to the restoration of the
superconducting state, which is dependent on (1 − Te/Tc)−1/2.

In practice a dc bias is also used to move the resistive
transition to lower temperatures, which allows a range of
temperatures close to Tc to be accessed. The shift of the

resistive transition is due to the fact that a transport current
also contributes to the creation of extra free vortices in the
BKT theory [33].

Case B: the resistive state of the superconductor is reached
by applying a perpendicular magnetic field, which creates
vortices, with their flux in the direction of the applied magnetic
field above the field Bc1. With a current applied these vortices
move under the Lorentz force, provided the force exceeds the
pinning force. This flux-flow regime including the breakdown
of collective flux pinning was studied recently for NbN films by
Lin et al. [34]. Case B enables carrying out measurements over
a larger range of temperatures. By choosing a bath temperature
Tb and adjusting the magnetic field close to Bc2 at that
temperature, we access the temperature-dependent resistive
superconducting state. By applying a low bias current, we
choose a resistive state where a measurable voltage response
exists. Also in this case the resistive superconducting state is
controlled by the electron temperature. In contrast to case A the
superconducting state is in principle in the regime � � kBTc.
In this way it is possible to measure a voltage from the resistive
superconductor, caused by the modulation of the electron
temperature as a function of applied modulation frequency
at different bath temperatures. The main assumption is that
the changes of the resistive superconducting state, caused by
flux flow, with absorbed power are due to a rise in electron
temperature and do not contain any corrections due to the
fact that a magnetic-field-induced resistive superconducting
state is used. In other words, the fact that the resistivity is
due to flux-flow processes and by the density of vortices
is not affecting the observations in a significant way. The
only significant parameter is the effective electron temperature
for a given B-field and the current, in comparison with the
phonon-bath temperature. In addition, it is experimentally
verified that the observed response does not depend on the
level of the microwave power (linear regime in power).

With the assumptions stated above the temporal response
of the resistive superconducting state, which we observe in the
experiment, serves in all cases as a measure of the temporal
response of the electron temperature. For the regime of the
time constants that we find, this seems like a justified assump-
tion. However, since we are observing the resistivity of the
superconducting state the restoration of the superconducting
state adds in principle an additional temperature dependence
around Tc.

III. SAMPLES

Two p+ epilayers of diamond were grown in a home-
made vertical silica tube reactor [35] by microwave plasma-
enhanced chemical vapor deposition (MPCVD) on 0.3 × 3 ×
3 mm3 (001)-oriented type Ib diamond substrates, on top of a
500-nm-thick nonintentionally doped buffer layer. The growth
was carried out at 880 ◦C in a gas mixture of H2, CH4, and
B2H6. The total pressure was 33 torr, i.e., 44 hPa, and the
total gas flow was 100 sccm. The molar methane-to-hydrogen
ratio was 3.5%, and the boron-to-carbon molar ratio in the
introduced gas mixture was 0.25% for sample N1 and 0.33%
for sample N2. The other difference between the two samples
was the duration of the growth, leading to thicknesses d of
300 and 70 nm for samples N1 and N2, respectively. Four
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TABLE I. Parameters of the films.

d R� ρ T r
c D α

Sample (nm) (Ohm) (μ Ohm × cm) (K) (cm2 s−1) (μ s × Kp) p

N1 300 50 1500 2.245 1.38 ± 0.04 1.91 1.88 ± 0.05
N2 70 220 1540 2.195 1.30 ± 0.02 1.92 2.06 ± 0.05

parallel silver-paste contacts drawn across the whole sample
were used to measure the sheet resistance R� of the film at
300 K, and the thickness was deduced from spectroscopic
ellipsometry measurements [36] performed in situ [37]. This
allowed the determination of the resistivity ρ = R�d, which
was very similar for both samples. The critical temperature
T r

c was determined as the temperature of the midpoint of the
resistive transition where the sample’s resistance is 50% of RN

(the RN is the normal state resistance above the transition).
We also measured the electron diffusion constant D from the
temperature dependence of the second critical magnetic field
Hc2 as

D = −1.28
kBc

e

(
dHc2

dT

)−1∣∣∣∣
T =Tc

. (4)

The results are summarized in Table I.

