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Magnetic skyrmions have attracted considerable attention recently for their huge potential in spintronic
applications. Generally skyrmions are big compared to the atomic lattice constant, which allows for the
Ginzburg-Landau type description in the continuum limit. Such a description successfully captures the main
experimental observations on skyrmions in B20 compound without inversion symmetry. Skyrmions can also
exist in inversion-symmetric magnets with competing interactions. Here, we derive a general Ginzburg-Landau
theory for skyrmions in these magnets valid in the long-wavelength limit. We study the unusual static and
dynamical properties of skyrmions based on the derived Ginzburg-Landau theory. We show that an easy axis spin
anisotropy is sufficient to stabilize a skyrmion lattice. Interestingly, the skyrmion in inversion-symmetric magnets
has a new internal degree of freedom associated with the rotation of helicity, i.e., the “spin” of the skyrmion
as a particle, in addition to the usual translational motion of skyrmions (orbital motion). The orbital and spin
degree of freedoms of an individual skyrmion can couple to each other, and give rise to unusual behavior that
is absent for the skyrmions stabilized by the Dzyaloshinskii-Moriya interaction. The derived Ginzburg-Landau
theory provides a convenient and general framework to discuss skyrmion physics and will facilitate the search
for skyrmions in inversion-symmetric magnets.
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I. INTRODUCTION

A magnetic skyrmion is a topologically protected excitation
of spin texture in magnets [1,2]. Skyrmions were discovered
in B20 compound without inversion symmetry in 2009 [3].
Due to their unique topology, skyrmions give birth to many
emergent phenomena, such as topological Hall effect [4,5],
magnetoelectric coupling [6,7], etc. A skyrmion behaving as
a particle can also be manipulated in a controlled way by
electric current [8–10], thermal gradient [11–13], strain [14],
and so on. Especially the threshold current to drive skyrmion
into motion is 5 or 6 orders of magnitude lower than that of
magnetic domain walls [8–10]. For these unique properties,
skyrmions are deemed as a prime candidate for applications in
next-generation spintronic devices and therefore have attracted
tremendous attention recently [15,16].

Experiments with different imaging methods have firmly
established skyrmions as a ubiquitous state in magnets.
Skyrmions were found in metals [3,17], semiconductors [18],
and insulators [6,19]. More strikingly, the phase diagram for
bulks or thin films in these materials are similar, implying that
the magnetic properties are governed by the same low energy
effective theory because the size of a skyrmion is much bigger
than the atomic lattice constant. Such a phenomenological
Ginzburg-Landau theory was proposed by Bak and Jensen long
time ago based on symmetry consideration and expansion in
the ordering wave vector [20]. Experiments and theoretical
calculations have demonstrated that the Ginzburg-Landau
theory correctly captures the main features of the skyrmion
physics in B20 compounds [17,21–26].
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The majority of the skyrmion hosting materials discussed so
far do not have inversion symmetry, where the Dzyaloshinskii-
Moriya (DM) interaction [27–29] stabilizes the skyrmion
phase. To render a skyrmion (meta)-stable, one necessary
condition is to introduce a characteristic length scale in
the system in accordance with the Derrick’s theorem [30],
thus requires competing interactions. The DM interaction is
one way to introduce a length scale. In fact, it was found
experimentally that the skyrmion lattice can also be stabilized
by a long-range dipolar interaction [31]. One may also
generalize the nonlinear σ model by including higher-order
spatial derivative and an easy axis anisotropy to endow a
characteristic size for a skyrmion [32,33]. The competing
interaction in frustrated magnets with inversion symmetry is
another route to stabilize skyrmions.

A triangular lattice of skyrmions can be regarded as a
superposition of three helices with the ordering wave vector
rotated by 120◦. The Heisenberg model with competing inter-
actions on a triangular lattice then becomes an ideal system to
realize the skyrmion lattice. First, the competing interactions
can produce a magnetic helix. Meanwhile, the triangular
lattice itself provides a spatial anisotropy to align the helix
along the three equivalent directions. At low temperatures,
the superposition of three helices violates the constraint that
the total moment |S| is constant in space, thus costs energy.
However, at high temperatures, the moment becomes soft and
the skyrmion lattice is favored. Indeed, the skyrmion lattice
was found in the frustrated Heisenberg model on a triangular
lattice at a nonzero temperature in Ref. [34]. However, it was
unclear whether a single skyrmion can be stabilized or not.

Recently, Leonov, and Mostovoy studied the skyrmions in
the frustrated Heisenberg model on a triangular lattice with
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an easy axis anisotropy [35]. They found that an easy axis
anisotropy is helpful to stabilize the skyrmion lattice, similar
to that with DM interaction [36–38]. They also found the
existence of an isolated skyrmion. The helicity of skyrmion
oscillates when one moves away from the skyrmion center. The
interaction between skyrmions is nonmonotonic as a function
of distance and depends on the helicity. Moreover, there exists
a collective mode associated with the helicity of the skyrmion,
which can couple to the skyrmion center of mass motion and
gives rise to a dynamical magnetoelectric effect.

Generally, the skyrmion size is much bigger than the lattice
parameter of the spin system. The spin lattice should not matter
because skyrmions decouple from the spin lattice. Such a
large skyrmion limit also allows for a universal description
in the continuum limit similar to the systems with the DM
interaction. In this work, we present a Ginzburg-Landau
theory for skyrmions in inversion symmetric magnets (ISM)
with competing interactions. The Ginzburg-Landau energy is
obtained by expansion in term of the ordering wave vector,
which is small compared to 2π/a, with a being the lattice
parameter of the spin system. The Ginzburg-Landau approach
enables us to describe the properties of skyrmions in a more
transparent way. The Ginzburg-Landau theory reproduces
some of the results already discussed in Ref. [35]. Most
importantly, we demonstrate explicitly that it is sufficient to
stabilize a skyrmion lattice with an easy axis spin anisotropy
and competing interactions between spins for an arbitrary spin
lattice in the long-wavelength limit, because the skyrmions
are decoupled from the spin lattice in this limit. The skyrmion
in ISM has a new internal degree of freedom associated with
the global rotation of spin along the magnetic field axis, or
the “spin” of the skyrmion. This spin degree of freedom
can couple with the orbital degree of freedom (translational
motion) of skyrmions. Specifically, first we find that the size
of skyrmion diverges when the field approaches the saturation
field. Secondly, we find that the rotation of helicity is coupled
with the translation motion of skyrmion. In the presence
of a spin Hall torque, the skyrmion moves along a circle.
Thirdly, we present unbiased Monte Carlo simulations and
find that the skyrmion lattice is stable in certain region in
the magnetic field-temperature phase diagram in the presence
of an easy axis anisotropy. Finally, we demonstrate that
skyrmions and antiskyrmions can be created by annealing. The
Ginzburg-Landau description provides a theoretical basis for
understanding skyrmions in ISM with competing interactions.
Meanwhile, we demonstrate novel properties of skyrmions in
these magnets, which are not shared by those in systems with
DM interaction.

The remaining of the paper is organized as follows. In
Sec. II we present the Ginzburg-Landau theory. In Sec. III,
we discuss a single skyrmion excitation in the ferromagnetic
background. In Sec. IV, we study the pairwise interaction
between skyrmions and/or antiskyrmions. We then show in
Sec. V that skyrmions and antiskyrmions can be excited
by annealing. In Sec. VI, we investigate the thermodynam-
ically stable skyrmion lattice phase favored by an easy axis
anisotropy. In Sec. VII, we consider the dynamics of a single
skyrmion driven by a torque generated by an electric current.
The paper is concluded by brief discussions and summary
in Sec. VIII.

