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In the Landau free energy, which is a powerful tool for describing the physical properties and phase transitions
in condensed-matter physics, it has been generally believed that time-reversal symmetry allows only even-power
polynomials in the magnetic moment when magnetic transition happens. Although no experimental evidence
supports it, this symmetry constraint is very strict in theory. On the other hand, MnO, CoO, and NiO have
been extensively studied for several decades since these materials are used to test advance experimental and
theoretical methods. However, their precise spin directions and phase-transition mechanism have remained as
a long-standing problem until now. To resolve these issues, we used the cutting-edge time-of-flight neutron
powder diffractometer (SuperHRPD) at the Japan Proton Accelerator Research Complex (J-PARC) to study the
spin-direction-dependent magnetoelastic coupling in MnO, CoO, and NiO. We also constructed a group-subgroup
structure relation from Fm-3m to C2/m with exchange striction and a type of magnetostriction (dipolar and roto
magnetostriction). These unified viewpoints and the high-resolution neutron powder diffractometer enable us to
construct an order-parameter vector diagram. The order-parameter vector diagram reveals distinguished order-
parameter coupling and phase-transition characters by different �+

1 (Ag) and �+
2 (Bg) spin direction. Moreover,

the experiment results show clearly that the CoO6 octahedral distortion and the Co magnetic moment couple
through a magnetoelastic coupling εoct ∼ M3, which is forbidden by time-reversal symmetry but allowed by the
more general magnetic symmetry—the so-called rotation-time-reversal symmetry in the double antisymmetry
space group. Rotation-time-reversal symmetry allows the coupling of odd-power polynomials in the spin vector
and odd-power ones in the roto vector when both spin- and roto-axial vectors belong to the same irreducible
representation in Landau free energy. Here, we show experimental evidence that the magnetic order parameter
and static structural order parameter belong to the same irreducible representation in the materials. Experimental
discovery of general magnetic symmetry opens a way to find the physics forbidden by time-reversal symmetry
in condensed matter physics.

DOI: 10.1103/PhysRevB.93.064429

I. INTRODUCTION

Symmetry is a key concept for understanding the physical
properties, interactions, and phase transitions in condensed-
matter physics. To apply this concept to phase transitions, the
Landau free energy is Taylor expanded in the order parameter
near the phase-transition point and the free-energy term is
required to be invariant under symmetry operations of the high-
symmetry parent group. This Landau free energy is extremely
useful and flexible for investigating the phase transition and
physical properties in various systems. For example, it has
been generally believed that time-reversal symmetry allows
only even-power polynomials in the magnetic moment in the
Landau free energy when magnetic phase transition occurs
[1,2]. To date, discussions of magnetism in condensed-matter
physics have been guided by this strong theoretical symmetry
constraint despite a lack of experimental evidence to justify
it. However, if instead of time-reversal symmetry a new
symmetry operation is shown experimentally to reverse the
magnetic moment, then this issue must be revisited.
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Gopalan and Litvin introduced rotation-reversal symmetry
1*, which reverses the time-independent axial vector (the so-
called roto vector R) [3]. It differs from the well-known time-
reversal symmetry 1′, which reverses the time-dependent axial
vector (the so-called spin vector S). In addition, the direct prod-
uct between rotation-reversal symmetry 1* and time-reversal
symmetry 1′ gives rotation-time-reversal symmetry 1′*, which
reverses both roto vector R and spin vector S: 1*R = −R,
1*S = S; 1′R = R, 1′S = −S; 1′*R = −R, 1′*S = −S as
shown in Fig. 1. These symmetries give rise to 17 803 double
antisymmetry space groups (DASGs) that are derived from
230 conventional space groups [4,5]. Theoretically, magnetic
moment can be reversed by not only time-reversal symmetry
1′ but also rotation-time-reversal symmetry 1′*. Thus, it is
necessary to discuss possible polynomials in magnetic moment
in Landau free energy by rotation-time-reversal symmetry.
And then, it is important to prove experimentally which one is
general magnetic symmetry between time-reversal symmetry
1′ and rotation-time-reversal symmetry 1′* since change in
magnetic symmetry will give different symmetrical constraints
in condensed matter physics.

On the other hand, transition-metal monoxides (TMOs),
such as MnO, CoO, and NiO, have long-standing prob-
lems such as precise spin direction [6–26], a discontinu-
ous or continuous phase-transition problem [27–42], and a
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FIG. 1. In the double antisymmetry space group, 1′ time-reversal,
1* rotation-reversal, and 1′* rotation-time-reversal symmetry oper-
ation on the time-dependent axial vector (spin vector S) and time-
independent axial vector (roto vector R), respectively: 1′S = −S,
1′R = R, 1*S = S, 1*R = −R, 1′*S = −S, 1′*R = −R.

phase-transition mechanism [9,11,16,20,27,42–47]. TMOs
have simple rocksalt structure Fm-3m in the paramagnetic
state. Antiferromagnetic ordering causes stress, which induces
structural distortion at the same temperature. Since antifer-
romagnetic ordering induces the simultaneous formation of
ferroelastic twin domains, single-crystal neutron diffraction
has difficulty determining the precise spin direction with-
out detailed knowledge of the domain population [12,19].
Meanwhile, phase-transition theory expected discontinuous
phase transition on MnO, CoO, and NiO [16,27–30]. MnO
discontinuous phase transition is consistent with theoretical
expectation [31–33,35,36,42]. However, at least, NiO indicates
continuous phase transition within experimental resolution
[34,36,37,39,41]. CoO phase transition is unclear and de-
pends on sample preparation from different research groups
[16,36,38–40]. Because of the theoretical background, it
has been believed that CoO phase transition is very weak
discontinuous phase transition, smaller than experimental
resolution [16]. In addition, classical magnetostriction [16,44]
and spin-driven Jahn-Teller distortion [9,11,42,47] are pro-
posed theoretically for the CoO phase-transition mechanism.
But, it is lacking experimental support at present, whereas
in MnO and NiO phase-transition mechanisms it is gener-
ally accepted that exchange striction induces R-3m crystal
structure [45,46]. However, exchange striction is insufficient
to explain why MnO and NiO phase transitions are different
within experimental resolution [6].

