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Thermally driven spin torques in layered magnetic insulators
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Thermally driven spin-transfer torques have recently been reported in electrically insulating
ferromagnet|normal-metal heterostructures. In this paper, we propose two physically distinct mechanisms for
such torques. The first is a local effect: out-of-equilibrium, thermally activated magnons in the ferromagnet,
driven by a spin Seebeck effect, exert a torque on the magnetization via magnon-magnon scattering with coherent
dynamics. The second is a nonlocal effect which requires an additional magnetic layer to provide the symmetry
breaking necessary to realize a thermal torque. The simplest structure in which to induce a nonlocal thermal
torque is a spin valve composed of two insulating magnets separated by a normal metal spacer; there, a thermal
flux generates a pure spin current through the spin valve, which results in a torque when the magnetizations of
the layers are misaligned.
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I. INTRODUCTION

The growing field of spin caloritronics [1] complements the
electrical control of spin current with a new experimental bias:
temperature gradient. In contrast to electrical biasing, which
couples to the electron charge, transport by the application of
a thermal flux is possible for neutral carriers. If, for example,
a temperature gradient is applied to a magnetic insulator, a
net flow of angular momentum, carried by thermally activated
spin-wave excitations, results [2]. When integrated into larger
structures, magnonically-active elements open the possibil-
ity of new effects and devices based on thermally driven
transport [3].

One such effect is that of a thermal spin-transfer torque
at a normal-metal|insulating ferromagnet interface, which has
been recently observed [4] via the modulation of ferromagnetic
resonance linewidth. Thermally driven magnetic dynamics
were predicted [5–7] and reported [8] for conducting ferromag-
netic layers, where the spin-transfer torque can be provided by
spin-polarized electric current injected into the magnetic layer
by an interfacial spin-dependent Seebeck effect [9]. In contrast,
for an insulating ferromagnetic layer, spin-transfer torque can
arise only from a thermally driven pure spin current mediated
by ferromagnetic magnons. A general framework, describing
the interplay between magnon transport and the ferromagnetic
order-parameter dynamics, however, has been lacking.

In this paper, we provide an account of the physics of
thermal magnon-mediated spin-transfer torques arising in
normal-metal (N)|insulating-ferromagnet (F) heterostructures,
building on the formalism developed in our previous works
[10,11]. In Sec. II, we construct a local mechanism, which
utilizes SU(2) symmetry breaking of an anisotropic F to
couple thermally activated magnons to the spin-density order
parameter. In conjunction with the spin Seebeck effect, this
engenders a thermally driven torque in F. Reference [12]
similarly addresses the issue of a thermally induced torque at
an N|F interface; while the mechanism therein relies on phonon
drag at the interface, ours is routed in the interfacial exchange
interaction. In Sec. III, we investigate a nonlocal mechanism,
where the SU(2) symmetry is structurally broken. The simplest
example of this is an F|N|F trilayer, in contact with normal-
metal leads that serve as reservoirs of angular momentum.

A thermomagnonic flux passing through the ferromagnetic
components results in a spin accumulation in the normal-metal
spacer, which exerts a torque on the ferromagnetic layers,
in close analogy with a traditional electronic spin valve. For
both mechanisms, we obtain the change in magnetic damping
in linear response to a temperature gradient and consider
magnetic dynamics induced beyond linear response.

II. LOCAL MECHANISM

For illustrative purposes, we discuss the local mechanism
for thermal spin-transfer torque in the simplest possible
structure: an N|F bilayer. A spin current entering F (assumed to
form a single domain) through the N|F interface is comprised
of two orthogonal, physically distinct components. The first is
the spin current collinear with the spin density order parameter
unit vector n, with n taken to be spatially uniform in the
thin film limit; physically, this current arises from thermal
fluctuations and on the F side is transported by magnons. The
second current, which is orthogonal to n and linear in n × μ′
(where μ′ is the spin accumulation in N along the interface)
and ṅ, gives rise to the spin-transfer torque on n [13]. In the
presence of a temperature gradient across the N|F interface,
a spin current of the first kind flows, which results in the
buildup of a thermally induced spin accumulation in N along
the interface. Crucially, this spin accumulation is collinear
with the order parameter n and therefore cannot produce a
spin-transfer torque on n. A temperature gradient maintained
across an N|F interface cannot exert a spin torque on F in the
absence of SU(2) symmetry breaking.

