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Nonmonotonic pressure evolution of the upper critical field in superconducting FeSe
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The pressure dependence of the upper critical field, Hc2,c, of single crystalline FeSe was studied using
measurements of the interplane resistivity, ρc, in magnetic fields parallel to tetragonal c axis. Hc2,c(T ) curves
obtained under hydrostatic pressures up to 1.56 GPa, the range over which the superconducting transition
temperature, Tc, of FeSe exhibits a nonmonotonic dependence with local maximum at p1 ≈ 0.8 GPa and local
minimum at p2 ≈ 1.2 GPa. The slope of the upper critical field at Tc, (dHc2,c/dT )Tc

, also exhibits a nonmonotonic
pressure dependence with distinct changes at p1 and p2. For p < p1 the slope can be described within a
multiband orbital model. For both p1 < p < p2 and p > p2 the slope is in good semiquantitative agreement
with a single band, orbital Helfand-Werthamer theory with Fermi velocities determined from Shubnikov–de Haas
measurements. This finding indicates that Fermi surface changes are responsible for the local minimum of Tc(p)
at p2 ≈ 1.2 GPa.
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I. INTRODUCTION

Hydrostatic pressure is a widely used tool to study materials
without changing their stoichiometry. Pressure is a particularly
useful, nonthermal tuning parameter for quantum critical
materials, in which suppression of antiferromagnetic ordering
temperature TN to zero at a quantum critical point [1] leads
to strong deviations of electronic properties from standard
Fermi-liquid theory and superconductivity. Iron-based su-
perconductors provide one of the most clear examples of
quantum critical systems [2], with T -linear resistivity [3,4] and
maximum Tc at optimal doping found at the edge of magnetic
ordering in x or pressure p. However, notable deviations
from this simple picture are found in K- and Na-hole-doped
BaFe2As2-based compositions (BaK122 and BaNa122 in the
following). Here suppression of TN(x) to zero happens at
significantly lower x than maximum Tc is achieved [5–8], and,
moreover, Tc reveals a nonmonotonic composition dependence
near x ≈ 0.25 [9,10], and pressure dependence for close
compositions [11–13], reminiscent of the 1/8 anomaly in the
underdoped cuprates [14]. This x = 0.25 anomaly in Tc(x,p)
was related with the emergence of competing magnetic phase
[10].

FeSe is structurally the simplest iron-based superconductor
[15–17], but it has one of the more complex pressure-
temperature phase diagrams. At ambient pressure FeSe under-
goes electronic nematic tetragonal to orthorhombic structural
transition with Ts ≈ 90 K, which is not accompanied by long-
range magnetic ordering [18], and becomes superconducting
with Tc ≈ 8.5 K [19]. The application of quasihydrostatic
pressure leads to a fourfold increase of Tc up to 37 K [20], and
the rise of Tc continues well beyond the point where Ts(p) → 0
at p ∼ 2 GPa. Even much higher Tc values up to ∼100 K are
claimed in single layer films of FeSe [21]. Interestingly, the
increase of Tc with pressure in bulk FeSe is not monotonic:
Tc(p) shows a local maximum at p1 ≈ 0.8 GPa, a local
minimum at p2 ≈ 1.2 GPa, before rising monotonically with
further pressure increase up to ≈8 GPa. The origin of this
nonmonotonic pressure evolution of Tc in FeSe is a subject of

intense studies. The local maximum of Tc was related with the
emergence of a competing phase [22], presumably of magnetic
origin as observed in μSR and NMR studies [23–25]. The
minimum at p2 (strongly resembling pressure anomaly in the
underdoped BaK122 [11]) can be merely a restoration of a
rise of Tc with pressure after a decrease at p1, or represent a
modification of the superconducting gap structure.

A nonmonotonic variation of Tc under pressure was also
observed in KFe2As2 [26–28]. Taufour et al. [28] used
measurements of the upper critical field to gain insight into
the origin of this anomaly and suggested modification of
the superconducting gap structure. Considering the complex
evolution of the superconducting transition temperature with
pressure in FeSe, measurements of Hc2 can shed light on the
pressure evolution of the superconducting state of this material.