In this study, we resolve the issue of general magnetic
symmetry and the long-standing problem of TMOs. In
Sec. II, the theoretical and experimental methods are given. In
Sec. III, we discuss possible polynomials of magnetic moment
in Landau free energy with time-reversal symmetry and
rotation-time-reversal symmetry. We also construct the TMOs
group-subgroup structural relation with exchange striction
and magnetostriction. This approach gives common crystal
structure C2/m with magnetic propagation vector km=(0
1 0.5). In Sec. IV, we demonstrate very-high-resolution
time-of-flight neutron powder-diffraction results and discuss
spin-direction-dependent magnetoelastic coupling. In Sec. V,
we summarize the physical meaning of experimental results
and the importance of general magnetic symmetry.

II. METHOD

To avoid the twin-domain problem, we use time-of-
flight neutron powder-diffraction measurements performed at
the cutting-edge super-high-resolution powder diffractome-
ter (SuperHRPD) [48,49] of the Japan Proton Accelerator
Research Complex (J-PARC) to measure the crystal- and
magnetic-order parameters simultaneously. In principle, when
monoclinic distortion exceeds the diffractometer resolution,
high-resolution powder neutron diffraction makes it possible
to not only obtain clear crystal and magnetic structures
but also easily measure order-parameter coupling. We used
commercial powder samples MnO 99%, CoO 99.99%, and
NiO 99.999% from Sigma Aldrich. We employ a cryostat to
maintain MnO and CoO at low temperature and a furnace
to maintain NiO at high temperature. After obtaining the
instrument parameter by Z-Rietveld software [50,51], we used
the Fullprof software [52] to perform Rietveld analysis on a
high-resolution backscattering bank. We also used BasIreps
[52], SARAh [53], Bilbaocrystallographic server [54], and
the International table of crystallography Vol. A1 [55] to
apply the group representation theory, analyze the magnetic
symmetry, and construct the group-subgroup family trees.
Measurements of CoO show that the Néel temperature is 10 K

FIG. 2. TMO spin direction in R-3m and C2/m. (a) R-3m hexag-
onal lattice transformation (ah,bh,ch) = (−ac/2 + bc/2,−bc/2 +
cc/2,ac + bc + cc) from Fm-3m cubic lattice with ac, bc, and cc. For
clarity, only transition metals are shown, whereas oxygen is omitted.
(b) Two spin-basis vectors: the [100]h and [120]h spin directions (red
and blue arrows, respectively) compose the easy-plane spin direction
inside the R-3m (001)h hexagonal plane. These spin directions break
the threefold crystal symmetry and induce the maximal subgroup
C2/m. (c) C2/m monoclinic lattice transformation (am,bm,cm) =
(ac/2 + bc/2 + cc,−ac/2 + bc/2,−ac/2 − bc/2) from Fm-3m cubic
lattice with ac, bc, and cc. (d) Two spin directions �+

1 (Ag) and
�+

2 (Bg) (red and blue arrows, respectively) in C2/m. The R-3m

[100]h spin direction transforms to the �+
1 (Ag) spin direction, which

is always fixed along the monoclinic b axis in C2/m. In contrast, the
R-3m [120]h spin direction transforms to the �+

2 (Bg) spin direction
with the initial spin angle θ0 = cos−1(1/3) ≈ 70.5288◦, which is
rotated in the my mirror plane in C2/m. The initial monoclinic
angle β0 = cos−1(− 1√

3
) ∼ 125.2644◦ is derived from paramagnetic

cubic Fm-3m. The �+
2 (Bg) spin direction and variation �β in the

monoclinic angle are correlated.
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higher than the reported transition temperature [42] because
of the temperature gradient between the sample and the sensor
position inside the cryostat when the sample is near room
temperature. The observed higher Néel temperature does not
affect the order-parameter coupling at a given temperature
because temperature effects cancel out.

III. THEORY

A. Landau free energy

The DASG suggests that the spin vector S is reversed by
applying either time-reversal symmetry 1′ or rotation-time-
reversal symmetry 1′* [3–5]. Surprisingly, the new rotation-
time-reversal symmetry 1′* allows odd-power polynomials
in the magnetic moment in the Landau free energy. Two
possible theoretical cases exist wherein the S spin vector
and R roto vector are ordered simultaneously. In the first
case, S and R appear when 1′ time-reversal symmetry and
1* rotation-reversal symmetry are separately broken, i.e.,
1′S = −S, 1*R = −R. In this case, the Landau free-energy
term must be invariant under 1′ time-reversal symmetry and
1* rotation-reversal symmetry operations individually. This is
expressed by

F = F0 + a2S
2 + a4S

4 + b2R
2 + b4R

4 + cS2R2 + · · · .