A thermal spin torque on n in an N|F structure (Fig. 1)
therefore requires an SU(2) symmetry breaking anisotropy by
the F layer itself, which is not explicitly provided by Ref. [4].
In the simplest case, which we consider here, this is provided
by local uniaxial anisotropy. The ferromagnetic Hamiltonian
is

Ĥ =
∫

d3x

(
− A

2s
ŝ · ∇2ŝ + Hŝz + K

2s
ŝ2
z

)
. (1)

Here, A is the exchange stiffness, s is the saturation spin
density (in units of �), and K is the anisotropy constant
(in units of energy), which is easy plane when K > 0 and
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FIG. 1. (a) Schematic for the N|F bilayer. An interfacial temper-
ature drop δT drives spin current into F, which is absorbed by the
magnons. (b) Magnon scattering processes, opened when the spin
density order parameter n is misaligned with the F broken-symmetry
axis z. The annihilation of one finite k (thermal) magnon and the
corresponding creation of two robs n of � of angular momentum in
the z direction, resulting in a damping torque; the inverse process
generates an antidamping torque. Wavy lines represent ϕ̂ magnons,
while straight represent � magnons.

easy axis when K < 0. The spin density operator ŝ consists
of a coherent piece 〈ŝ〉 = s̃n around which the spin density
fluctuates incoherently: δŝ = ŝ − 〈ŝ〉. These fluctuations are
composed of magnons, which reduce the effective spin density
to s̃ = s(1 − nx/s), where nx is the thermal magnon density.
The anisotropy couples the thermal cloud and n, allowing
for an exchange of angular momentum between the two via
the scattering of thermal magnons. The local mechanism
for the thermally driven torque works as follows: When
a temperature gradient is applied across the N|F interface,
angular momentum is driven into the normal cloud by the
spin Seebeck effect. The out-of-equilibrium cloud relaxes the
excess angular momentum to the order parameter via this
coupling, thereby exerting a torque on n.

1. Scattering

Using the Holstein-Primakoff transformation, the spin
density may be mapped to boson field operators �̂(x) and
�̂†(x) [14]:

ŝz = �̂†�̂ − s, ŝ−(x) =
√

2s − �̂†�̂�̂, (2)

where ŝ± = ŝx ± iŝy and [�̂(x),�̂†(x′)] = δ(x − x′). It is
convenient to decompose �̂ into � = 〈�̂〉, corresponding
to a coherent condensate magnon, and ϕ̂, which describes
fluctuations around �:

�̂(x) = � + ϕ̂(x) . (3)

The quanta of ϕ̂ are incoherent magnons, each of which
carry angular momentum −�n ≈ �z; For our purposes, these
magnons are thermally activated, so that the thermal magnon
cloud density is given by nx = 〈ϕ̂†ϕ̂〉. Writing � ≡ √

nce
−iφ ,

which plays the role of the condensate wave function, the total
average angular momentum in the z direction becomes �〈ŝz〉 =
�(nx + nc) − �s. Using Eq. (2) to compute the remaining
components of 〈ŝ〉 = s̃n, one identifies φ as the azimuthal
angle between n and the x axis; we assume that nc + nx 	 s,
so that the condensate density nc, which parametrizes the

misalignment of n with −z, can be written as nc ≈ (s̃/2)θ2,
with θ as the polar angle between them (see Fig. 1).

Expanding Eq. (2) in �̂†�̂/s and inserting Eq. (3) generates
terms of various powers of ϕ̂ and �, which divide into
two classes: ϕ̂ magnon number conserving and noncon-
serving. In the absence of driving, the former terms relax
the thermal magnon distribution fk ≡ 〈ϕ̂†