In this paper we report the study of the pressure evolution of
the orbital upper critical field Hc2,c as a probe of superconduc-
tivity in FeSe. We use interplane resistivity measurements in
longitudinal configuration with parallel current and magnetic
field, H ‖ j ‖ c to minimize the contribution of flux flow
phenomena and obtain sharp superconducting transitions. We
find a semiquantitative agreement for the experimental slope,
(dHc2,c/dT )Tc

, evaluated at the superconducting transition
temperature Tc and single - band Helfand-Werthamer [29]
calculations using Fermi velocities determined from recent
Shubnikov–de Haas (SdH) oscillations [30] for p > p1, and
even rough agreement in the multiband case for p < p1. Three
pressure ranges with the characteristic behavior of Tc(p) can
be linked with the changes of Hc2,c and of the Fermi surface.

II. EXPERIMENTAL METHODS

Single crystals of FeSe were grown using a modified
chemical vapor transport technique [31]. The c-axis resistivity
of FeSe was measured using a two-probe technique [32,33]
relying on negligible contact resistance. Two Ag wires (50 μm
diameter) were attached to the samples by soldering with In-Ag
alloy, giving contacts with resistance less than 10 μ�. Four-
probe measurements were used down to the sample contacts,
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FIG. 1. Evolution of the temperature dependence of the c-axis
resistivity, ρc, with hydrostatic pressure. The inset presents the
derivative of ρc(T ) taken at 1.28 GPa, with arrows indicating
the temperatures of the structural transition, Ts, and of the “un-
known” transition, Tu, which is presumably associated with magnetic
ordering.

so that the measured resistance represents the sum of series
connected sample and contact resistances, Rsample + Rcontact.
Because Rcontact � Rsample, the contact resistance gives minor
correction, of the order of 1%, to measured quantity. This
can be directly seen from the negligible measured resistance
at temperatures below superconducting transition of FeSe
(see Fig. 1 below). Measurements were performed in a
Quantum Design PPMS, on cooling and warming at a rate
0.25 K/min. We used a Be-Cu/Ni-Cr-Al hybrid piston-cylinder
cell, similar to the one described in Ref. [34]. Pressure
values at low temperatures were inferred from Tc(p) of lead
[35]. Good hydrostatic pressure conditions, as seen by sharp
superconducting transitions of both the sample and Pb resistive
manometer, were achieved by using a pressure medium of 4:6
mixture of light mineral oil : n-pentane [34,36] that solidifies
at room temperature at ∼3–4 GPa, well above our maximum
pressure. The orientation of the sample in the pressure cell was
adjusted so that the magnetic field was applied parallel to the
c -axis direction.

III. RESULTS AND DISCUSSION

Figure 1 shows the temperature dependence of the c-axis
resistivity, ρc, taken at various pressures. At ambient pressure
the interplane resistivity decreases on cooling and shows an
anomaly associated with the structural phase transition at Ts ∼
86 K and a sharp superconducting transition at Tc ∼ 9.5 K. The
residual resistivity ratio values are found to be 17 for the c-axis
data shown in this work and 22 for ab-plane data shown in Ref.
[37]. Similar values of Ts and Tc have been obtained in previous
in-plane resistivity (ρab) studies [20,22,38]. Note, however,
that the anomaly at Ts is much more prominent in ρc(T ). With

FIG. 2. Temperature dependence of the interplane resistivity,
ρc(T ), taken in magnetic fields of the 0–9 T range in the H ‖ c

configuration at pressures of 0.48 GPa (a), 0.98 GPa (b), and 1.56 GPa
(c). The upper critical field Hc2,c is determined from the offset, 10%,
50%, and 90% of ρc as shown schematically by the arrows in the
bottom panel for the 9 T curve and unless otherwise stated, the
offset criterion is used in this paper. The temperature of the unknown
transition, Tu, manifests a very weak dependence on external magnetic
fields up to 9 T.