(1)
S and R belong to different irreducible representations

(irreps) and give the S2R2 coupling term. However, in the
second case, both S spin vector and R roto vector appear
together in breaking 1′* rotation-time-reversal symmetry,
i.e., 1′*A = −A = (−S,−R) when S and R merge into a
single irrep A = (S,R). In this case, the Landau free-energy
term must be invariant under the 1′* rotation-time-reversal

symmetry operation. This is given by

F = F0 + a2A
2 + a4A

4 + · · ·
= F0 + a2S

2 + a4S
4 + b2R

2 + b4R
4

+ c1SR + c2S
3R + c3S

2R2 + c4SR3 + · · · . (2)

Additional terms that couple order parameters appear, such
as SR, S3R, and SR3, which involve odd powers of the
spin vector S and roto vector R which are forbidden by
time-reversal symmetry 1′ and rotation-reversal symmetry 1*
individually but are allowed here by rotation-time-reversal
symmetry 1′*. In addition, rotation-time-reversal symmetry
1′* reduces the number of condensed irreps in the phase
transition.

The Landau free energy, including antiferrodistortive anti-
ferromagnetic bilinear coupling, describes heat-capacity tails
above TN in multiferroic BiFeO3 and EuTiO3 [56]. When spin
vector S and roto vector R change their signs simultaneously
between sublattices, they argue that odd-odd power polyno-
mials exist between spin vector and roto vector, while, here,
rotation-time-reversal symmetry breaking gives a more strict
constraint that both vectors must belong to the same irreducible
representation. For instance, different spin direction causes
distinguished roto-vector and spin-vector coupling in this
study, but not in the approach taken in [56]. Octahedral
rotations and antiferromagnetic order occur sequentially at
different temperatures in the two perovskite materials, thus
proving that order-parameter coupling is difficult to perform
experimentally. Therefore, it is important to discern the type
of order-parameter coupling in Eq. (1) or (2) and existence of
spin-direction-dependent magnetoelastic coupling, where the
spin vector S and roto vector R appear simultaneously at the
same phase-transition temperature in suitable materials.

FIG. 3. Group-subgroup family tree under exchange striction and magnetostriction. Left: Crystal-structure transformation from Fm-3m to
C2/m. Right: Magnetic propagation vector km, spin direction, and physical interaction.
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FIG. 4. Splitting of CoO monoclinic peak. High-resolution
time-of-flight neutron-diffraction measurements confirm the C2/m
monoclinic structure as determined by x-ray tomography [23]
and synchrotron-based x-ray-diffraction measurements [16]. High-
resolution time-of-flight neutron powder-diffraction measurements
obtained resolution comparable to that of synchrotron x-ray-
diffraction measurements [48,49], which enabled us to solve the
magnetic structure without confronting the problem of ferroelastic
twin domains.

B. Group-subgroup structure model

As shown in Figs. 2 and 3, we constructed a group-subgroup
structural relation by considering physical interaction and
structure geometry on MnO, CoO, and NiO. In the simple ionic
picture, TMOs have a 3d tn2ge

2
g electronic configuration inside

corner sharing TMO6 octahedra. Because of strong σ bonding
between TM 3d eg and O 2p, the next-nearest interaction
J2 is given by a 180◦ superexchange interaction, which is
stronger than the nearest interaction J1. The next-nearest
interaction leads to a type-II antiferromagnet; in other words,
when the stability condition −1 < J1/J2 < 2 is obtained using
the Green’s-function technique [57], the magnetic propagation
vector km = (0.5 0.5 0.5)c in a fcc cubic lattice. The parallel
and antiparallel spatial distributions of spin break the fourfold
crystal symmetry, which is the so-called exchange striction,
and then induce the maximal subgroup R-3m with magnetic
propagation vector km = (0 0 1.5)h in the hexagonal lattice.
The magnetic dipole-dipole interaction gives rise to easy-plane
magnetic anisotropy in the R-3m (001)h hexagonal plane [9],

the spin directions of which compose with [100]h and [120]h
as shown Fig. 2(b). Such a spin direction is incompatible with
threefold crystal symmetry [6,7,17,22,58]. This spin direction
induces the maximal subgroup C2/m with the magnetic prop-
agation vector km = (0 1 0.5)m in the monoclinic lattice [6].

The R-3m [100]h spin direction corresponds to �+
1 (Ag) =

(0,My,0) magnetic symmetry in C2/m, the spin direction of
which is along the monoclinic b axis, which induces normal
stress perpendicular to the my mirror plane in C2/m. However,
the R-3m [120]h spin direction corresponds to �+

2 (Bg) =
(Mx,0,Mz) magnetic symmetry with initial spin angle θ0 =
cos−1(1/3) ≈ 70.5288◦ in C2/m. This spin direction induces
shear stress parallel to the my mirror plane. The �+

1 (Ag) spin
direction is fixed, whereas, under monoclinic distortion, the
�+

2 (Bg) spin direction is rotated with respect to the initial spin
angle θ0, as shown in Fig. 2(d). The dipole-dipole magnetic in-
teraction preferences easy-plane magnetic anisotropy given by
the R-3m (0 0 1)h hexagonal plane, which selects the �+

1 (Ag)
spin direction with normal stress because it maintains the spin
direction within the dipolar magnetic easy plane. In the �+

2 (Bg)
spin direction, the monoclinic distortion causes spin canting
with respect to the initial θ0. In other words, spin canting occurs
with respect to the dipolar magnetic easy plane, which in-
creases the dipole-dipole magnetic-anisotropic energy. When
the energy from spin-orbit-lattice coupling compensates for
the increase in energy due to the dipole-dipole magnetic
anisotropy, the �+

2 (Bg) spin direction is selected. Based on
these physical and geometrical arguments, we expect that the
quenched orbital moment L ≈ 0 prefers the �+

1 (Ag) spin direc-
tion, the so-called dipolar-magnetostriction, whereas the un-
quenched orbital moment L �≈ 0 favors the �+

2 (Bg) spin direc-
tion, which is the so-called roto magnetostriction because spin
direction induces effective roto symmetry of structural distor-
tion that will be discussed later. Dipolar magnetostriction and
roto magnetostriction differ from classical magnetostriction
[44]. In addition, the spin directions induced in TMOs differ.