II. GINZBURG-LANDAU THEORY

We consider the inversion-symmetric classical Heisenberg
models with competing interactions, where the competing
interaction can stabilize a state with nonzero ordering wave
vector Q as a ground state. We focus on the limit when
Qa � 1, which allows us to take the continuum limit. Then
the skyrmion size is much bigger than the lattice parameter
of the spin system, and the skyrmions are decoupled from
the underlying spin lattice. Expanding the Hamiltonian to the
quartic order in Q, we obtain the Ginzburg-Landau energy

H =
∫

dr3

[
−I1

2
(∇S)2 + I2

2
(∇2S)2 − Ha · S

]
, (1)

with the constraint that |S| = 1. The last term represents the
Zeeman interaction with an external magnetic field Ha . For
systems with spatial inversion symmetry, only the terms with
even power in Q is allowed. When I1 < 0, we have Q = 0
and we can neglect the (∇2S)2 term, therefore Eq. (1) reduces
to the standard nonlinear σ model. We focus on the inter-
esting regime when I1 > 0, where the competing interactions
introduce a length scale and stabilize the skyrmion solution
as will be discussed below. We introduce dimensionless
quantities: r = r ′√I2/I1, Ha = H ′

aI
2
1 /I2, and H = H′√I1I2.

Then Eq. (1) can be casted into a dimensionless form

H =
∫

dr3

[
−1

2
(∇S)2 + 1

2
(∇2S)2 − Ha · S

]
, (2)

where we have neglected the prime in the notation for
convenience. The competing interactions yield a characteristic
length scale Q0 = 1/

√
2, which is a necessary condition for

stabilizing the skyrmion solution according to the Derrick’s
theorem [30]. The direction of Q0 is not determined and
can be fixed by higher order terms neglected here, such
as spatial anisotropy. The Hamiltonian Eq. (2) is invariant
under the following operations: inversion, translation, and
global rotation of spin along the direction of magnetic field.
The inversion symmetry indicates that a skyrmion and an
antiskyrmion with opposite winding direction are degenerate
in energy. The translational invariant and U (1) symmetry
mean that there are two Goldstone modes associated with the
translational motion and rotation of the skyrmion as will be
discussed in Sec. VII in details.

At zero temperature, the ground-state spin configuration is
a conical spiral with S = [sin θ cos(Q0 · r), sin θ sin(Q0 · r),
cos θ ] when Ha � Hs with Hs = 1/4 being the saturation
field. The canting angle θ is given by cos θ = Ha/Hs . When
Ha � Hs , the system becomes a fully polarized ferromagnetic
(FM) state via a second-order phase transition. No thermody-
namically stable skyrmion lattice is allowed according to the
Hamiltonian Eq. (2). A skyrmion can exist as a metastable
state (see Sec. III) or a skyrmion lattice can be stabilized by
an easy axis spin anisotropy (see Sec. VI).

We present a derivation of Eq. (2) using two frustrated
Heisenberg models for the convenience of the following
discussions. We consider the J1-J3 Heisenberg model on a
triangular lattice [Fig. 1(a)] and the J1-J2-J3 Heisenberg model
on a square lattice [Fig. 1(b)]. The Hamiltonian generally can
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FIG. 1. (a) J1-J3 classical Heisenberg model on a triangular
lattice. (b) J1-J2-J3 classical Heisenberg model on a square lattice.

be written as

H = −Jij

∑
〈i,j〉

Si · Sj − Ha

∑
i

Si , (3)

where Jij = J1 is the nearest-neighbor interaction, Jij = J2

is the next-nearest neighbor and Jij = J3 is the next-next-
nearest-neighbor interactions. In the Fourier space, Eq. (3)
becomes

H = −N

2

∫
dq3J (q)S(q) · S(−q), (4)

with N the number of sites. For a triangle lattice, the interaction
J (q) is

J	(q) = 2J1

[
cos

(
qx

2
+

√
3qy

2

)
+ cos

(
qx

2
−

√
3qy

2

)

+ cos qx

]
+ 2J3[cos(qx +

√
3qy)

+ cos(qx −
√

3qy) + cos(2qx)] (5)

and for a square lattice

J�(q) = 2J1[cos(qx) + cos(qy)] + 2J2[cos(qx − qy)

+ cos(qx + qy)] + 2J3[cos(2qx) + cos(2qy)], (6)

where q is in unit of 1/a. In the long-wavelength limit when
the optimal Q0 that maximizes J (q) is small, Q0a � 1, we
expand J (q) in q. We obtain for a triangular lattice

J	(q) ≈ 6(J1 + J3) − 3

2
(J1 + 4J3)q2

+ 3

32
(J1 + 16J3)q4 − 1

384
(J1 + 64J3)q6

− (J1 + 64J3)q6 cos(6φ)

3840
+ O(q8) (7)

and for a square lattice,

J�(q) ≈ 4(J1 + J2 + J3) − (J1 + 2J2 + 4J3)q2

+ 1
16 (J1 + 4J2 + 16J3)q4 + 1

48 (J1 − 4J2

+ 16J3)q4 cos(4φ) + O(q6), (8)

with q2 = q2
x + q2

y and tan φ = qy/qx . The spin lattice intro-
duces a spatial anisotropy. For the triangular lattice, the spatial
anisotropy is sixth order in q, q6 cos 6φ. For a square lattice,
it is q4 cos 4θ . We can tune the parameters J1, J2, J3 to ensure

that the spatial anisotropy small to the order of q4. Retaining
terms up to quartic in q and replacing iq → ∇, we obtain the
effective Hamiltonian in Eq. (2) after proper normalization of
the length and energy.

III. SINGLE SKYRMION SOLUTION

In the previous studies, the skyrmion lattice in ISM with
competing interactions is regarded as a superposition of triple
helices [34,35]. In the following sections, we emphasize
the particle nature of skyrmions by exploring the skyrmion
state in Eq. (2) starting from a single skyrmion solution.
First, let us find a single skyrmion solution in the ferro-
magnetic background. Here, we consider two-dimensional
systems with a perpendicular magnetic field. The solution
is centrosymmetric and it is convenient to use the polar
coordinate, r = (r,φ). The spin vector can be represented as
S = (sin θ cos ϕ, sin θ sin ϕ, cos θ ). Here, θ (r) only depends
on r and ϕ = nφ + φ0 with integer n the winding number (vor-
ticity) and φ0 the helicity. For a skyrmion solution, θ (r = 0) =
π and θ (r = ∞) = 0. The skyrmion topological charge is

Ns = 1

4π

∫
dr2S · (∂xS×∂yS) = −n, (9)

which is proportional to the vorticity and is independent of
φ0. Because φ0 is associated with a smooth deformation of the
spin texture, it does not affect the topology of the skyrmion.
For convenience, we also introduce the skyrmion topological
charge density

ρs(r) = 1

4π
S · (∂xS×∂yS). (10)

The total energy ET for a skyrmion solution with a winding
number n is

ET = 2π

∫
rdr[E2 + E4 − Ha cos θ ], (11)

E2 = −1

2

(
(∂rθ )2 + n2sin2θ

r2

)
, (12)

E4 = 1

2

[
(∂rθ )4 + (

∂2
r θ

)2]

+ ∂rθ
(−r sin(2θ )n2 + 2r3∂2

r θ
) + n4sin2θ

2r4

+ 1

2r2

[
(∂rθ )2(1 + 2n2sin2θ ) − n2 sin(2θ )∂2

r θ
]
. (13)

The energy does not depend on φ0 and the sign of n, which
means that skyrmions and antiskyrmions with different
helicity have the same energy. Minimizing ET with respect to
θ , we obtain the equation for θ (r):