IV. THREE REGIMES

A typical experimental result is shown in Fig. 3 for one of
the samples (sample N2). This set of data is taken following
the case-B method described above. The bath temperature is
set between 1.7 and 2.11 K. A perpendicular magnetic field is
applied until a resistive state is reached, providing the resistive
state shown in Fig. 1. The output voltage δV (ωm) as a function
of modulation frequency is shown in Fig. 3. With increasing
frequency we find for each bath temperature a clear rolloff.
We apply a least-square fit to the measured data using Eq. (2),
which leads to a characteristic relaxation time, shown in the
inset. Similar curves are obtained for measurements using the
case-A method. All the results are put together in the inset of
Fig. 3 as a function of the normalized critical temperature T r

c ,
determined from the midpoint of the transition in the absence
of a magnetic field which we call Tc of the film, as listed in
Table I.

We identify three different regimes in the response:
(1) Regime I: At temperatures 0.75Tc < T < 0.95Tc, the

data for both samples are shown in Fig. 4. We observe, for
both samples, a very similar trend with τ = αT −p, with α and
p used as fitting parameters. The values of α and p obtained
from the least-square fit are listed in Table I. In both cases the
value of p is very close to 2. The values of τ (T ) run from 400
to 700 ns over the temperature range 1.7 to 2.2 K.

(2) Regime II: At temperatures 0.95Tc < T < 0.99Tc,
the relaxation time increases in a divergent manner upon
approaching Tc (inset of Fig. 3). This is reminiscent of data
reported before by Gershenzon et al. [38] for dirty niobium and
interpreted as the observation of the relaxation of the supercon-
ducting order parameter, the so-called longitudinal relaxation
time known from nonequilibrium superconductivity [32].

(3) Regime III: At even higher temperatures of 0.99Tc <

T < 1.02Tc, the relaxation time decreases with temperature.
In this regime the resistive superconducting state is close
to the normal-state resistance. It should be considered as
within the range where the superconducting state emerges out
of the normal state due to time-dependent Ginzburg-Landau
fluctuations, i.e., within the resistive transition.

These three regimes represent in our view three different
physical processes. We consider the fact that regimes II and
III have been measured according to the case A method and
regime I with the case B method, an important distinction of
which the significance is to be addressed further. In case A we
are in a regime where many processes are entangled and where
one can safely state that � � kBT ∼ kBTc. In case B there
is a well developed energy gap � outside the regime where
the vortex cores are located, but the magnetic field is close to
Bc2. Therefore the resistive superconducting state is controlled
by a complex inhomogeneous nonequilibrium process. The
restoration of the resistive state occurs in a spatially distributed
way with, on a microscopic level, scattering and recombination
processes known from nonequilibrium superconductivity, as
well as diffusion processes.

V. REGIME I

The observed resistance relaxation time indicates how fast
the resistance changes with a modulation of the input power.
As argued above we interpret this time as the energy-relaxation
time between the electron and the phonon system. In previous
experiments, such as for TiN [15], we find that it obeys a
power law with the exponent p = 3. Here we find clearly the
exponent p = 2 (Fig. 4).
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FIG. 4. The temperature dependence of the energy-relaxation
time at low temperatures far from Tc (0.75T r

c < T < 0.95T r
c ). The

full lines represent the theoretical estimate for τe-ph(T ) according to
Eq. (6). For comparison the dashed line represents a T −3 dependence.
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TABLE II. Calculated parameters of the films for evaluation of
τe-ph(T ).

nB εF kF l N0

Sample (cm−3) (eV) (cm−1) (nm) (eV−1 μm−3) b

N1 3 × 1021 1.5 4.5 × 107 0.41 3.1 × 109 0.066
N2 3 × 1021 1.5 4.5 × 107 0.39 3.1 × 109 0.073

A straightforward explanation for p = 2 might be the
dimensionality. A phonon system is two dimensional when
λT � d, with λT the wavelength of the thermal phonons and
d the film thickness. This is definitely not our case because
the wavelength of the thermal phonon λT = (�ul)/(kBT ) is ≈
60 nm, which is less than the thicknesses of both our samples.
Besides, since our superconducting layer is grown on diamond
the perfect acoustic match between the boron-doped diamond
epilayer and the diamond substrate makes it unreasonable to
think in terms of two-dimensional phonons.

In the case of a three-dimensional phonon system sub-
stantial modifications in the electron-phonon interaction due
to electron-impurity scattering have been developed. They
depend on the polarization mode, transverse or longitudinal
phonons, and on the effect of disorder. Furthermore, the
samples we study are in the dirty limit in the sense l � λT ,
which is already achieved at T ≈ 2.2 K with l/λT = 0.2.