IV. EXPERIMENTAL RESULTS AND DISCUSSIONS

A. Crystal and magnetic structure model determination

MnO has a quenched orbital moment, whereas NiO
and CoO have an unquenched orbital moment [59–62]. In
the present work on CoO, high-resolution neutron powder-
diffraction measurements observed monoclinic peak splitting

TABLE I. Magnetic models of CoO at 60 K. Magnetic propagation vector km = (0.5 0.5 0.5)c in Fm-3m transforms to km = (0 1 0.5)m
in C2/m. The vector km = (0.5 0.5 0)m is inconsistent for type-II antiferromagnetism. Since km = (0.5 0.5 0)m gives the same bond distance
between parallel and antiparallel magnetic moments in a C-centered cell, we can discard km = (0.5 0.5 0)m by exchange striction.

C2/m, km= (0 1 0.5)m C2/m, km = (0.5 0.5 0)m

�+
1 (Ag) �+

2 (Bg) �+
1 (Ag) �+

2 (Bg)
CoO 60 K M = (0,My,0) M = (Mx,0,Mz) M = (0,My,0) M = (Mx,0,Mz)

Mx 0 4.38(2) 0 4.70(3)
My 1.23(3) 0 1.63(3) 0
Mz 0 4.50 (2) 0 3.21(4)
Mtot 1.23(3) 4.06 (1) 1.63(3) 3.85(2)
Rmag 94.7 7.34 87.5 26.2
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TABLE II. Magnetic models of MnO at 70 K. Monoclinic C2/m with km = (0 1 0.5)m leads to better fits. The directions �+
1 (Ag) and �+

2 (Bg)
are practically indistinguishable in the powder diffraction pattern. However, the �+

1 (Ag) model is selected because the magnetic symmetry
must differ with respect to the NiO �+

2 (Bg) model.

R-3m, km = (0 0 1.5)m C2/m, km = (0 1 0.5)m

�+
2 (A2g) �+

3 (Eg) �+
1 (Ag) �+

2 (Bg)
MnO 70 K M = (0,0,Mz) M = (Mx,My,0) M = (0,My,0) M = (Mx,0,Mz)

Mx 0 3.90(2) 0 4.65(2)
My 0 0 4.12(1) 0
Mz 3.01(2) 0 0 4.03(5)
Mtot 3.01(2) 3.90 (2) 4.12(1) 4.07(1)
Rmag 25.3 14.9 8.25 5.90

as shown in Fig. 4. It confirms the C2/m monoclinic structure
that was already reported by high-resolution synchrotron
x-ray-diffraction [16] and x-ray-tomography measurements
[23]. Next, while avoiding the twin-domain problem, we
clarify the �+

2 (Bg) magnetic structure in CoO. As discussed
in [16], the usual neutron powder diffractometer, which has
poorer resolution than synchrotron x-ray diffraction, gives
similar fitting results for the km=(0.5 0.5 0) and (0 1 0.5)
magnetic propagation vector. The high-resolution neutron
powder diffractometer distinguished these models as given
in Table I. Also exchange striction rules out km=(0.5 0.5 0)
physically since it gives the same Co-Co distance for antipar-
allel and parallel spins. However, the monoclinic distortion of
MnO and NiO is too small to be detected with the current
resolution of diffractometers [6,63]. Practically, tiny structural
distortions such as 10−4–10−5 Å are ignored, but any infinitely
small distortions can change order-parameter direction and
symmetry. Order-parameter direction and symmetry affect
continuous or discontinuous phase-transition, order-parameter
coupling, and domain populations whereas order-parameter

amplitude distinguishes whether it is a dominant effect or
not for phase transition [1,2]. These very tiny distortions
within current diffractometer resolution cause unexpected
discontinuous phase transition on simple ferromagnetic Ni,
Fe, and Co [63,64]. This is the reason why we are concerned
with monoclinic structure on MnO and NiO even though
we could not find monoclinic peak splitting experimentally.
Fortunately, neutron tomography [19] and neutron spherical
polarimetry [12] have determined the NiO spin to be in the
[1 1 −2]p direction in a pseudocubic setting, which indicates
the �+

2 (Bg) spin direction [6]. Experiments have determined
that MnO undergoes a discontinuous phase transition [31–
33,35,36,42], whereas NiO undergoes a continuous phase
transition [34,36,37,39,41]. Because MnO must have a dif-
ferent order-parameter direction and symmetry with respect
to NiO, MnO has only one remaining choice, which is the
�+

1 (Ag) spin direction [6]. This is also consistent with the
group-subgroup family tree with the quenched orbital moment
(L ≈ 0). Moreover, the �+

1 (Ag) spin direction corresponds to
the [1 1 0]p direction in the pseudocubic setting, as suggested