(
n4

2
− 2n2

)
sin(2θ ) + r(1 + 2n2 cos2 θ )∂rθ

+ r2

[(
(∂rθ )2 − 1

2

)
n2 sin(2θ ) − (1 + 2n2 cos2 θ )∂2

r θ

]

+ r3
(
∂rθ − 2(∂rθ )3 + 2∂3

r θ
)

+ r4
(
Ha sin θ + ∂2

r θ − 6(∂rθ )2∂2
r θ + ∂4

r θ
) = 0. (14)
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The equation is nonlinear near the center of skyrmion and
generally requires numerical calculations. Let us consider the
linear regime when θ � 1 at r 
 1. In this case, Eq. (14) can
be simplified into

Haθ + ∂2
r θ + ∂4

r θ = 0. (15)

The solution can be written as

θ (r) ∼ Re[c1K0(q+r) + c2K0(q−r)]

∼ Re[c1 exp(−q+r) + c2 exp(−q−r)]/
√

r, (16)

at r 
 1 with constants c1 and c2. Here, K0(r) is the modified
Bessel function of the second kind and q± are given by

q± =
√

−1 ± √
1 − 4Ha√
2

. (17)

Note that the FM state is stable only at Ha � Hs = 1/4,
therefore, q± is a complex number. Here Re[q+] = Re[q−]
describes the decay of θ and Im[q+] = −Im[q−] describes the
oscillation around zero. We may define ξ ≡ 1/Re[q±] as the
size of skyrmion. When Ha approaches Hs from above, Ha −
Hs = 0+, the size of skyrmion ξ diverges ξ ∼ 1/

√
Ha − Hs

and Im[q±] ≈ 1/
√

2, which is the optimal Q0 for the conical
spiral in the Hamiltonian Eq. (2). The size of skyrmion diverges
at Hs , because there is a second-order phase transition from the
conical spiral to FM state at Hs and therefore the length scale
of the system diverges. This is different from the skyrmions
stabilized by the DM interaction in two dimensions where
the skyrmion size is always finite. On the other hand, when
θ changes sign, the helicity of skyrmion also reverses sign.
The helicity reversal was discussed in the J1-J2 Heisenberg
model on a triangular lattice in Ref. [35] and was observed
experimentally in Ref. [31], where the skyrmions are stabilized
by the dipolar interaction and an easy-axis anisotropy.

In the presence of winding n �= 0, the spin at the center
r = 0 must be parallel or antiparallel to field Sz = ±1. For
Sz = 1, the solution is topologically trivial Ns = 0 and is
connected smoothly to the FM state, therefore is an unstable
solution. For Sz = −1, it is a skyrmion with Ns = −n. When
one attempts to transform the skyrmion solution to the FM
state, one has to flip the spin at the center of the skyrmion
which results in a singular energy due to the winding of spins.
Therefore the skyrmion solution is topologically protected and
is a metastable solution with a finite lifetime. At a small r , we
can expand θ (r) in r , θ (r) = π + a1r + a2r

2 + O(r3). For a
skyrmion with a winding number n = 1,

θ (r) = π − a1r,

and n = 2,

θ (r) = π − a2r
2.

The results of θ (r) with n = 1 obtained by numerical solution
of Eq. (14) is shown in Fig. 2. It oscillates and decays, which
is consistent with the asymptotic behavior in Eq. (16). Mean-
while the decay length increases when the field approaches
the saturation field Hs . We may also define the core size
Rc of a skyrmion. The definition of Rc is arbitrary and one
may choose θ (r � Rc) � π/2. The size of the nonlinear core
depends weakly on magnetic field.
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FIG. 2. (a) Profile of θ (r) obtained by numerical calculations of
Eq. (14). Inset shows that θ (r) decays and oscillates at large r 
 1.
Spin configurations for (b) an antiskyrmion with Ns = −1 and (c)
a skyrmion with Ns = 1. Color denotes the out-of-plane component
of S and arrows represent the direction (not the magnitude) of the
in-plane component. Without explicitly mentioning, the quantities in
the plots are dimensionless.

The energy of a skyrmion as a function of field Ha and
winding number n is shown in Fig. 3. The skyrmion has higher
energy than the fully polarized state. The energy increases
with n. The energy contributions from different terms in
Hamiltonian Eq. (2) as a function r is displayed in Fig. 3(c).
The energy density is mainly contributed from the core region
of a skyrmion. The term −(∇S)2 gain energy and is balanced
by the energy cost due to the term (∇2S)2.

IV. PAIRWISE INTERACTION BETWEEN SKYRMIONS

In this section, we study the pairwise interaction between
skyrmions. Because skyrmion and antiskyrmion are two
degenerate solutions, we will consider the interaction both
between two skyrmions, and between a skyrmion and an
antiskyrmion. Away from the skyrmion center, the spins
cant slightly from the fully polarized state. Therefore the
skyrmion tail can be regarded as magnon excitations in the
ferromagnetic state, which are excited by the nonlinear core
of the skyrmion. When two skyrmions are well separated,
they interact through exchange of the magnon excitations
associated with the linear tails. Below we provide a linear
theory to determine the mutual interaction between skyrmions.
From this analysis, we can determine the pairwise interaction
as a function helicity and separation between skyrmions, but
not the magnitude of the interaction.
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FIG. 3. Energy of a skyrmion relative to the spin fully polarized state as a function (a) magnetic field Ha and (b) winding number n. (c)
Energy contribution of a skyrmion solution from different terms in Eq. (2).

We introduce the magnon wave function

ψ = 1√
2

(Sx + iSy), Sz =
√

1 − 2ψψ∗ ≈ 1 − ψψ∗. (18)

The Hamiltonian in Eq. (2) to the quadratic order in ψ can be
written as

Hψ =
∫

dr2[Ha|ψ |2 − |∇ψ |2 + |∇2ψ |2]. (19)

Here we have assumed that skyrmion lines are straight along
the third direction and the problem reduces into two dimen-
sions. The magnon is excited by the presence of skyrmions and
we define a source F̃ (r − Ri) that depends on the nonlinear
core of skyrmion, with Ri = (xi, yi) being the center of the
skyrmion. Here, F̃ (r − Ri) = 0 when |r − Ri | � Rc with Rc

being an arbitrary radius separating the nonlinear core and
linear tail of a skyrmion. Then the equation for ψ is given by

Haψ + ∇2ψ + ∇4ψ =
∑

i

F̃ (r − Ri). (20)

Equation (20) can be obtained by separating the nonlinear core
and linear tail of skyrmion in Eq. (14). The solution to Eq. (20)
in the region |r − Ri | 
 Rc can be written as

ψ =
∑

i

ψi ≡
∑

i

f (|r − Ri |) exp[i(niφi + φi0)], (21)

f (r) = Re[c1Kn(q+r) + c2Kn(q−r)], (22)

φi = arctan[(y − yi)/(x − xi)]. (23)

Here, φi0 is the helicity, ni is the winding number and
the coefficients c1 and c2 are determined by F̃ (r − Ri).
When skyrmions are well separated, |r − Ri | 
 2Rc, the
contribution to the skyrmion interaction due to the interaction
between the magnon and the nonlinear core is negligible,
therefore it does not require to know the exact expression
for F̃ (r − Ri) in the following calculations.