increasing pressure, the resistivity at 150 K monotonically
decreases and Ts is also suppressed. A sudden increase of ρc on
cooling below Tu ∼ 15 K, as seen for pressure above 0.87 GPa,
marks the emergence of a new, most likely magnetically
ordered [22–24], phase. The pressure range of this phase in
our experiments is consistent with the previous report of Ref.
[22] (see below). Note that the anomaly at Tu is also more
prominent in ρc(T ) than in ρab. No measurable temperature
hysteresis is found for any of the transitions. The values of
Ts and Tu were obtained from the features in the resistivity
derivative (inset of Fig. 1). They were tracked as functions of
applied pressure to determine the p-T phase diagram of the
compound, as shown in Fig. 4 below.

Figure 2 shows the evolution of the interplane resistivity,
ρc(T ), in the vicinity of the superconducting transition with
magnetic fields of the 0–9 T range. The data are shown for
representative pressures of 0.48 GPa (a), 0.98 GPa (b), and
1.56 GPa (c). Tc was defined using an offset criterion as
schematically shown in Fig. 2(c) for the 9 T curve. At ambient
pressure the superconducting transition remains quite sharp
for all field values. The transition broadens slightly at higher
pressures and magnetic fields. Whereas the Tc is suppressed at
a similar rate at 0.48 and 1.56 GPa [Figs. 2(a) and 2(c)], it is
suppressed much faster at the intermediate pressure range at
0.98 GPa [Fig. 2(b)]. We note that Tu only shows a weak
dependence on an applied magnetic field up to 9 T [see
Figs. 2(b) and 2(c)].

The pressure evolution of the temperature-dependent upper
critical field μ0Hc2,c, measured in H ‖ c configuration, is

064503-2



NONMONOTONIC PRESSURE EVOLUTION OF THE UPPER . . . PHYSICAL REVIEW B 93, 064503 (2016)

FIG. 3. The temperature dependence of the upper critical field
Hc2,c(T ) measured in H ‖ c configuration under various pressures.
The data are vertically offset to avoid overlapping, with horizontal
lines showing H = 0. Dashed lines represent upper critical field
slopes calculated based on the Fermi velocity, vF, from Ref. [30] for
a cylindrical Fermi surface [39] (see text). At 0 GPa, two dotted and
dashed lines represent calculated slopes for the largest (δ), smallest
(β), and average vF [(α,γ ) and (β,δ)]. Black dotted lines connect the
0 and 3 T points for various pressures.

summarized in Fig. 3. The symbols connected by solid
lines represent the experimental data, the curves for different
pressures are offset to avoid overlapping, and H = 0 origin
for each pressure is shown by solid horizontal lines. We can
clearly see that the slope of Hc2,c at Tc, dHc2,c/dT |Tc , is fairly
constant between 0 and 0.73 GPa, decreases markedly when
the pressure is increased to 0.87 GPa, and increases again at
1.43 GPa.

Generally, the upper critical field is determined by the
orbital and Pauli pair breaking effects. Near Tc, the Pauli limit
is irrelevant and the slope, dHc2,c/dT |Tc , can be estimated in
the clean limit for cylindrical Fermi surfaces as [39]

−μ0
dHc2

dT

∣∣∣∣
Tc

= 16πk2
B	0Tc

7ζ (3)�2
(
n1λ11

〈
v2

1

〉 + n2λ22
〈
v2

2

〉) , (1)

where n1 = N1/Ntotal and n2 = N2/Ntotal are the partial
densities of states which can be obtained from Ni ∝ m∗

i kF,i .
vi are the Fermi velocity, m∗

i the effective mass, and kF,i the
Fermi wave vector of the respective band i = (1,2). λ11 and
the λ22 are the normalized coupling constant [39] and 	0 is
the flux quantum.