In disordered metals the electron-phonon interaction is
nonlocal with a characteristic size of the interaction region
about equal to λT . In the diffusive limit, when l � λT , the
theory predicts, in the presence of strong elastic scattering, a
weakened electron phonon interaction [3–5]:

τe−ph = 1

9.1

10

3π4βt

(pF ut )3

pF l

1

(kBT )4
, (5)

with βt = (2εF /3)2(N0/(2ρmu2
t )) the coupling constant, pF

and εF the Fermi momentum and Fermi energy, N0 the
density of states at the Fermi energy, and ρm the mass density
(these parameters are listed in Table II). The coefficient 9.1
results from averaging over all electron states contributing
to τe−ph [16]. This theoretical model assumes that all the
impurity scatterers for electrons vibrate in phase with the host
atoms. Experimentally, the T −4 behavior of τe−ph has been
predominately observed in elemental thin films, such as Cu [8],
Au [8], Hf [39], and Ti [39], mostly at very low temperatures,
below hundreds of mK. Nevertheless, the T −4 dependence
was also found in disordered amorphous InO films [40] and
heavily doped silicon [41] at low temperatures. Obviously, the
results found in our diamond films are not in agreement with
this model for electron-phonon interaction in the presence of
impurity scattering.

A T −2 dependence, found from weak localization experi-
ments, has been reported for alloys, polycrystalline films, and
metallic glasses such as CuZrAl [42], TiAl [43], TiAlSn [44],
AuPd [45], VAl alloys [46], CuCr [47], ZrSn, Au-doped
In2O3−x films [48], and in Mn-doped Al films [49]. Such
disorder-enhanced relaxation, with a T −2 dependence, is
predicted by a recent model of Sergeev and Mitin (SM) of
scattering of electrons by static impurities such as heavy

impurity atoms, the defects, and grain boundaries [6]:

τe−ph = 1

1.6

1

b

(pF l)(pF ut )

3π2βt

1

(kBT )2
, (6)

where the coefficient b (bmax = 0.25) [50] describes the
difference in the vibration of the scatterers and the host atoms.
We apply this theoretical prediction to our data as follows.
The carrier density is given by nB = 3 × 1021 cm−3 from
the experimental dependence of the critical temperature as
a function of the boron concentration [11]. The Fermi wave
vector and the elastic-scattering length are determined from
kF = 3

√
3π2n and l = ((3π2)1/3

�)/(3e2ρπ2n2/3) within the
Drude-Sommerfeld model [51]. The effective carrier mass
follows from m∗ = (pF l)/(3D) ≈ 0.5me, where me is the
electron mass. The density of states at the Fermi level is
estimated from the experimental values of the resistivity ρ

and the electron diffusion constant D through the expression
N0 = 1/(e2ρD). The mass density ρm was taken for diamond
with the value ρm = 3.5 g/cm3. The sound velocities for the
longitudinal mode ul = 16 × 105 cm/s and for the transverse
mode ut = 9.7 × 105 cm/s are estimated from the phonon
dispersion relations using Giustino et al. [52]. The calculated
dependencies are shown in Fig. 4, using only the parameter b

as a fitting parameter (see Table II).
Since the elastic mean free path l of electrons is comparable

with average distance between the boron atoms, we assume
that the carriers are scattered predominantly at sites of boron
atoms. However, the mass difference between the boron and
carbon is only about 10%, which itself is not a sufficient
condition for the applicability of the SM model. Therefore
in the case of boron-doped diamond one should consider
as scatterers also clusters of boron atoms (dimers, trimers,
etc.) [53], but further studies are needed to identify the exact
nature of the scatterers.

For completeness we point out that a T −2 dependence
of the relaxation time is also predicted for semiconductors
for the case of low screening [54]. The e-ph interaction
(through the deformation potentials) in semiconductors is of a
different nature than those for metals [55]. This interaction
in semiconductors has a different dependence on disorder
and on the electronic concentration. However, because of
the relatively high boron concentration (of order 1021 cm−3),
our diamond samples are in the strong screening limit (with
the screening length κ−1 ≈ 1.5 Å, where κ2 = 4πe2N0), and
hence the theory for e-ph interaction in a semiconductor is not
applicable to this case.

It should also be stressed that the time τe-ph, which is
measured with the AMAR technique, is by definition the
time of relaxation of the electron temperature due to electron-
phonon interaction. It differs from another characteristic
electron-phonon time—the time of the relaxation of the
distribution function—by a numerical factor and is several
times shorter. The reason for this difference is the following.
The rate of relaxation for a quasiparticle depends on its
energy and increases with it. Thus the total energy of the
thermal distribution of quasiparticles (and correspondingly the
temperature), which is determined mainly by quasiparticles
with the highest energies, relaxes faster than the number of
quasiparticles. The value of the numerical factor depends on
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the particular form of the electron-phonon collision integral
and has not been calculated for the most general case [56].
Because the time of the relaxation of the distribution function,
or of the quasiparticle number, is also often referred to as the
electron-phonon time, one should bear in mind the numerical
difference between it and the time of the relaxation of the
electron temperature. But, the temperature dependences for
both are the same. The formulas (see above) we will use to
fit the experimental data give the time of the relaxation of the
quasiparticle number, not the time of the energy relaxation, but
because of an uncertainty in the numerical coefficient in these
formulas and of an unknown factor between the two times, we
will neglect this difference.