Excluding the nonlinear core contribution to the total
energy, the magnon energy due to the linear tails of skyrmions
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becomes

Eψ =
∫

|r−Ri |>Rc

dr2[Ha|ψ |2 − |∇ψ |2 + |∇2ψ |2]

=
∫

|r−Ri |>Rc

dr2ψ∗(Haψ + ∇2ψ + ∇4ψ)

+
∫

|r−Ri |>Rc

dr2[∇(∇ψ∗∇2ψ) − ∇(ψ∗∇3ψ)

−∇(ψ∗∇ψ)]

=
∫

|r−Ri |>Rc

dr2ψ∗ ∑
i

F̃ (r − Ri)

+
∮

|r−Ri |>Rc

dl · [∇ψ∗∇2ψ − ψ∗∇3ψ − ψ∗∇ψ],

(24)

where
∮
|r−Ri |>Rc

dl is integration around a circle with a radius
Rc around the skyrmion centers and the direction of l is normal
to the circle. The other contribution at

∮
|r−Ri |=∞ dl vanishes

because the magnon wave function decays exponentially.
Neglecting the nonlinear core contribution, the magnon energy
can be written as

Eψ =
∮

|r−Ri |>Rc

dl · [∇ψ∗∇2ψ − ψ∗∇3ψ − ψ∗∇ψ]. (25)

We then calculate Eψ in the presence of two skyrmions. We
have for Eψ

Eψ = 2Es + E12, (26)

with Es the self-energy of a skyrmion

Es =
∮

|r−Ri |>Rc

dl · [∇ψ∗
i ∇2ψi − ψ∗

i ∇3ψi − ψ∗
i ∇ψi], (27)

and E12 the pairwise interaction

E12 =
∮

|r−Ri |>Rc

dl · [∇ψ∗
1 ∇2ψ2 − ψ∗

1 ∇3ψ2

−ψ∗
1 ∇ψ2 + (1 ↔ 2)], (28)

where ψi is the magnon induced by the skyrmion at Ri defined
in Eq. (21).

To evaluate Eψ we take Eψ,1 = ∮
|r−Ri |>Rc

dl · [ψ∗
1 ∇ψ2 +

ψ∗
2 ∇ψ1] as an example and other terms can be evaluated

similarly,

Eψ,1 =
∮

|r−R1|>Rc

dl · [ψ∗
1 (Rc)∇ψ2(r − R2)]

+
∮

|r−R2|>Rc

dl · [ψ∗
1 (r − R1)∇ψ2(Rc)] + c.c. (29)

We choose the coordinate system shown in Fig. 4. In the
limit R2 
 Rc, we take the approximation for ψ2(r − R2)

ψ2(r − R2) ≈ [f (R2) − ∂rf (R2)r cos(φ − φ̄2)]

× exp[i(n2(φ̄2 + π ) + φ20)], (30)

φ̄2 = arctan(y2/x2), (31)

R2=(x2, y2) 

Rc x 

y 

R1=(0, 0) 
2

FIG. 4. Coordinate system used in the evaluation of the pairwise
interaction between skyrmions and antiskyrmions. Ri is the skyrmion
center and the circle with radius Rc is the integration contour.

where we have also used ∂rf (R2) � f (R2)/R2. We then
obtain for two skyrmions n1 = n2 = 1

Eψ,1 = −2πRc∂rf (R12)[f (Rc)+Rc∂rf (Rc)] cos(φ20−φ10),

(32)

and for a skyrmion and an antiskyrmion, n1 = 1, n2 = −1,

Eψ,1 = −2πRc∂rf (R12)[f (Rc) + Rc∂rf (Rc)]

× cos(φ20 − φ10 − 2φ12), (33)

with R12 ≡ |R1 − R2| and φ12 ≡ arctan[(y2 − y1)/(x2 − x1)].
Here, we are interested in the dependence of pairwise interac-
tion on R12 and φi0 and we do not write the full expression. For
two skyrmions, the dependence of the interaction on separation
and helicity is given by

E12(R12) ∼ Re[exp(−q±R12)] cos(φ20 − φ10), (34)

and for a skyrmion and an antiskyrmion, it is given by

E12(R12) ∼ Re[exp(−q±R12)] cos(φ20 − φ10 − 2φ12). (35)

We introduce φ̄i(Rj − Ri) as the phase of the skyrmion at
Rj for a skyrmion located at Ri . The interaction between
skyrmions/antiskyrmions can be written as

E12(R12) ∼ exp(−q±R12) cos[φ̄1(R2 − R1) − φ̄2(R1 − R2)].

(36)

The interaction between skyrmions depends on their relative
helicity and their separation R12. Meanwhile the interaction
between a skyrmion and an antiskyrmion depends on angle
φ12 in addition to the relative helicity. The interaction is not
isotropic and it depends on the relative orientation between the
skyrmion and antiskyrmion with respect to their helicity. The
dynamics of skyrmions depend on their mutual interaction,
and therefore also depends on the helicity of skyrmions.

The dependence of E12 on helicity and R12 can be
understood as follows. The interaction range is determined by
the magnon gap. For Ha > Hs , the interaction is short ranged
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FIG. 5. Energy of (a) two skyrmions and (b) a skyrmion and an antiskyrmion with a separation R12 and relative helicity φ20 − φ10. In (b),
we set φ12 = 0. (c) is the spin configuration for a skyrmion with topological charge Ns = −2 and (d) is the spin configuration for a skyrmion
and an antiskyrmion when they approach to each other.

with a decay length 1/Re[q±] in Eq. (17). The interaction
range increases when Ha approaches Hs and finally diverges
at Hs . Since the magnon wave function oscillates as a function
of distance, the interaction is nonmonotonic as a function of
distance between skyrmions. For a certain separation, there is
cancellation of the magnon excitation which corresponds to
a local minimum in the pair potential. If there is addition of
the magnon excitation, it corresponds to a local maximum
in the pair potential. Because the phase of the magnon
excitation depends on helicity of skyrmion, if we reverse the
helicity of a skyrmion, then the original local minimum in
the pair potential because a local maximum and vice versa.
When the separation between two skyrmions is comparable
to their size, the interaction is induced by overlapping their
nonlinear cores. In this nonlinear regime, there are many-body
interactions among skyrmions if we consider the case with
many skyrmions.

We calculate numerically the pairwise interaction between
two skyrmions as a function of separation R12 and compare
to the linear analysis. We fix the spin at the center of
the skyrmions, which effectively pin the skyrmion at a
desired position. We then relax the system according to the
Landau-Liftshitz-Gilbert dynamics and obtain the stationary
energy E. The results are shown in Fig. 5. For a large

separation, the interaction oscillates and decays. The inter-
action also depends on the relative helicity φ20 − φ10 between
skyrmion/antiskyrmion. For a φ20 − φ10 = π phase shift in
the helicity, it turns attraction for φ20 − φ10 = 0 into repulsion
and vice versa, which is consistent with the linear analysis
in Eqs. (34) and (35). At a small separation, we cannot
identify two independent skyrmions because their cores start
to overlap. Therefore the relative helicity is no longer well
defined. According to the calculations, E(R12) for different
helicity collapse into a single curve. When R12 = 0, the two
skyrmions merge into a skyrmion with Ns = −2 or giant
skyrmion [Fig. 5(c)], while in the case of skyrmion and
antiskyrmion, they annihilate and no skyrmion is left in the
system [Fig. 5(d)]. Note that the magnetization is not uniform
in space because we fix the spin antiparallel to the field at
the center. To merge into a giant skyrmion, the system needs
to overcome a steep energy barrier as presented in Figs. 5(a)
and 5(b). Similar situation occurs for annihilating a skyrmion
and an antiskyrmion.