kϕ̂k〉 (with ϕ̂k =∫
d3xeik·xϕ̂/

√
V and V as the volume of F) towards a

Bose-Einstein profile: fBE(εk) = 1/[eβ(εk−μ) + 1] with a well-
defined magnon temperature T = 1/β (in units of energy) and
chemical potential μ. The magnon spectrum εk = Ak2 + U is
shifted by the Hartree-Fock mean-field potential U = �	 +
2Knc/s, where �	 = H − K(1 − 2nx/s). The relaxation
time associated with these processes depends on both the
exchange and anisotropy terms in Eq. (1). Focusing on high
temperatures (T 
 �	), the exchange mechanism dominates,
and the relaxation time is fast [10]; we shall therefore
suppose that the thermal magnon cloud is parametrized by
T and μ, even in the presence of driving. In addition, in
equilibrium Gilbert damping establishes μ = 0, while inelastic
spin-preserving magnon-phonon scattering fixes the magnon
temperature to that of the phonons. Because the former type
of magnon-lattice interaction relies on spin-orbit coupling, it
is generally weaker than the latter; in this spirit, we shall
suppose that the magnon temperature always remains pinned
to that of the phonon temperature, while μ may be driven from
its equilibrium value.

The spin torque on n arises from terms in Ĥ that break
ϕ̂ magnon number conservation. The exchange interaction,
which is independent of n by SU(2) symmetry, does not
contribute. However, when n is misaligned with the z axis,
anisotropy generates a contribution to Ĥ,

Ĥcx(n) = (K/s)�∗
∫

d3xϕ̂†(x)ϕ̂(x)ϕ̂(x) + H.c., (4)

opening a magnon scattering channel that redistributes z

angular momentum between the thermal cloud and order
parameter: two ϕ̂ magnons are annihilated (created), creating
(annihilating) one φ̂ magnon and one � magnon. Because
the total z-angular momentum carried by the spin density
is conserved by rotational symmetry, the corresponding loss
(gain) of �z angular momentum by the thermal magnon
cloud is compensated by the absorption (emission) of angular
momentum by �, which is translated as an antidamping
(damping) spin torque on n. The resulting scattering rate at
which angular momentum is transferred between the thermal
cloud and the order parameter is obtained by Fermi’s golden
rule and given by [15]:


 = 2η(�ω − μ)nc = �ṅx |cx = −�ṅc|cx. (5)

Here, fi = fBE(εki
), �ω ≡ �	 + Knc/s is the precessional

frequency of n around −z, and η is given by:

η = (K/s)2

T (2π )5

∫
d3k1

∫
d3k2

∫
d3k3δ(k1 − k2 − k3)

× δ(�ω + εk1 − εk2 − εk3 )(1 + f1)f2f3, (6)

which can be written as: η = η̄I , where η̄ ≡ (T/Tc)3(K/T )2,
Tc = As2/3 approximates the Curie temperature, and I is
a dimensionless integral that depends on (μ − U )/T and
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�ω/T . According to Eq. (5), when μ = �ω, the thermal cloud
and order parameter are in equilibrium, corresponding to an
entropic maximum of the closed magnetic subsystem of F.

2. Driven magnetic dynamics

At zero temperature, the thermal cloud is absent, and the
dynamics of the order parameter of F are described by the
Landau-Lifshitz-Gilbert phenomenology:

(1 + αn×)�ṅ + n × H = (α′
i + α′

rn×)(μ′ × n − �ṅ), (7)

where H = (H + Kz · n)z is comprised of the applied field
H and the anisotropy field Kz · n, and α is the bulk Gilbert
damping of F, describing the flow of angular momentum
from n to the lattice. The quantities α′

r and α′
i describe

angular momentum transfer with the normal metal N and
are the real and imaginary parts of g↑↓/4πsdF , where g↑↓
is the spin-mixing conductance at the interface and dF is
the thickness of F. In general, the spin accumulation μ′ must
be self-consistently determined by complementing magnetic
dynamics with a treatment of spin transport in N; we shall
circumvent this inessential complication by taking N to be a
good spin sink, so that the spin accumulation is electrically
tunable (by, e.g., the spin Hall effect) independently of the
temperature gradient [16] and chosen to be along the z axis:
μ′ = μ′z. Provided H − K > 0, the equilibrium (μ′ = 0)
solution to Eq. (7) is n = −z.