FIG. 5. Diffraction patterns and Rietveld analysis of MnO (left), CoO (middle), and NiO (right) above and below the Néel temperature.
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FIG. 6. Lattice constants and magnetic moments for MnO, CoO, and NiO. The vertical dashed line marks the MnO, CoO, and NiO
antiferromagnetic transition at TN = 118, 300, and 525 K, respectively, as determined by neutron diffraction. An antiferromagnetic transition
induces a structural phase transition from cubic Fm-3m to monoclinic C2/m, in which the monoclinic angle deviates from the initial monoclinic
angle β0 = cos−1(− 1√

3
) ∼ 125.2644◦, which corresponds to the horizontal line.

by recent mPDF analysis of total neutron scattering [8]. We
compared crystal and magnetic models for CoO, MnO, and
NiO in Tables I and II and [6]. Finally, we choose the magnetic
model for Rietveld analysis on temperature dependence, i.e.,
MnO is �+

1 (Ag) whereas CoO and NiO are �+
2 (Bg), as shown

in Fig. 5. Detailed Rietveld results are given in [65].

B. Spin-direction-dependent magnetoelastic coupling

We demonstrate the temperature dependence of the lattice
constant and magnetic moment for MnO, CoO, and NiO as

shown in Fig. 6. For the paramagnetic Fm-3m cubic phase,
an alternative monoclinic setting gives an initial monoclinic
angle β0 = cos−1(−1/

√
3) ≈ 125.2644◦ with zero magnetic

moment M . Increasing the ordered magnetic moment M

causes the monoclinic angle to vary as β = β0 ± �β. Since
monoclinic angle variation is a common structural order
parameter for MnO, CoO, and NiO, we investigate order-
parameter coupling between monoclinic angle β and poly-
nomials in magnetic moment M as shown in Fig. 7. Then, we
choose the most suitable polynomials by checking the linear

FIG. 7. Monoclinic angle β as a function of nth-order magnetic moment Mn (n = 2, 3, 4). The vertical dashed line marks the initial
monoclinic angle β0 = 125.2644◦. A straight solid line is to guide the eye. MnO shows β ∼ M2 whereas CoO and NiO show β ∼ M3.
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FIG. 8. Spin-direction-dependent magnetoelastic coupling in
TMOs (MnO, CoO, and NiO). There are two magnetic structure,
�+

1 (Ag) = (0,My,0) and �+
2 (Bg) = (Mx,0,Mz) spin directions, in

C2/m with magnetic propagation vector k = (0 1 0.5)m. An order-
parameter vector diagram demonstrated monoclinic angle β vs the
nth-order magnetic moment Mn. MnO, CoO, and NiO are represented
by red squares, blue circles, and green diamonds, respectively.
Error bars are smaller than the symbol size. Inset: Expanded view
of phase-transition points near β0. Initial monoclinic angle β0 =
125.2644◦ is derived from the paramagnetic cubic Fm-3m phase.
The antiferromagnetic-ordered moment M induces simultaneously
a monoclinic distortion β = β0 ± �β. MnO is characterized by
the �+

1 (Ag) spin direction, with �βM2(n = 2) order-parameter
coupling and a discontinuous phase transition. CoO and NiO are
characterized by the �+

2 (Bg) spin direction, �βM3(n = 3) order-
parameter coupling, and a continuous phase transition. The straight
line is to guide the eye.

relation. Finally, the order-parameter vector diagram is shown
in Fig. 8.

Figure 8 and Table III classify the TMOs into two
groups and show the spin-direction-dependent magnetoe-
lastic coupling. MnO belongs to the first group, which is
characterized by a quenched orbital moment (L ≈ 0), a
normal stress induced by the �+

1 (Ag) spin direction, a �βM2

order-parameter coupling, and a discontinuous phase transi-
tion. Conversely, CoO and NiO belong to the second group,
which is characterized by an unquenched orbital moment L �≈
0, a shear stress induced by the �+

2 (Bg) spin direction, a �βM3

order-parameter coupling, and a continuous phase transition.
To facilitate easy comparison of these two groups, we consider
monoclinic C2/m with initial β0 instead of cubic Fm-3m as the
high-symmetry phase. In conventional crystallography (i.e.,

FIG. 9. Co–O bonds in C2/m. Six Co–O bonds split into two
Co–OIP bonds within the my(a–c) mirror plane and four Co–OOP

bonds outside the my(a–c) mirror plane.

with neither 1* rotation-reversal symmetry nor 1′* rotation-
time-reversal symmetry), monoclinic-angle deviation �β is
invariant, whereas the �+

1 (Ag) and �+
2 (Bg) magnetic moments

are variant under the 1′ time-reversal-symmetry operation.
More precisely, the paramagnetic point symmetry is G0

= 2/m1′={1,2y,−1,my,1′,2′
y,−1′,m′

y} = H + H1′, where H

is the index-2 subgroup of G0. The �+
1 (Ag) and �+

2 (Bg)
magnetic structures have H1 = 2/m = {1,2y,−1,my} and
H2 = 2′/m′ = {1,2′

y,−1,m′
y} point symmetry, respectively. In

this case, the Landau free energy is approximated by expanding
the order-parameter polynomial up to fourth order in the
monoclinic-angle deviation �β and the magnetic moment M .
Each term in the free-energy polynomial must be invariant
under the 1′ time-reversal-symmetry operation:

F = F0 + a2(�β)2 + a3(�β)3 + a4(�β)4 + b2M
2 + b4M

4

+ c1(�β)M2 + c2(�β)2M2 + · · · . (3)

In this scenario, all TMOs have �βM2 order-parameter
coupling. Under the Landau condition [1,2] of cubic-invariant
(�β)3, all TMOs are expected to undergo a discontinuous
phase transition. In addition, the discontinuous phase transi-
tions are expected on the basis of the renormalization-group
theory [28–30]. However, experimentally, CoO and NiO with
a �+

2 (Bg) magnetic structure have continuous phase transitions
with the unusual order-parameter coupling �βM3, which is
forbidden by 1′ time-reversal symmetry.