V. CREATION OF SKYRMIONS BY ANNEALING

Since a skyrmion is a metastable state in the ferromagnetic
state, one natural way to excite skyrmions is by annealing.
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FIG. 6. (a) The averaged absolute skyrmion charge density, 〈|ρs |〉 = 1
4πL2

∫
dr2|S · (∂xS×∂yS)| with L the system size as a function of

annealing rate, where 〈· · · 〉 denotes the average of independent annealing process. To obtain a better statistics, the results are obtained by
averaging over 20 independent runs with different initial configurations. (b) and (c) correspond to the spin profile and skyrmion topological charge
density ρs , respectively, obtained after annealing with annealing rate �T = 0.00001J1 per Monte Carlo sweep (MCS) at Ha/Hs = 1.617. The
results are obtained by Monte Carlo annealing in the J1-J2-J3 model on a square lattice. Here, we take Q0 = 2π/18 and J1 − 4J2 + 16J3 = 0.
The saturation field is Hs = 0.001856J1.

In Fig. 6, we present the results obtained by annealing in
Monte Carlo simulations of lattice model Eq. (3) in the
long-wavelength limit. Initially, the system is equilibrated at
high T and is in the paramagnetic state. Then we gradually
reduce temperature with a rate �T per every Monte Carlo
sweep (MCS). In this process, skyrmions and antiskyrmions
are nucleated according to the Kibble-Zurek mechanism
[39,40]. Because the Hamiltonian Eq. (2) does not distinguish
between skyrmions and antiskyrmions, they are created equal
therefore the total topological charge is zero after averaging
over the same annealing process. Since the interaction between
skyrmions and antiskyrmions is nonmonotonic as a function
of separation, and since there is a steep energy barrier for the
annihilation between skyrmions and antiskyrmions, they are

trapped by the local minimum in their interaction potential
at low temperatures and they do not annihilate. The density
of the skyrmions can be controlled by the annealing rate
[Fig. 6(a)]. At the initial state when T 
 Ha , the absolute
of skyrmion density does not depend on magnetic field. For
a fast annealing, the final state resembles the initial state
therefore the skyrmion density almost does not depend on
magnetic field. For a slow annealing, the system can reach a
lower energy state by reducing the skyrmion density because
excitation of skyrmions costs energy. In this region, because
the skyrmion energy increases with magnetic field (Fig. 3),
the skyrmion density decreases with field. In the presence
of random pinning potential produced by defects, skyrmions
and antiskyrmions can be trapped by the pinning potential,
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which facilitates the creation of a metastable skyrmion state by
annealing.

VI. STABILIZING SKYRMION LATTICE
BY AN EASY-AXIS ANISOTROPY

A single skyrmion in the ferromagnetic background is
a metastable state. A general question is whether we can
stabilize the skyrmion lattice as a thermodynamically stable
phase. The triangular lattice of skyrmion can be regarded as
a superposition of three helices with ordering wave vector
rotated by 120◦. Therefore the spatial anisotropy introduced
by underlying triangular lattice of spin favors the triple-Q
ordering. The spatial anisotropy is proportional to q6 therefore
a large wavevector Q (or short period of helix) is preferred
to stabilize the triangular lattice of skyrmion. The skyrmion
lattice discussed in J1-J3 or J1-J2 model in Ref. [34] is only
stabilized for Q > Qc ∼ 1 [41].

As far as the skyrmion size is much bigger than the lattice
parameter of the spin system, or in the long-wavelength limit
as considered here, the spin lattice becomes irrelevant. Here we
consider the stabilization of skyrmion lattice by a perpendic-
ular easy axis anisotropy. In the case of skyrmions stabilized
by the DM interaction, it has already been demonstrated that
an easy axis anisotropy favors the skyrmion lattice [36–38].
For frustrated systems, this was demonstrated in the J1-J2

Heisenberg model on a triangular lattice [35]. The reason is
that in the skyrmion lattice, the majority of spin is along the
easy axis thus has lower energy in comparison to that of helix
phase. We remark that the easy axis anisotropy does not modify
qualitatively the properties of a single skyrmion discussed in
Sec. III. The spin Hamiltonian in the presence of an easy axis
anisotropy in two dimensions is

H =
∫

dr2

[
−1

2
(∇S)2 + 1

2
(∇2S)2 − Ha · S + AS2

z

]
, (37)

where the dimensionless parameter A < 0 is an easy axis
anisotropy and is in unit of I 2

1 /I2. First we study the phase
diagram of Eq. (37) at T = 0 by variational calculations. We
consider the following six states: (1) a spin fully polarized
state, S = (0,0,1). The energy density is EFM = −Ha + A.

(2) Single-Q conical spiral. In this state, the transverse
components of spin rotate in a plane parallel to the order-
ing wave vector Q0 and the amplitude of the longitudinal
component is constant. The ansatz for the spin state is S =
[sin θ cos(Q0 · r), sin θ sin(Q0 · r), cos θ ], when Ha � Hs

with Hs = (2A + 1/4) being the saturation field. The canting
angle θ is given by cos θ = Ha/Hs . The corresponding energy
is Ec = −(Hs + 4H 2

a )/8Hs . The conical spiral is no long
stable when A � −1/8.

(3) Single-Q vertical spiral: in this state, the spins rotate
in a plane parallel to the magnetic field. The direction of Q0

is not determined. Here we take Q0 perpendicular to the spin
rotation plane. The ansatz for the spin state is S = m/|m|
with m = [0, a1 sin(qvx), a2 cos(qvx) + m̄], where we have
assumed qv is along the x direction. Here, a1, a2, qv , and m̄

are variational parameters.

(4) Triangular lattice of skyrmion: the spin ansatz can be
written as S = m/|m| with

mx = a1

(
−

√
3

2
sin(q2 · r) +

√
3

2
sin(q3 · r)

)
,

my = a1

(
sin(q1 · r) − 1

2
sin(q2 · r) − 1

2
sin(q3 · r)

)
,

mz = −a2(cos(q1 · r) + cos(q2 · r) + cos(q3 · r)) + m̄.

Here, q1 = qvx̂, q2 = (− 1
2 x̂ +

√
3

2 ŷ)qv and q3 = (− 1
2 x̂ −√

3
2 ŷ)qv with x̂ and ŷ unit vectors along the x and y

directions, respectively. The Hamiltonian Eq. (2) has U(1)
symmetry. In the skyrmion lattice phase, the U(1) symmetry
is broken spontaneously by taking one arbitrary helicity for
all skyrmions. In the ansatz, we have chosen the helicity to be
φ0 = π/2. The variational parameters are a1, a2, qv , and m̄.

(5) Multiple-Q conical spiral: it was discussed in Ref. [35]
that the single-Q conical spiral is unstable with respect to
an easy axis anisotropy by developing modulation in other
directions. This is an example that an easy axis anisotropy
prefers to stabilize multiple-Q states. The ansatz for the spin
state is S = m/|m| with

mx = a1 cos(q1 · r) + a2 cos(q2 · r),

my = −a1 sin(q1 · r) + a2 sin(q2 · r),

mz = a3 cos(q3 · r) + m̄.

By introducing additional modulation in mz, the system gains
energy in the easy axis anisotropy, which outweighs the energy
costs due to higher harmonics. This multiple-Q conical spiral
can be further classified according to whether a1 = a2 or not
[35]. Here, we generally refer them as multiple-Q conical
spirals.

(6) Multiple-Q vertical spiral: the single-Q vertical spiral is
also found to be unstable by developing additional modulation
in certain range of A in Ref. [35]. This multiple-Q vertical
spiral can be described by

mx = a1 cos(q2 · r + φv) − a1 cos(q3 · r − φv),

my = −a2 sin(q1 · r),

mz = a2 cos(q1 · r) + m̄.

Here, we have chosen the spin rotation plane to be perpendic-
ular to the dominant ordering wave vector.