To compare the pressure evolution of the upper critical
field with changes of the Fermi surface, we calculate the
dHc2,c/dT |Tc with Eq. (1), using vF values determined in
recent quantum oscillation studies by Terashima et al. [30].
The calculated dHc2,c/dT |Tc represented by the dashed lines in
Fig. 3 shows semiquantitative agreement with the experimental
slopes. This agreement is good particularly for pressures
above 0.6 GPa, where only one fundamental frequency is
observed in SdH studies. This allows us to select n1 =
λ11 = 1 and n2 = λ22 = 0 in Eq. (1). The calculated slopes

reproduce very well the experimental data up to the highest
pressure 1.56 GPa of our experiment, including the increase
of the slope between 0.98 and 1.43 GPa. The situation is
more complicated for pressures below 0.6 GPa, where four
fundamental frequencies, α, β, γ , and δ are observed in SdH
measurements. As explained in Ref. [40], α and γ orbits
are attributed to the electronlike Fermi pockets, whereas β

and δ to the hole pockets. Following this assignment, we
can calculate the average vF and partial densities of states
for each Fermi surface. We consider this system an effective
two-band case and assume λ11 = λ22 to estimate dHc2,c/dT |Tc

at zero pressure using Eq. (1). The result is shown by
a dashed line in Fig. 3. For reference we also show the
estimated slopes using extreme Fermi velocities: the largest,
δ frequency, and the smallest, β frequency, as represented by
the dotted lines. Hence the calculation reproduces the range
of value for the slope. We point out that slight variation of the
coupling constants can improve the match. This comparison
suggests that the pressure evolution of the upper critical field
over the whole range can be explained by measured Fermi
velocities.

This finding contrasts with KFe2As2, where a change in
(dHc2/dT )/Tc as a function of pressure was measured, but
could not be attributed to changes of the Fermi velocities [28].
Whereas this was taken as an indication for a change of the
order parameter with pressure in KFe2As2, the case of FeSe
seems to be more conventional, as the changes in the upper
critical field can be well explained by the observed change of
Fermi velocities.

Figure 4 shows the pressure evolution of the slope
(−1/Tc)(dHc2,c/dT )|Tc determined by a linear fit to Hc2,c data
in the field interval 0–3 T, and its relation to the temperature-
pressure phase diagram of FeSe. The phase diagram [Fig. 4(a)]
as determined from our interplane resistivity measurements is
in perfect agreement with previous results determined from
in-plane resistivity measurements [22,30,38]. The temperature
of the nematic transition Ts shows a linear decrease with a
slope of dTs/dp ≈ −34 K/GPa. The superconducting Tc(p)
has maximum and minimum around p1 ≈ 0.8 GPa and
p2 ≈ 1.2 GPa, respectively. The maximum is located close
to the point where anomaly at Tu emerges, likely signaling
a magnetic phase transition [23–25]. Competition between
superconductivity and magnetic order may be the reason for
the suppression of Tc between p1 and p2. In contrast, no
anomalies which would correlate with either the maximum
or the minimum of Tc are observed in Ts.

The existence of a maximum and a minimum in Tc(p)
makes us divide the phase diagram into three different regions:
p � p1 (dTc/dp > 0), p1 � p � p2 (dTc/dp < 0), and p2 �
p (dTc/dp > 0), as represented by the vertical dotted lines in
Fig. 4. Interestingly, the pressure evolution of the normalized
slope (−1/Tc)(dHc2,c/dT )|Tc [Fig. 4(b)] shows much more
pronounced changes between the three ranges. In order to
demonstrate that our results are not criteria dependent (see
Fig. 2), Fig. 4(c) shows a comparison of the pressure depen-
dence of (−1/Tc)(dHc2,c/dT )|Tc for the following criteria:
offset, 10%, 50%, and 90% of the resistivity. Due to the
curvature at the onset of the resistivity data, 90% criterion
shows considerably higher (−1/Tc)(dHc2,c/dT )|Tc values than
other criteria. However, we can clearly see that the overall
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FIG. 4. (a) Temperature - pressure phase diagram of FeSe as
determined from inter-plane resistivity measurements (full sym-
bols) and from previous in-plane resistivity measurements (open
symbols) [22,30,38]. The circles, triangles and squares represent
the tetragonal/orthorhombic, unknown, most likely magnetic and
superconducting phase transitions, respectively. The orange solid
line is a guide for the eye. Vertical dotted lines show the pressures
corresponding to the local maxima and minima of Tc(p). (b) Pressure
dependence of the normalized slope (−1/Tc)(dHc2,c/dT )|Tc . An
abrupt change of slope is observed near 0.8 GPa and 1.2 GPa,
corresponding to the maximum and a minimum in Tc(p) (left
axis). For reference we show v−2