At finite temperatures, the scattering by the thermal cloud
of magnons modifies the order parameter dynamics, and
the coefficients α′

r and α′
i acquire temperature dependent

corrections ∼nx/s. The temperature dependent magnon gap
�	 must be positive (which we will assume through the
remainder of Sec. II) for n = −z (nc = 0) to be a stable
equilibrium in the absence of driving. Here, it is convenient to
recast Eq. (7) as a rate equation for nc, to which the scattering
rate 
 is phenomenologically added; denoting α′

r = α′, and
neglecting higher order terms in the α’s, one has, for small
angle dynamics (θ 	 1):

�ṅc = 2α′μ′nc − 2(α + α′)�ωnc − 
 , (8)

where the first two terms on the right-hand side follow from
Eq. (7), while 
 is given by Eq. (5). Equation (8) can be recast
back as a finite-temperature Landau-Lifshitz-Gilbert equation
(valid for small angle dynamics):

(1 + αn×)�ṅ + n × H̃ = α′n × (μ′ × n − �ṅ) + τ l , (9)

which is one of the central results of this paper. Here, τ l =
ηn × (μ × n − �ṅ) is the local spin torque, with μ = μz, and
H̃ = [�	 + K(1 + z · n)]z.

Complementing the dynamics of the order parameter,
Eq. (8), is that of the thermal cloud. In response to a
spin accumulation μ′ and/or a temperature gradient, angular
momentum in the −n direction is driven into (out of) F
and absorbed (emitted) by the thermal cloud, creating an
out-of-equilibrium chemical potential μ > 0 (< 0). For fixed
magnon temperature, the rate of change of the chemical
potential resulting from these biases may be obtained from
the total rate equation for the thermal-cloud density:

�ṅx = μ̇∂μnx = j‖/dF − Gdμ/dF + 
 . (10)

In the first term on the right-hand side, j‖ is the current injected
from N across the interface, which in linear response is given
by

j‖ = G(μ′ − μ) + SδT . (11)

The quantities [11,17] G ∼ g↑↓(T/Tc)3/2 and S ∼ G are the
temperature-dependent interfacial magnon conductance and
spin Seebeck coefficients, which are both proportional to
g↑↓; δT = T ′ − T is the difference between the electron
temperature T ′ and magnon temperature T . The second term
on the right-hand side of Eq. (10), parametrized by Gd ∼
α, describes the Gilbert damping of thermal-cloud angular
momentum into the F lattice, which, in the absence of driving
by N, relaxes μ to zero.

Together, Eqs. (8) and (10) form a closed set of coupled
equations for the condensate density nc and the thermal cloud
chemical potential μ. Separating the “fast” dynamics of the
thermal magnons from the “slow” dynamics of the order
parameter, we solve Eq. (10) for the magnon steady-state
condition ṅx = 0 to obtain a chemical potential μ = (SδT +
Gμ′ + 2ηnc�ωdF )/(Gd + G + 2dF αnc).

3. Ferromagnetic resonance linewidth

Focusing on behavior near equilibrium (μ′ = δT = μ =
nc = 0), Eq. (8) may be written as �ṅc = 2αtot�ωnc, where
αtot = α + α′ + η − (α′μ′ + ημ)/�ω is the total damping
of n, and η is evaluated in equilibrium (μ = nc = 0).
To lowest order in nc, μ = (SδT + Gμ′)/(Gd + G), which
when inserted into Eq. (8) yields αtot = α + α′ + η + �αμ′ +
�αT , governing the relaxation of nc. The contribution
�αμ′ = −[α′ + η/(1 + Gd/G)](μ′/�	) consists of the zero-
temperature term ∝ α′ and the thermal enhancement ∝ η. The
change in damping resulting from a temperature gradient,

�αT = −η
S

Gd + G

δT

�	
, (12)

is due to the thermal magnons in its entirety and is one of
the central results of this paper. The sign of Eq. (12) can be
understood from the fact that when δT is positive, magnons
carrying spin in the +z direction are injected into F, reducing
the damping of n (�αT < 0). Both �αμ′ and �αT can be
deduced from ferromagnetic resonance measurements.