Except for the single-Q conical spiral, all the other states
have harmonics because of the constraint |S| = 1. We use
relaxation method to find the lowest energy state in the
variational space, ∂tav = −∂E(av)/∂av , for all the variational
parameters av . We then compare the energy among the these
states. The phase diagram at T = 0 is shown in Fig. 7. All the
phase transitions are of the first order except for the transition
between the multiple-Q conical spiral and ferromagnetic state,
and the transition between the single-Q vertical spiral and
multiple-Q vertical spiral. There are three notable features.
First, a skyrmion lattice is stabilized in the intermediate
magnetic field in the presence of an easy axis anisotropy.
It could be skyrmion or antiskyrmion lattice, thus breaks
the Z2 symmetry. Secondly the single-Q conical spiral at
A = 0 is unstable with respect to an infinitesimal A and the
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FIG. 7. Phase diagram obtained by variational calculations of
Eq. (37) at T = 0. Black lines represent the first order phase transition
and the red lines denote the second order phase transition.

multiple-Q conical spiral is stabilized. Thirdly, the easy axis
anisotropy stabilizes a vertical spiral at low field with respect
to the conical spiral. From Fig. 7, it is clear that an easy axis
anisotropy favors the multiple-Q state, such as the skyrmion
lattice, the multiple-Q conical and vertical spirals. For A

around −0.1, we have the vertical spiral, skyrmion lattice and
ferromagnetic state upon increasing field, which is the same
as that in systems with the DM interaction in two dimensions
[2]. Since the transition between the skyrmion lattice and the
ferromagnetic state is of the first order, there are skyrmion
and antiskyrmion excitations in the ferromagnetic background.
Our phase diagram is generally consistent with that obtained
by variational calculations using the J1-J2 Heisenberg model
on a triangular lattice in Ref. [35], except for certain fine
feature that is not accounted for in our variational space. Note
that the triangular lattice of spins used in Ref. [35] favors the
formation of multiple-Q state because the 120◦ arrangement
of qi is commensurate with the lattice. This may be the reason
why the multiple-Q vertical spiral occupies wider area in the
phase diagram in Ref. [35].

To go beyond the variational calculation, we also performed
unbiased Monte Carlo simulations. The Hamiltonian Eq. (37)
is difficult to simulate because of the long-wavelength spin
texture. Here we consider two Heisenberg models with an
easy axis anisotropy on lattice:

H = −Jij

∑
〈i,j〉

Si · Sj − Ha

∑
i

Si + A
∑

i

S2
z,i , (38)

the J1-J2-J3 model on a square lattice and J1-J3 model on a
triangular lattice, as schematically shown in Fig. 1. We choose
the square lattice to show explicitly that the triangular lattice
of spin is not necessary to stabilize the skyrmion lattice. For
the square lattice case, we choose J2 such that J1 − 4J2 +
16J3 = 0, so that the spatial anisotropy vanishes to the order
of q4, in order to realize the Hamiltonian (2). To compare with
the variational results in Fig. 7, we normalize the magnetic
field and temperature in terms of the saturation field at A = 0,
Hs(A = 0) = J (Q0) − J (0).
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FIG. 8. Phase diagram obtained by Monte Carlo simulations of
(a) the J1-J2-J3 Heisenberg model on a square lattice and (b) the J1-J3

Heisenberg model on a triangular lattice. Here for (a) J3 = −0.15J1,
J1 − 4J2 + 16J3 = 0 and A = −2Hs(A = 0)/15 with the saturation
field at A = 0, Hs(A = 0) = 0.15J1; for (b) J3 = −0.5J1 and A =
−0.478Hs(A = 0) with Hs(A = 0) = 1.045J1. Arrows denote the
phase boundaries at T = 0 obtained by variational calculation in
Fig. 7.

We use the periodic boundary condition in the Monte Carlo
simulations. We first anneal the system from a paramagnetic
state to the target temperature by gradually reducing the
temperature. The total MCS for annealing is about 106. Then
we thermalize the system using 5×106 MCS and another
5×106 MCS for measurement. The typical system size is
about 72×72 and 60×60. We have also used 60×48 in
order to accommodate the triangular lattice of skyrmion. The
phase diagrams obtained by Monte Carlo simulations for
the J1-J2-J3 model and the J1-J3 model are presented in
Fig. 8. The phase boundary is determined by analyzing the
spin structure factor, spin susceptibility and specific heat as a
function of magnetic field and temperature. The arrows denote
the phase boundary obtained by variational calculations in
Fig. 7 and they are in reasonable agreement with the Monte

064430-10



GINZBURG-LANDAU THEORY FOR SKYRMIONS IN . . . PHYSICAL REVIEW B 93, 064430 (2016)

T/Hs(A=0)=0.0133, Ha/Hs(A=0)=0.048 T/Hs(A=0)=0.0333, Ha/Hs(A=0)=0.333 T/Hs(A=0)=0.2883, Ha/Hs(A=0)=0.333 

Sk
yr

m
io

n 
to

po
lo

gi
ca

l d
en

si
ty

 
Sp

in
 c

on
fig

ur
at

io
n 

Sp
in

 st
ru

ct
ur

e 
fa

ct
or

 <
S x

(-
q)

S x
(q

)>
 

T/Hs(A=0)=0.0133, Ha/Hs(A=0)=0.576 

-0.02 

0.02 

0 

-0.1 

-0.05 

0 

-0.1 

0.1 

0 

-0.02 

0.02 

0 

Vertical spiral Conical spiral Skyrmion lattice Skyrmion-antiskyrmion liquid 

FIG. 9. Spin configuration (first row), skyrmion topological charge density ρs (second row) and spin structure factor ln(〈Sx(q)Sx(−q)〉)
(third row) for the vertical spiral (first column), conical spiral (second column), skyrmion lattice (third column), and skyrmion-antiskyrmion
liquid (fourth column). The results are obtained by Monte Carlo simulations of the J1-J2-J3 Heisenberg model on a square lattice and parameters
are the same as those in Fig. 8. In the skyrmion-antiskyrmion liquid phase, the structure factor is not a perfect ring because of the spatial
anisotropy introduced by the spin lattice.

Carlo simulations. The discrepancy is caused by the fact
that Q0 is not small because of the limitation of the Monte
Carlo simulations. Several typical spin configurations and the
corresponding structure factor 〈Sx(q)Sx(−q)〉 and skyrmion
topological charge density, ρs(r), for the vertical spiral, conical
spiral, skyrmion lattice, and the skyrmion liquid are displayed
in Fig. 9. In the conical spiral, there is only one dominant
modulation and the modulation in other directions is weak
by several orders of magnitude, because the modulations
in other directions are suppressed by to the square spatial
anisotropy introduced by the square lattice of spins. The square
anisotropy does not favor the multiple-Q conical spiral with
three qi vectors rotated by 120◦. At high T , all the ordered
phases are destroyed by thermal fluctuations and we have
field-induced ferromagnetic state. Near the phase boundary
between the skyrmion lattice and field-induced ferromagnetic
state, skyrmions and antiskyrmions form liquidlike structure
(Fig. 9). The averaged structure factor shows a ringlike
structure, indicating a liquidlike behavior of skyrmion and
antiskyrmion.