VI. REGIME II

At the temperatures in the range 0.95Tc < T < 0.99Tc, the
relaxation time is found to increase sharply (Fig. 3). In this
temperature range the photons of the THz source scatter quasi-
particles to energies well above the superconducting energy
gap at the given temperature. The resistive superconducting
state is expected to relax back to the equilibrium state on a
time scale of the order of the so-called longitudinal relaxation
time, Eq. (7).

Since the longitudinal relaxation time is inversely propor-
tional to the energy gap, we plot the data, Fig. 5, as the inverse
square of the relaxation time vs temperature. We obtain straight
lines suggesting that we are indeed observing the longitudinal
relaxation time, which diverges as (Tc/(Tc − T ))1/2, although
the extrapolated value goes to a Tc, which we called T L

c , which
is slightly different from T r

c . This longitudinal relaxation time
is given by:

τL ≈ 3.7τEkBTc/� (7)

with �(T ≈ Tc) ≈ 3.1kBTc(1 − T/Tc)1/2, where Tc is the
critical temperature, i.e., the temperature at which the gap
is completely suppressed, and τE is the energy-relaxation or
inelastic-scattering time for an electron at the Fermi surface.
In this case the critical temperature Tc is determined as the
temperature T L

c at which the value of the order parameter
approaches zero. The values of T L

c for both samples are almost
identical to the values of T r

c determined from the resistive
transition.

The time τE is the characteristic time for the nonequilibrium
distribution function to relax to the Fermi function. In the
standard analysis of, for example, Kaplan et al. [1], this
τE is related to electron-phonon interactions as measured
in energy dependence of the superconducting energy gap
in a tunneling experiment. Hence, the inelastic scattering
rate is coupled to the electron-phonon interaction responsible
for superconductivity. However, in general, two processes
may be responsible for inelastic scattering: electron-electron
interaction and electron-phonon interaction. The faster of the
two will dominate. The estimated values of τE at T L

c are
τE ≈ 52 ns for the 70-nm sample (with T L

c = 2.2 K) and
τE ≈ 72 ns for the 300-nm sample (with T L

c = 2.24 K). While
comparing the inferred values of τE to the characteristic time
of electron-phonon interaction, one should remember that τe-ph

measured in regime I is the time of the energy relaxation and
should be several times shorter than the time of the relaxation
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FIG. 5. The inverse square of the relaxation time (τ−2) and
the film resistance as a function of the temperature. The dashed
line corresponds to the longitudinal relaxation time, which diverges
as (T L

c /(T L
c − T ))1/2, where T L

c is determined as the temperature
at which the superconducting gap is completely suppressed and
τ−2 = 0. The values of T L

c , indicated in the legend, are close to
the temperature T r

c determined from the resistive transition.

of the distribution function in the same process. Thus τE is
more than an order of magnitude less than the time of relaxation
of the distribution function due to electron-phonon interaction.

In a pure metal the relaxation time due to electron-electron
interaction follows, for states near the Fermi surface, an inverse
quadratic temperature dependence:

τee ∝ �εF

(kBT )2
. (8)

The values of τee in the clean case are of the order of
15 ns at Tc = 2.25 K. In dirty metals with a short electronic
mean free path the electron-electron interaction is enhanced
compared to the clean case. The actual relation depends on
the dimensionality, which in turn depends on the ratio of the
film thickness to the characteristic length LT = √

�D/(kBT )
called the thermal diffusion length. It defines the length
scale over which electrons lose coherence as a result of the
thermal smearing of their energy [57]. Since for our samples
LT ≈ 25 nm, both samples are in the three-dimensional regime
for electron-electron interaction.
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In 3D dirty metals, for an electron at the Fermi surface, the
electron-electron scattering rate [58,59] is given by

1

τee

= c
1

kF l

(kBT )3/2

εF

√
�τ

, (9)

where c = (3
√

3π )/16ζ (3/2)(
√

8 − 1) ∼= 2.75, and τ =
l2/3D is the elastic scattering time. For Tc = 2.25 K we
obtain τee ≈ 0.2 ns. This value is considerably less than
the experimentally determined values of τE . Therefore we
believe that the electron-electron interaction does not play a
role in the interpretation of the data in this regime.