4. DC-pumped magnon condensates

Finite-angle dynamics of n may be excited upon the
application of a sufficiently large spin accumulation and/or
temperature gradient. This was the subject of Ref. [10], in
the limit in which the condensate and cloud are strongly
coupled (η → ∞). There, when F is in normal phase (nc = 0),
μ < �	 is determined from the steady state condition ṅx = 0,
as in Sec. II 3; when F is in condensate phase (nc > 0), the
Bose-Einstein gas of thermal magnons becomes saturated
(μ = �	), and nc is determined from the steady state condition
ṅc = 0. Together, Eqs. (8) and (10) represent a generalization
of Ref. [10] to finite cloud-condensate coupling, with the
structure of the phase diagram determined by the steady-state
solutions for μ and nc to the joint condition ṅc = ṅx = 0. In
the strong condensate-cloud coupling regime (η 
 α,α′), the
phase diagram of Ref. [10] is reproduced. More generally,
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FIG. 2. Phase diagram for F|N bilayer corresponding to the
stable solutions to the coupled Eqs. (8) and (10), demonstrating
normal phase, Bose-Einstein condensation (BEC), and swasing (μ′ >

�	[1 + (α + η)/α′]). Here we have taken η = α/2 = α′/2, K = �	,
T = 102

�	, and s(A/�	)3/2 = 104. When μ > �	 (below the phase
transition), the thermal cloud is oversaturated. (See Ref. [10].)

the cloud chemical potential must overcome a threshold μc =
[1 + (α + α′)/η]�	 − α′μ′/η in order to realize a steady-state
condensate; thus, the cloud may become oversaturated, with
μ > �	 [18], but damping by the lattice and N relaxes
angular momentum of the condensate more quickly than it
is replenished by cloud-condensate scattering when μ < μc,
so that F remains in normal phase. The corresponding phase
diagram is shown in Fig. 2, with the terminology borrowed
from Ref. [10].

III. NONLOCAL MECHANISM

The second mechanism for thermal spin-transfer torque
relies on the presence of an additional ferromagnetic layer to
provide the SU(2) symmetry breaking required to realize a
torque on n. Let us now consider the simplest such structure:
a spin valve, composed of two ferromagnet layers (one free
and one fixed) separated by a normal metal spacer, as depicted
in Fig. 3. In a conducting spin valve, electrical or thermal
biasing generates a two channel spin current, [7,19] carried by
electrons parallel and antiparallel to the order parameter in the
magnetic layers, which exerts a torque on the free layer.

In our electrically insulating structure, thermal biasing
(applied perpendicularly to the plane) generates a pure spin
current that is single channel, carried through the ferromag-
netic layers by magnons; this current results in a nonlocal
torque on the free magnetic layer order parameter n as a
consequence of the misalignment of the free and fixed layers.
Slonczewski [20] has proposed a similar scheme. There, a heat
current is converted into a spin current via a ferrite layer, which
is coupled to a paramagnetic monolayer by superexchange;

free layer spacer 

x
y

z

n

z

φ
θ

nx

δT

lead  

δT δT δT

fixed layer lead 

αl αs αlαsμ

FIG. 3. Thermally biased spin valve. A heat flux drives spin
accumulation μ′ (in the plane defined by n and z) into the normal
metal spacer. When free layer spin density is misaligned with the
z axis, μ′ is no longer collinear with n, and the component of μ′

perpendicular to n provides a torque.

spin current is subsequently transferred to the conduction
electrons of a spacer and ultimately to a free magnet. In
contrast, our proposal relates the thermal spin flux directly to
the spin-mixing conductance, a readily measurable quantity,
circumventing the need for a paramagnetic monolayer.

The spin valve we consider is a five layer structure (N-
lead|free-F|N-spacer|fixed-F|N-lead), the mirror symmetry of
which is broken by the fact that the pinned layer is fixed
(e.g., by exchange biasing) with spin density oriented in the
−z direction. For simplicity, we assume all of the transport
coefficients for the free and fixed layers to be identical.
In equilibrium, the free layer is oriented either parallel or
antiparallel to the fixed layer. In order to maximize the
efficiency of spin transport across the structure, let us assume
that the thickness dF of each of the (monodomain) ferromagnet
layers is much shorter than the thermal magnon diffusion
length. Likewise, we take the normal-metal spacer thickness
ds to be much shorter than the electronic spin diffusion length
therein, which may be accomplished by using a poor spin sink
(e.g., Cu). In contrast, let us for simplicity assume that the
normal-metal leads attached to the ferromagnets are excellent
spin sinks, such as Pt, so that no spin accumulates inside them.
Spin transport between the magnetic layers and the spacer
(s) is parametrized by the spin-mixing conductance g

↑↓
s and

between F and the leads (l) by g
↑↓
l .