VII. DYNAMICS

A skyrmion is a particlelike excitation and can be driven by
external fields, such as current. The current driven dynamics

of skyrmions is particularly interesting for the potential
application in spintronic devices. Here, we study the dynamics
of a single skyrmion in the ferromagnetic state under a dc
current drive. There are two Goldstone modes for a skyrmion
described by Eq. (2), with one being the translational motion
of the skyrmion (translational mode) and the other being
the global rotation of spin along the magnetic field axis
(rotation mode). Other modes associated with the deformation
of skyrmion is gapped and is not accounted for if we treat
skyrmion as a rigid particle. The rigidity of the skyrmion
is defined based on the out-of-plane component of the spin
because of the existence of the U(1) symmetry associated with
the helicity for the in-plane components. The translational
mode can be regarded as orbital degree of freedom of a
skyrmion and the rotational mode can be regarded as the spin
degree of freedom of a skyrmion. In ISM with competing
interactions, skyrmions have both the spin and orbital degree
of freedoms, which is different from the skyrmions in chiral
magnets, where skyrmions only have the orbital degree of
freedom. For a skyrmion at rest, the translational mode and
the rotation mode are orthogonal to each other because they
are the eigenmodes of small perturbation. Generally, when
a skyrmion moves, these two modes hybridize and both of
them are excited. One may assign the translational mode as
the orbital degree of freedom and the rotation of helicity as the
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“spin” degree of freedom for a skyrmion. Therefore there is a
“spin”-“orbit” coupling for skyrmions and we will explore the
interesting consequences of the coupling between the “spin”
and “orbit” of a skyrmion below. Note that the interaction
between skyrmions in Eqs. (34) and (35) also leads to the
coupling between the translational motion and the helicity of
skyrmions.

Let us first consider the motion of a single skyrmion in the
ferromagnetic background driven by an adiabatic spin transfer
torque described by the equation of motion for spins [43–45]

∂tS = −γ S×Heff + αS×∂tS + �γ

2e
(Je · ∇)S, (39)

where γ is the gyromagnetic ratio, Heff ≡ −δH/δS is the
effective field with H defined in Eq. (2), Je is the electric
current and α is the Gilbert damping. We solve Eq. (39)
numerically using the method in Ref. [46] with the periodic
boundary condition. We discretize the system into square mesh
with the mesh size �r = 0.2. We calculate the center of mass
of a skyrmion defined as

R =
∫

dr2rS · (∂xS×∂yS)∫
dr2S · (∂xS×∂yS)

. (40)

According to the calculations, for a weak current Je � 1 and
weak damping α � 1 relevant for real materials, only the
translational mode is excited for a spatially isotropic system.
This can be seen from the term ∂tS − �γ (Je · ∇)S/(2e) in
Eq. (39), where the adiabatic spin transfer torque couples
directly to the translational mode. In this case, we can
use the Thiele’s collective coordinate approach and use the
ansatz S(r − vt) with v the skyrmion velocity to describe the
dynamics of spins [47]. The equation of motion for a skyrmion
is

Nsẑ×
(

v + �γ

2e
Je

)
= −αηv, (41)

which is the same as that in systems with DM interaction.
Here, η = ∫ ′ (∂μn)2dr2/(4π ) with μ = x, y is the form factor.
In Fig. 10, we compare the numerical results to that in Eq. (41)
and they agree with each other perfectly, which indicates that
only the translational mode is dominant.

The rotational mode can be excited by the spin transfer
torque in the presence of other coupling terms in addition
to the terms in Eq. (2). Here we consider spatial anisotropy
due to the underlying spin lattice. We study numerically the
dynamics of a skyrmion in the J1-J3 Heisenberg model on a
triangular lattice with Q = 2π/27, where the sixfold spatial
anisotropy term in Eq. (7) mixes the rotational mode with the
translational mode. The skyrmion moves along a straight line
with a velocity component perpendicular to the current. The
helicity of the skyrmion changes linearly with time in addition
to the translational motion, see Ref. [42] for a movie. There
is a spin (rotational mode)-orbit (translational mode) coupling
for the skyrmion motion. The equation of motion is no longer
described by Eq. (41). An analysis based on internal modes of
a skyrmion will be published elsewhere.

Next, we study the skyrmion motion driven by a torque due
to the spin Hall effect, which couples directly to the rotational
mode as will be shown below. We consider a bilayer system
with a magnet described by Eq. (2) atop of a heavy metal.
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We then inject an electric current into the heavy metal. Due to
the spin Hall effect, there is a spin current traveling normal to
the interface, which generates a torque acting on the magnetic
moments in the magnet. We also neglect the induced DM
interaction in the magnetic layer. The dynamics of spins is
governed by [48–51]

∂tS = −γ S×Heff + αS×∂tS + �γ θsh

2ed
S×[S×(ẑ×Je)], (42)

where θsh is the spin Hall angle and d is the film thickness.
The torque due to the spin Hall effect can be described by
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FIG. 11. Schematic view of the skyrmion motion under a spin
Hall torque when the rotational mode of the skyrmion is excited. The
blue arrows denote the spin direction and the sign (±, 0) close to them
represent the effective magnetic field HSHE,z along the z direction.
The red arrows represent the direction of motion of the skyrmion.
The helicity of the skyrmion is also shown. The green arrow is the
external current direction and the inset is the coordinate system. A
movie based on numerical calculations is shown in Ref. [42].
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FIG. 12. (a) Time dependence of the skyrmion center of mass
when a skyrmion is driven by a torque due to the spin Hall effect, and
(b) the corresponding trajectory. Here, Ha = 0.6 and α = 0.2. The
current is Je = 0.2 and is along the x direction. Here the time t is in
unit of I2/(I 2

1 γ ) and the current Je is in unit of 2edI 2
1 /(�θshI2).

an effective magnetic field HSHE ∝ S×(ẑ×Je). We assume
that the current is along the x direction. According to the
simulations, the rotational mode is excited with the helicity
changing linearly in time, φ0 = ωt . For a skyrmion with
helicity φ0 = 0 shown in Fig. 11, there is magnetic field
gradient of HSHE,z along the x direction, which generates a
force along the same direction. Because of the Magnus force,
the skyrmion moves perpendicularly to the force and it moves
along the y direction [52,53]. When the helicity becomes
−π/2, the skyrmion experiences a field gradient HSHE,z in the
y direction and the skyrmion moves in the negative x direction.
Similarly when φ0 = −π , skyrmion moves along the negative
y direction and for φ0 = −3π/2, it moves along the positive x

direction. Therefore the skyrmion moves along a circle in the
presence of a spin Hall torque generated by a dc current, and
its helicity is locked to the position.

To verify the above picture, we derive the equation of
motion for a rigid skyrmion with a fixed helicity using the
Thiele’s approach [47,54]

Nsẑ×v + αηv = �γ θsh

2ed
JeY, (43)

with

Yμ = (ẑ×Ĵ) ·
∫ ′

(∂μn×n)dr2/(4π ), (44)

and Ĵ a unit vector along the current direction. Without loss
of generality, we assume current is along the x direction,
Je = Jex̂. Then

Y = Y0 l̂π−φ0 , (45)

Y0 = 1

4

∫ ∞

0

[
1

2
sin(2θ ) + r∂rθ

]
dr, (46)

where l̂π−φ0 is a unit vector with a polar angle π − φ0. The
equation of motion depends explicitly on the helicity. In the
other words, the spin Hall torque couples to the rotational
mode. The velocity perpendicular (parallel) to Y, v⊥ (v‖) is

v⊥ = −NsY0�γ θshJe/
[
2ed

(
N2

s + (αη)2
)]

, (47)

v‖ = αηY0�γ θshJe/
[
2ed

(
N2

s + (αη)2)]. (48)

For a weak damping α � 1, the velocity is almost perpendic-
ular to l̂π−φ0 . When the rotational mode is excited, φ0 = ωt ,
the skyrmion move along a circle.