Because CoO exhibits a larger monoclinic distortion than
MnO and NiO, high-resolution neutron powder diffraction pro-
vides data to support a detailed discussion of order-parameter
coupling and the phase-transition mechanism for CoO as
shown in Figs. 9–11. For the phase-transition mechanism,

TABLE III. TMO phase-transition characteristics. Spin direction, ratio L/S, stress type, order-parameter coupling, and phase-transition
type. Ratio L/S with orbital moment L and spin moment S is from [59].

TMO Spin direction L/S Stress induced by spin direction Coupling Phase transition

MnO �+
1 (Ag), M = (0,My,0) 0.00(2) Normal �β ∼ M2 Discontinuous

CoO �+
2 (Bg), M = (Mx,0,Mz) 0.95(3) Shear �β(εoct) ∼ M3 Continuous

NiO �+
2 (Bg), M = (Mx,0,Mz) 0.34(1) Shear �β ∼ M3 Continuous
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FIG. 10. CoO spin angle and bond distortion. (a) CoO spin angle as a function of temperature. The initial spin angle θ0 = cos−1(1/3) ≈
70.5288◦. At a low temperature, we determined the spin angle precisely with a larger monoclinic distortion than around TN = 300 K. The solid
line from θ to the initial θ0 is to guide the eye. (b) Six Co–O bonds split into two Co–OIP bonds within the my mirror plane and four Co–OOP

bonds outside the my mirror plane in C2/m. (c) CoO6 octahedral distortion εoct as a function of temperature. (d) Octahedral distortion εoct as a
function of �β, showing the linear relationship experimentally. Because CoO lattice parameter b and c remain almost the same over the entire
temperature range (as shown in Fig. 6), the octahedral distortion εoct ≈ d|�β|, where d is the Co–O bond length in the initial cubic Fm-3m

lattice. Derivation process of εoct ≈ d|�β| is given in the Appendix.

two scenarios are proposed: classical magnetostriction [16,44]
and a Jahn-Teller distortion [9,11,42,47]. Co–O bonds within
CoO6 octahedra spilt into two short Co–OIP bonds within
the my mirror plane and four long Co–OOP bonds outside
the my mirror plane, as shown in Fig. 9. The classical
magnetostriction theory [44] suggests that Co spins are
parallel to the short Co–O bonds in the I4/mmm tetragonal
structure, which corresponds to a spin angle θ ∼ 36◦ in C2/m.
However, as shown in Fig. 10(a), high-resolution time-of-flight
neutron-diffraction experiments at 20 K reveal a Co spin angle
θ ∼ 64◦, which is far from the direction of the short Co–OIP

bond in comparison with the small angle of the monoclinic dis-
tortion of OOP–Co–OOP of about 0.018◦ from I4/mmm [44].

To discuss magnetoelastic coupling in detail, we show
octahedral distortion as a function of magnetic moment in CoO
in Fig. 11. The CoO6 octahedral distortion εoct is defined by

εoct =
√√√√1

6

6∑
i=1

[(Co − Oi) − 〈Co − O〉]2 ≈ d|�β|. (4)

Thus, εoct is proportional to the variation �β in the
monoclinic angle according to the monoclinic-lattice condition
b ≈ c in the Appendix. The quantity d is the Co–O bond
length in the cubic phase. To fit the entire range shown
in Fig. 11, we use εoct = aMn with n = 2, 3, 4. The
n = 2 case clearly deviates from experimental data so the
Fcouples ∼ εoctM

2 free-energy coupling term (i.e., the Jahn-

Teller distortion term) is negligible [66]. The second-lowest
coupling term Fcouples ∼ ε2

octM
2 implies that εoct is linear in

M . This coupling term is also negligible by simple inspection.
Between n = 3 and 4, the case n = 3 leads to the best fit
with a = 1.73(2) × 10−4 Å/μ3

B near the Néel temperature. In
the inset to Fig. 11, εoct is linear in M3. Far from the Néel
temperature, εoct deviates from linearity because, probably, the
effect of order-parameter saturation affects M more rapidly
than εoct [67]. If we interpret εoct ∼ M3 as the higher-order
parameter-coupling term Fcouples ∼ ε2

octM
6 instead of as the

lower-order parameter-coupling term Fcouples ∼ εoctM
3, then

the higher-order term M6 will cause a clear discontinuous
phase transition in the order-parameter vector diagram as
shown in Fig. 8. Therefore, the expansion of Fcouples ∼ εoctM

3

with a lower-order free-energy term is more reasonable than
with the higher-order term Fcouples ∼ ε2

octM
6. In this case, CoO

would reflect the free-energy coupling term Fcouples ∼ εoctM
3,

in which the odd-power magnetic moment is forbidden by 1′
time-reversal symmetry.