In response to a temperature gradient applied across the
structure, a spin current of magnons flows through the mag-
netic layers, resulting in a spin accumulation μ′ in the normal
metal spacer. By symmetry, when the magnetic moments of
the two ferromagnetic layers are parallel, μ′ vanishes; for
all other orientations, μ′ builds up in the plane defined by
n (the free layer spin density order parameter) and z (the
fixed layer). When the two magnetic layers are misaligned, the
spin accumulation exerts a dampinglike nonlocal torque τ nl =
−α′

sn × n × μ′ on the free layer (with α′
s = �g

↑↓
s /4πsdF as

the effective Gilbert damping coefficient due to contact with
the spacer).

Following the approach of Sec. II of separating order
parameter and magnonic timescales and focusing on the latter,
we have the magnon spin current density ji into ferromagnetic
layer Fi , for a fixed orientation of n, is (with i = 1 as the free
layer and i = 2 the fixed layer):

�ṅidF = ji = jl→i + js→i + j̃i , (13)
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where ni is the thermal cloud magnon density in layer i,
jl→i = −Glμi − (−1)iSlδT is the current entering Fi from
the lead, js→i = −Gs(μi + ni · μ) + (−1)iSsδT is the spin
current entering Fi from the spacer, j̃i = −Gdμi is the spin
current lost to Gilbert damping of thermal magnons, μi is
the thermal magnon chemical potential in each ferromagnet,
n1 = n, and n2 = −z. The quantities Gl and Gs are the
magnon conductances of the interfaces of Fi with the leads
(l) and spacer (s), respectively, and Sl and Ss are the spin
Seebeck coefficients of the interfaces of F with the leads and
spacer. While a thorough treatment of spin transport involves
a detailed account of how magnon, phonon, and electron
temperature profiles are established throughout the structure,
we have assumed, for our proof-of-principle calculation, that
the electron/magnon temperature difference δT is the same
across all interfaces (see Fig. 3). The rate of change of the spin
density ρ = DF μ(�/2) (with DF as the Fermi surface density
of states) inside the spacer is:

ρ̇ds = (−n)j1→s + zj2→s , (14)

with ji→s = −js→i . In a steady state of magnon flux, we
require ṅ1, ṅ2, and ρ̇ to vanish, which, employing Eqs. (13) and
(14), yields a closed set of five equations for μ1, μ2, and μ′.
Solving for the latter and inserting into τ nl = −α′

sn × n × μ′
yields the thermally driven torque on n.

In order to characterize linear response and magnetic
dynamics, it suffices to find τ nl near the parallel configuration
of the free and fixed layers (n = −z) and the antiparallel
configuration (n = z). Near the parallel configuration, we
obtain

τ nl ≈ σpδT n × n × z , (15)

where

σp = α′
s

(Gd + Gl)Ss + GsSl

2Gs(Gd + Gs + Gl)
; (16)

near the antiparallel configuration,

τ nl ≈ σapδT n × n × z (17)

where

σap = α′
s

2

(
Ss

Gs

+ Sl

Gd + Gl

)
. (18)

The dynamics of the free layer are captured by the LLG
equation:

(1 + αn×)�ṅ + n × H = −�(α′
l + α′

s)n × ṅ + τ nl , (19)

where we’ve assumed τ l 	 τ nl so that the local torque is
neglected. In order to characterize the small angle dynamics
of the free layer near the poles n = ±z, we parametrize n
by spherical coordinates as above and expand Eq. (19) in θ ,
neglecting for simplicity the local torque τ l . Near the parallel
configuration (θ = 0), we obtain an equation of motion �θ̇ ≈
−εpθ , where εp = αp�	, with αp = α′

l + α′
s + α + �αp as

the total damping and

�αp = σpδT /�	, (20)

as the change in damping near the parallel configuration
resulting from the δT . Near the antiparallel configuration
(θ = π ), �θ̇ ≈ εap(π − θ ), where εap = αap�	̃, with �	̃ =

δT δT

H K

K < 0 H > 0

STO 
P AP 

easy axis 
easy plane 

ap >
0

p >
0

BS 
ll

(easy axis) 

p
>

0

ap >
0

H

−HK

−K

FIG. 4. Phase diagrams for the free layer in the spin valve
for constant K(< 0) and constant H (> 0), showing parallel (P),
antiparallel (AP), bistable (BS), and spin-torque oscillator (STO)
phases.