F calculated for individual orbits
in Shubnikov-deHaas effect measurements of Ref. [30] (right axis).
There is clear proportionality between the normalized slope and v−2

F

as found in our data analysis for p > p1, despite both slope and
vF showing nonmonotonic changes at p2. Multiple orbits found for
p < p1 clearly illustrate the difficulty of Hc2,c slope calculation in
any simple model. (c) Pressure dependence of the normalized slope
(−1/Tc)(dHc2,c/dT )|Tc for four different criteria; offset, 10%, 50%
and 90% of the resistivity. (d) The slope of the Hc2,c line plotted vs
Tc with pressure as a implicit parameter. The plot clearly reveals the
nonmonotonic dependence with three ranges separated at pressures
p1 and p2. Arrows indicate the direction of pressure increase.

behavior of pressure dependence of (−1/Tc)(dHc2,c/dT )|Tc

does not depend on the chosen criteria.
The differences between the three pressure ranges are

particularly visible when plotting the data as a function of
Tc [Fig. 4(d)] with pressure as an implicit hidden parameter. In
the low pressure range, (−1/Tc)(dHc2,c/dT )|Tc remains rather
constant, then shows a sudden drop at p1 ≈ 0.8 GPa, where
Tc has a maximum, and an increment around p2 ≈ 1.2 GPa
where Tc reaches a local minimum [Fig. 4(b)]. Note that
in the case of KFe2As2, the abrupt change of the slope
(−1/Tc)(dHc2,c/dT )|Tc also coincides with a minimum in
Tc(p) [28].

Simplifying Eq. (1) for the single-band case, one can relate
the initial Hc2 slope to the Fermi velocity, vF, and the effective
mass, m∗, as (−1/Tc)(dHc2,c/dT )|Tc ∝ v−2

F ∝ (m∗)2. This
dependence allows for a direct comparison between the initial
slope of Hc2,c and Fermiology. In Fig. 4(b) we plot the
normalized slope of Hc2,c (left axis) and v−2

F (right axis).
The two quantities show very similar pressure dependence,
directly illustrating the validity of our previous analysis. This
plot also provides a graphical illustration for the difficulty
of quantitative comparison of the slope with Fermiology in
the multiband case in particular, considering the possibility of
variation of coupling constants.

The pressure evolution of (−1/Tc)(dHc2,c/dT )|Tc hence
indicates a decrease of the effective masses with pressure in
the low pressure range, a further sudden decrement around p1,
and an increase of the effective mass around p2. This is indeed
in good agreement with the quantum oscillation study [30].
It is notable, however, that Tc(p) shows only smooth changes
around these pressure values.

IV. CONCLUSIONS

In conclusion, the pressure evolution of the upper crit-
ical field of FeSe is in good agreement with the Fermi
velocities determined from quantum oscillations. Abrupt
changes in the normalized slope of the upper critical field
(−1/Tc)(dHc2,c/dT )|Tc of FeSe provide evidence for changes
of the Fermi surface around 0.8 and 1.2 GPa, which correspond
to the local maximum and minimum of Tc, respectively. We
cannot exclude possible effects on change of order parameter
and/or variation of the coupling under pressure may be the
reason for the observed change in Tc. However, our study
demonstrates that, in contrast to KFe2As2, the nonmonotonic
pressure evolution of Tc of FeSe can be fully accounted for by
changes in the Fermi surface.
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[38] S. Knöner, D. Zielke, S. Köhler, B. Wolf, T. Wolf, L. Wang, A.
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