To understand this unusual order-parameter coupling and
the continuous phase transition in the �+

2 (Bg) magnetic
structure of CoO and NiO, we apply the effective roto vector
symmetry to the variation β = β0 ± �β in the monoclinic
angle. As shown in Fig. 2(d), the �+

2 (Bg) spin direction can
be changed with the variation β = β0 ± �β, whereas the
�+

1 (Ag) spin direction remains fixed. �+
1 (Ag) spin direction

and �β are geometrically orthogonal whereas �+
2 (Bg) and

064429-8
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FIG. 11. The magnetoelastic coupling εoct ∼ M3 in CoO. Gray
circles show CoO octahedral distortion εoct as a function of Co
magnetic moment MCo. The solid curve is a fit over the entire range
shown using an nth-order polynomial fit εoct = aMn. The parameter
a is only a fitting parameter, whereas n is fixed. The fit with n = 2
(red dashed curve) clearly deviates from the data. The fit with n = 3
(solid curve) with a = 1.73(2) × 10−4 Å/μ3

B gives the best fit near the
phase transition rather than the fit with n = 4 (blue dashed curve). The
free energy Fcouple ∼ εoctM

3 is forbidden by time-reversal symmetry
1′ but allowed by rotation-time-reversal symmetry 1′*, as discussed
in the text. Inset: The octahedral distortion εoct is linear in M3. Error
bars are smaller than the symbol size.

�β are inside the same mirror plane. In contrast to �+
1 (Ag),

�+
2 (Bg) spin direction induces effective roto symmetry in

�β. In other words, �β has 2*/m* roto-vector symmetry,
whereas the �+

2 (Bg) = (Mx,0,Mz) spin alignment has 2′/m′
spin-vector symmetry. Instead, of a separate description of
the roto vector R and spin vector S, we express their
symmetry together by 2′*/m′* using 1′* rotation-time-reversal
symmetry breaking. Specifically, the paramagnetic point

TABLE V. Character table of the TMO order parameter in DASG.
For MnO, the invariant coupling term is �βM2. For CoO and NiO,
the invariant coupling term is �βM3. Because �β for MnO has
total symmetry �0, MnO undergoes a discontinuous phase transition
dictated by the Landau condition of the invariant cubic polynomial
term [2].

2/m1′∗ 1 2y −1 my 1′∗ 2′∗
y −1′∗ m′∗

y Order-parameter

�0 1 1 1 1 1 1 1 1 �βMn

�+
1 (Ag) 1 1 1 1 −1 −1 −1 −1 MMn

�+
2 (Bg) 1 −1 1 −1 −1 1 −1 1 MCo, �βCo, MNi, �βNi

symmetry is G0 = 2/m1′* ={1,2y,−1,my,1′∗,2′∗
y ,−1′∗,m′∗

y }
= H + H1′*, where H is the index-2 subgroup of G0 and
is given by H = 2′*/m′* = {1,2′∗

y ,−1,m′∗
y }. The monoclinic

angle �β and the magnetic moment M merge into a single irrep
A = (�β,M) with respect to the 1′* rotation-time-reversal
symmetry. In this case, the Landau free energy is given by

F = F0 + a′
2A

2 + a′
4A

4 + · · ·
= F0 + a2M

2 + a4M
4 + a2(�β)2 + a4(�β)4+c1(�β)M

+ c2(�β)M3 + c3(�β)2M2 + c4(�β)3M + · · · . (5)

This Landau free energy leads to a �βM3 coupling and
a possible continuous phase transition for CoO and NiO, as
shown in Fig. 8. Because εoct is linear in �β as a result of
the monoclinic lattice condition b ≈ c in CoO, we can replace
�β by εoct to finally obtain εoct ∼ M3 in Fig. 11. Breaking
the 1′* rotation-time-reversal symmetry thus explains why
this magnetoelastic coupling εoct ∼ M3 is possible in CoO
and why the phase transition in CoO and NiO differs from
the MnO discontinuous phase transition within experimental
resolution. We compare two equivalent magnetic structure
descriptions between breaking time-reversal symmetry and
breaking rotation-time-reversal symmetry in Table IV when
the distribution of effective roto-vector properties is followed
by spin distribution. When we consider the magnetoelastic

TABLE IV. Breaking of time-reversal symmetry 1′ and rotation-time-reversal symmetry 1′* in the double antisymmetry space group
(DASG). We exchange atomic positions to match the DASG table format. Here, atomic positions are given by TM 2d (0 0.5 0.5) and O 2a

(0 0 0) in the DASG table [4,5]. The distribution of the roto vector R follows the spin vector S distribution because we consider the situation
where the spin vector induces the roto vector. We activate the phase transition from the paramagnetic phase to the antiferromagnetic phase
by breaking time-reversal symmetry 1′ and rotation-time-reversal symmetry 1′*. The categories represent how this space group is derived
from the conventional space group [4]. In addition, we denote the DASG symbol and space-group number with the point symmetry for the
transition-metal (TM) position from the DASG table [5].

Symmetry breaking Paramagnetic SG �+
1 (Ag): (0, My , 0) �+

2 (Bg): (Mx , 0, Mz)

1′ Category 2 Category 3 Category 3
Q1′ = Q + Q1′ Q(H ) = H + (Q − H )1′ Q(H ) = H + (Q − H )1′

Q = C2/m Q = C2/m,H = C2/m Q = C2/m,H = C2/c
C2/m1′ (No. 242) C(1, 1′, 1′)2′/m (No. 509) C(1, 1′,1′)2/m′ (No. 512)

TM 2/m1′ TM 2/m TM 2′/m′

1′* Category 8 Category 11 Category 11
Q1′∗ = Q + Q1′* Q(H )H = H + (Q − H )1′* Q(H )H = H + (Q − H )1′*