We conclude this section by emphasizing that the relaxation
time of 500 ns found in regime I is different from the relaxation
time of 50 to 70 ns found in regime II. We note however,
that the unprocessed relaxation times measured in case A
and case B are quantitatively at the same level. Therefore we
assume that our identification of the data obtained in case B as
representing the bare τE and the ones of case A the longitudinal
relaxation rate is too simplified cannot be used too strongly
for the absolute value. In reality the restoration of the resistive
state in case B involves an inhomogeneous state with unipolar
vortices and elsewhere a well-developed energy gap, although
close to Bc2. In case A we deal with a system very close to
Tc also inhomogeneous and in the limit where � � kBT and
where multiflux-quantum domains may exist with opposite
polarity. The restoration of the resistive superconducting state
in the time domain involves a complex process, which may
influence the absolute values. We believe however, that we can
safely attribute significance to the observed T −2 and (Tc/(Tc −
T ))1/2 dependences in comparison with other superconducting
materials.

VII. REGIME III

Finally, at higher temperature in the range (0.99Tc < T <

1.02Tc) the resistance-relaxation time falls with temperature.
The decrease of τ corresponds to the temperature region of
the conventional resistive transition, where thermally activated
processes generate vortices/phase slips, as well as amplitude
fluctuations, which gradually merge towards the regime of
superconducting fluctuations out of the normal state. Above
the superconducting mean field Tc the fluctuations can be
described by the Aslamazov-Larkin theory using the time-
dependent Ginzburg-Landau (TDGL) equations [32].

According to this time-dependent Ginzburg-Landau theory
the characteristic time is controlled by

τ0 = π�

8kB(T − Tc)
, (10)

which is a measure of how quickly a temporary existence
of superconducting order gets restored to the normal state.
As shown in Fig. 6, for descending temperatures upon
approaching Tc the lifetime of superconducting order gets
extended in order to become “infinitely” long. The temperature
located at the peak between regime II and regime III is denoted
as T

p
c . The values of T

p
c differ from the values of T r

c and
T L

c within 1%–3%. This difference in temperatures may be
due to the T r

c having been measured with minor disturbance,
whereas T L

c and T
p
c both represent bias conditions with a

sizable measurement current. The temperature T
p
c can be
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FIG. 6. The relaxation time vs T − T p
c , where the temperature

T p
c correspond to a temperature at the peak separating regime II

and regime III. On both sides of the temperature T p
c the observed

relaxation time increases, suggesting a divergent behavior upon
approaching T p

c . For sample N1, since the last three points were
measured in the limit where the film is normal, we left them out of
the discussion.

considered as the superconducting mean field Tc above which
the fluctuations of the order parameter dominate. The observed
temperature dependence τ (T ) is in agreement with such a
scenario (Fig. 6), but the data are too limited to conclude
that this is indeed what we observe. Regime III has not been
reported before with this experimental method. In comparison
with previous measurements, where the spontaneous thermal
fluctuations of the order parameter were measured with a
tunnel junction [60,61], the advantage of our method is a
direct restoration of the electron system after a disturbance
and a possibility to maintain phonons in equilibrium. However,
more detailed measurements are needed to resolve the situation
more accurately. Nevertheless, it is to be expected that on
both sides of the mean-field critical temperature Tc we
will have a divergent slowing down of the restoration of
fluctuations.
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VIII. CONCLUSIONS

In conclusion, we have been able to study superconducting
boron-doped diamond films by using the method of amplitude
modulation of the absorbed THz radiation. By changing the
frequency of the modulation we find different regimes with
different values and different temperature dependences of the
energy-relaxation time. The slow energy relaxation at low
temperatures is governed by a T −2 dependence with a value
of 0.7 μs at T = 1.7 K. At temperatures closer to Tc we
identify the longitudinal nonequilibrium time, in the narrow
temperature range (0.95Tc < T < 0.99Tc). The associated
inelastic-scattering time differs by an order of magnitude from
the energy relaxation time found at lower temperatures. We
argue that we cannot assign a conclusive interpretation to the
differences in the absolute value.

Blase et al. [12] have pointed out that the superconductivity
in boron-doped diamond may be intimately related to the
contribution of the stretching bond of the C atoms to the B
atoms. It implies that the electron-phonon interaction leading
to superconductivity is intimately related to the presence of
the B atoms. The results presented here suggest that it is

worth analyzing in more depth the time dependence of the
nonequilibrium processes by combining the insights from
Blase et al. with insights from theories like the Sergeev-Mitin
theory [6].
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