We solve numerically Eq. (42) with a skyrmion in the ferro-
magnetic background as an initial state and find the skyrmion
performs a circular motion with continuously changing its
helicity as shown in Figs. 12 and 13, consistent with the
above analysis. To determine the ω, one needs to study the
hybridization between the translational mode and rotational
mode.

VIII. DISCUSSIONS

The derivation of the effective theory Eq. (2) are based on
the expansion of ordering wave vector around zero valid when
Qa � 1. For a large Q, such as expansion is not allowed.
However we can expand the Q around a Q0 that is commen-
surate with the spin lattice. For example, in the frustrated
Heisenberg model with nearest-neighbor antiferromagnetic
interaction on triangular lattice, the ground state is a spiral with
Q0 = 2π/3. In the present of high-order weak interactions,
such as interlayer FM coupling [55], the ordering Q deviates
slightly from Q0 = 2π/3, Q = Q0 + δ with δ � 1. We need
to introduce three order parameters Si , i = 1,2,3, defined on
the three sublattices and do the same expansion in δ. The

FIG. 13. Snapshots of skyrmion configuration at (a) right, (b) top, (c) left, (d) bottom of the circular trajectory. The helicity is locked with
the position and changes continuously with time. Here Je = 0.1, Ha = 0.6 and α = 0.2. The current is along the x direction. The halos in the
figures are caused by the distortion of the skyrmion due to the field gradient generated by the spin Hall torque. See Ref. [42] for a movie. Here
the current Je is in unit of 2edI 2

1 /(�θshI2).
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TABLE I. Comparison between skyrmions in inversion-symmetric magnets and chiral magnets.

Properties of skyrmions Inversion-symmetric magnets Chiral magnets

Energy of skyrmion and antiskyrmion Degenerate Nondegenerate
Skyrmion size in two dimenions Diverges at the saturation field finite
Helicity Arbitrary Fixed by the DM vector
Pairwise interaction as a function of separation Nonmonotonic and depends on helicity Monotonic

Translation in space and
Goldstone modes global rotation of spin along the magnetic field axis. Translation in space

There can be coupling between these two modes.
Equation of motion driven by a dc spin Hall torque Move along a circle Move along a straight line

resulting Ginzburg-Landau energy contains three spin vector
field Si(r) with coupling among them.

We then compare the skyrmions in inversion-symmetric
magnets to that in chiral magnets and highlight the differences.
For magnet with inversion symmetry, the skyrmions with
opposite winding direction or skyrmion and antiskyrmion
have the same energy. Close to the phase boundary between
the skyrmion lattice and ferromagnet, there is skyrmion-
antiskyrmion liquid like phase. While for the chiral magnets,
the winding direction is determined by the sign of the DM
vector, so either skyrmions or antiskyrmions are stabilized.
In ISM, there is U(1) symmetry associated with the global
rotation of spin along the magnetic field direction. Therefore
the helicity of skyrmion is not determined. In chiral magnets,
the DM interaction removes the U(1) symmetry and the
helicity is selected by the direction of the DM vector. For
the DM interaction generated by the Dresselhaus spin orbit
interaction, a Bloch skyrmion is stabilized with helicity φ0 =
π/2, while for the DM interaction generated by the Rashba
spin orbit interaction, a Néel skyrmion is stabilized with
helicity φ0 = 0. For a single skyrmion in ISM with competing
interactions, the canting angle of spin with respect to field
direction decreases from π (antiparallel to the field) to zero
(parallel to field) and then oscillates around zero indicating
a reversal of helicity. This also implies that the pairwise
interaction between skyrmions are nonmonotonic as a function
of distance between skyrmions and depends on the helicity.
Meanwhile, the decay length increases when the magnetic
field approach the saturation field from above meaning the
skyrmion size diverges. In the case of chiral magnets, the
canting angle decreases monotonically and the skyrmion size
is always finite. The pairwise interaction between skyrmions is
monotonic.

For skyrmions in ISM, we have two Goldstone modes with
one being the translational motion of skyrmion and the other
rotation of spin along the z axis due to the U(1) symmetry.
These two Goldstone modes can be hybridized by spatial
anisotropy introduced by the spin lattice or by torque due to
the spin Hall effect. Thus the skyrmions in ISM gain a “spin”
degree of freedom and the spin of a skyrmion can couple
to its orbital degree of freedom. When both the rotational
and translational modes are excited, the equation of motion
for skyrmion is no longer described by the original Thiele’s
equation. Moreover in the presence of a torque due to the
spin Hall effect induced by a dc current, we found that the
skyrmion moves along a circle. While for the chiral magnets,
we only have the translational mode as the Goldstone mode

and the equation of motion of skyrmion can be described by the
Thiele’s equation. Table I summarizes the differences between
skyrmions in ISM and chiral magnets.

A measurable quantity associated with the helicity φ0 is
the toroidal moment T (φ0) ≡ ∫

dr3r×S ∝ sin φ0 [56]. The
toroidal moment is allowed because the spatial inversion
symmetry and time reversal symmetry are broken in the
presence of skyrmions, although the original Hamiltonian
Eq. (2) has these two symmetries. The toroidal moment density
oscillates when one moves away from the skyrmion center. The
toroidal moment couples with electric current, which points to
a possible way to tune the helicity of the skyrmion lattice.
When the rotational mode of skyrmion is excited, T oscillates
with time which can be measured experimentally.

Competing interactions and a weak easy axis anisotropy
in magnets are sufficient to stabilize skyrmion lattice in the
universal long-wavelength limit. In this universal region, the
skyrmion lattice does not depend on the underlying spin lattice
and the microscopic origin of the competing interactions.
This suggests that the skyrmion lattice may be a ubiquitous
state in magnetic materials and also provides a guidance
for experimental search of new skyrmion-hosting materials.
Several possible candidates such as, NiGa2S4, α-NaFeO2,
FexNi1−xBr2, have already been proposed in Refs. [34,35].
The easy axis anisotropy generally favors multiple-Q ordering,
such as multiple-Q vertical spiral and conical spiral, suggest-
ing that the multiple-Q ordered states may be ubiquitous in
magnets with competing interactions.

To summarize, we derive a Ginzburg-Landau theory to
describe the skyrmion physics in inversion-symmetric magnets
with competing interactions. The general theory is valid for
any classical Heisenberg model with competing interactions
in the long-wavelength limit. Our theory shows that the
stabilization of skyrmion lattice does not depend on the
symmetry of the underlying spin lattice and an easy axis
anisotropy is sufficient to stabilize a skyrmion lattice. We
also demonstrate the unusual properties of skyrmions, such
as structure of a single skyrmion, nonmonotonic interaction
between skyrmions and dynamics, and compare to those
in chiral magnets with Dzyaloshinskii-Moriya interaction.
Remarkably, the skyrmions in inversion-symmetric magnets
gain a “spin” degree of freedom in addition to the usual orbital
degree of freedom. The spin-orbit coupling in the skyrmion
motion gives rise to highly nontrivial results that are not shared
by skyrmions in chiral magnets. Our theory will trigger further
interests in skyrmions in inversion-symmetric magnets and in
searching for skyrmions in these materials.
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Niklowitz, and P. Böni, Topological Hall Effect in the a Phase
of MnSi, Phys. Rev. Lett. 102, 186602 (2009).

[6] S. Seki, X. Z. Yu, S. Ishiwata, and Y. Tokura, Observation of
skyrmions in a multiferroic material, Science 336, 198 (2012).

[7] S. Seki, S. Ishiwata, and Y. Tokura, Magnetoelectric nature of
skyrmions in a chiral magnetic insulator Cu2OSeO3, Phys. Rev.
B 86, 060403(R) (2012).
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