H + K(1 − 2nx/s) as the magnon gap there, αap = α′
l + α′

s +
α + �αap as the total damping, and

�αap = −σapδT /�	̃ (21)

as the change in damping near the antiparallel configuration. In
order to understand the signs of Eqs. (20) and (21), and hence of
induced torques Eqs. (15) and (17), suppose that δT is negative
so that a heat flux flows from right to left in Fig. 3. Via magnons
in the fixed layer, this heat current is accompanied by a spin
current carrying angular momentum in the +z direction, which
when transferred to the free layer order parameter decreases the
damping in the parallel configuration (�αp < 0) or increases
the damping in the antiparallel configuration (�αap > 0).

Beyond linear response, the spin valve can be driven into
different phases, the boundaries of which are defined by the
planes εp = 0 and εap = 0 in H − K − δT space. When both
εp and εap are positive, the free layer is bistable. When εp is
positive (negative) and εap is negative (positive), the free layer
is stabilized in the −z (+z direction). Last, when both εp and
εap are negative, the dynamics stabilize to a limit cycle with
0 < θ < π , i.e., the magnet is a spin-torque oscillator. The
resulting phase diagram is show in Fig. 4.

IV. CONCLUSION

We have shown how both local and nonlocal thermally
driven spin torques τ l and τ nl may arise in magnet/metal het-
erostructures, which modify the magnetic dynamics [Eqs. (9)
and (19)]. In linear response, these torques manifest in both the
bilayer and spin valve as changes in the damping [Eqs. (12),
(20), and (21)]; at a threshold bias for each structure, the net
effective damping reverses its sign, resulting in finite-angle
dynamics. For the case of the spin valve, the change in the
damping of the free layer, near either orientation, goes as
�α ∼ α′

sδT /�	. When F is sufficiently thin, α′
s becomes

comparable to α, so that a temperature difference δT ∼ �	

results in a change in damping �α that can overcome the
intrinsic Gilbert damping; taking α ∼ 10−4 and using yttrium-
iron-garnet (YIG) magnetic layers with platinum leads, this
is the case when the thickness of F is less than ∼100 nm.
For an F|N bilayer, which relies on the local mechanism,
assuming again that α′ > α, the change in damping goes
as ∼ηδT /�	. Supposing that K ≈ 4πM2

s /s corresponds to
shape anisotropy, and using YIG parameters (with Ms ≈
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150 emu/cm3 as the saturation magnetization), one arrives
at η̄ ≈ 10−6, which may be further enhanced by the factor I .

Our model makes several assumptions. First, we rely on
strong magnon-magnon scattering to thermalize the cloud
of incoherent magnons to a Bose-Einstein profile. At low
temperatures and high driving, the magnons may no longer be
parametrizable by a local chemical potential and temperature.
Additionally, implicit in our treatment is the assumption of
strong inelastic spin-preserving magnon-phonon coupling that
fixes the magnon temperature to that of the phonons, which is
taken to increase in a steplike fashion across the structure.
If the magnon-phonon coupling is not sufficiently strong,
the magnon temperature profile must be determined from an
appropriate theory for the magnon heat transport. Likewise,
in order to make quantitative experimental predictions, a
more detailed account of how heating in the normal metals
establishes a phononic temperature profile across the structure

is necessary. We have exploited the separation of magnonic and
order-parameter dynamical time scales, which may need to be
examined more carefully in practice. Last, the scattering rate
coefficient η depends sensitively on the low-energy magnon
spectrum and inelastic scattering that may not be sufficiently
strong to achieve full thermalization; further work is warranted
to address the problem of the magnon equilibration at the
bottom of the magnon band, for a given material under
consideration. Future efforts may also apply and extend our
approach to the problem of thermal spin torques to new
structures, e.g., more complex multilayers, superlattices, and
antiferromagnets.
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