Q = C2/m Q = C2/m,H = C2/m Q = C2/m,H = C2/c
C2/m1′∗ (No. 4505) C(1, 1′∗, 1′∗)2′∗/m (No. 7154) C(1, 1′∗, 1′∗)2/m′∗ (No. 7157)

TM 2/m1′* TM 2/m TM 2′∗/m′*
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coupling and phase-transition problem beyond magnetic struc-
ture, rotation-time-reversal-symmetry breaking can explain
not only �+

1 (Ag)’s linear-quadratic magnetoelastic coupling
and discontinuous phase transition but also �+

2 (Bg)’s linear-
cubic magnetoelastic coupling and continuous phase transi-
tion. Finally, we choose the situation of breaking rotation-
time-reversal symmetry in MnO, CoO, and NiO. In this case,
point symmetry of the crystal and magnetic order parameter is
summarized in Table V. Still, Landau free energy of �+

1 (Ag)
is given by the same Eq. (3).

V. CONCLUSION

�+
1 (Ag) and �+

2 (Bg) spin directions lead distinguished
order-parameter coupling �β ∼ M2 and M3, discontinuous
and continuous phase transitions, respectively, for MnO, CoO,
and NiO. For the CoO phase-transition mechanism, classical
magnetostriction and Jahn-Teller distortion are denied by
precise spin direction and the magnetoelastic coupling εoct ∼
M3 which is forbidden by time-reversal symmetry. We apply
rotation-time-reversal symmetry to explain order-parameter
coupling and continuous phase transition in the �+

2 (Bg)
spin direction of CoO and NiO. We introduced a type
of magnetostriction, i.e., dipolar magnetostriction and roto
magnetostriction. Our experimental result and interpretation
succeed to explain the long-standing problem of spin direc-
tions and the phase-transition mechanism in transition-metal
monoxide. Moreover, this is experimental evidence of general
symmetry of the magnetic moment that magnetic moment and
static structural distortion can belong to the same irreducible
representation, which was impossible under time-reversal
symmetry. This experimental discovery opens a way to find
the physical phenomena which was prohibited by time-reversal
symmetry but allowed by rotation-time-reversal symmetry in
condensed matter physics.

ACKNOWLEDGMENTS

We are grateful to Masahiro Shioya, Katsumi Shimizu, and
Takashi Muroya for their technical support at the SuperHRPD
beamline at the Materials and Life Science Experimental
Facility, J-PARC. The neutron-diffraction experiments using
SuperHRPD were carried out under S-type project with
Proposal No. 2014S10.

APPENDIX: CoO6 OCTAHEDRAL DISTORTION

The initial alternative monoclinic C2/m settings for cubic
Fm-3m are

a0 =
√

6d, b0 =
√

2d, c0 =
√

2d, α = γ = 90◦,

β0 = cos−1

(
− 1√

3

)
≈ 125.2644◦. (A1)

Next, antiferromagnetic order induces a monoclinic distor-
tion whereby each lattice constant deviates by x = x0 ± �x

from their initial value of x0. To begin, we derive the
relationship between the lattice constant and the deviation in
monoclinic angle using trigonometric functions and differen-
tiation:

cos(β) = cos(β0 + �β)

≈ cos(β0) − sin(β0)�β = − 1√
3

−
√

2√
3
�β, (A2)

diff

(
cos(β) = − c

a

)

− sin(β0)�β = −a0�c − c0�a

a2
0

, (A3)

�a√
6

= �c√
2

−
√

2d�β,

The initial cubic phase includes six Co–O bond lengths,
being d split into two short Co–OIP bonds with bond length
dIP within the my (a–c) mirror plane and four long Co–OOP

bonds with bond length dOP outside the my (a–c) mirror plane
in C2/m. Co–OOP bonds with bond length dOP are derived
from the distance between the positions of Co (0 0 0) and OOP

(0 0.5 0.5) with the approximation d � �b,�c:

dOP =
√

(0.5b)2 + (0.5c)2

= 0.5
√

(
√

2d + �b)2 + (
√

2d + �c)2

≈ d + 1

2
√

2
(�b + �c). (A4)

In addition, the Co–OIP bond with bond length dIP can be
derived from the distance between Co (0 0 0) and OIP (0.5 0
0.5) by considering the limit d � �b,�c and Eqs. (A2) and
(A3). The result is

dIP =
√

(0.5a)2 + (0.5c)2 + 2(0.5a)(0.5c) cos(β)

= 0.5

√√√√(
√

6d + �a)2 + (
√

2d + �c)2 + 2(
√

6d + �a)(
√

2d + �c)

(
− 1√

3
−

√
2√
3
�β

)

≈ d + 1√
2
�c − 3

√
2

2
d�β. (A5)

In C2/m, the mean Co–O bond length dmean is given by

dmean = 4dOP + 2dIP

6

≈ d + 1

3
√

2
(�b + 2�c) −

√
2

2
d�β. (A6)

We calculate the octahedral distortion εoct as follows:

dOP − dmean =
√

2

2
d�β + 1

6
√

2
(�b − �c), (A7)

dIP − dmean = −
√

2d�β + 1

3
√

2
(�c − �b), (A8)
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εoct =
√

4(dOP − dmean)2 + 2(dIP − dmean)2

6
. (A9)

When the CoO monoclinic lattice parameters b and c are
almost the same over the entire temperature, as shown in

Fig. 6, the CoO6 octahedral distortion εoct is proportional to
the variation �β in the monoclinic angle, as shown by the
experimental results reported in Fig. 10(d), and as given by

εoct ≈ d|�β|. (A10)
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