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Spin transfer torque and dc bias magnetic field effects on the magnetization reversal time of
nanoscale ferromagnets at very low damping: Mean first-passage time versus numerical methods

D. J. Byrne,1 W. T. Coffey,2 W. J. Dowling,2 Y. P. Kalmykov,3 and S. V. Titov4

1School of Physics, University College Dublin, Belfield, Dublin 4, Ireland
2Department of Electronic and Electrical Engineering, Trinity College Dublin, Dublin 2, Ireland
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Spin transfer torque and bias field effects on the magnetization reversal time of a nanoscale ferromagnet
are investigated in the very-low-damping regime via the energy-controlled diffusion equation. That equation is
rooted in a generalization of the Kramers escape rate theory for point Brownian particles in a potential to the
magnetic relaxation of a macrospin. Using the mean first-passage method, the reversal time is then evaluated in
closed integral form for a nanomagnet with the free-energy density given in the standard form of superimposed
easy-plane and in-plane easy-axis anisotropies with the dc bias field along the easy axis. The results completely
agree with those yielded by independent numerical methods.
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I. INTRODUCTION

On account of the spin transfer torque (STT) effect [1–6],
the magnetization of a nanoscale ferromagnet may be altered
by spin-polarized currents because an electric current with spin
polarization in a ferromagnet has an associated flow of angular
momentum [3,7], thereby exerting a macroscopic spin torque.
The phenomenon underpins the novel subject of spintronics
[7,8], i.e., current-induced control over magnetic nanostruc-
tures. Common place applications include very-high-speed
current-induced magnetization switching by reversing the
orientation of magnetic bits [3,9] and using spin-polarized
currents to manipulate steady-state microwave oscillations
[9]. These are maintained via the steady-state magnetization
precession due to STT representing the conversion of dc input
current into an ac output voltage [3]. Now, in STT devices, the
thermal fluctuations cannot be ignored at finite temperatures
because they lead to mainly noise-induced switching at
currents far less than the critical switching current without
noise as well as introducing randomness into the precessional
orbits [10]. This phenomenon has been corroborated by many
experiments (e.g., [11]) demonstrating that STT near room
temperature alters thermally activated switching processes,
which then exhibit a pronounced dependence on both material
and geometrical parameters. Therefore, accurate solutions
of generic STT models at finite temperatures are necessary
both to assess properly such theories and to achieve further
improvements in the design and interpretation of experiments,
particularly due to the manifold practical applications in
spintronics, random access memory technology, and so on.

The archetypal model (Fig. 1) of a STT device is a
nanostructure comprising two magnetic strata labeled the free
and fixed layers and a nonmagnetic conducting spacer. The
fixed layer is much more strongly pinned along its orientation
than the free one. On passing an electric current through the
fixed layer it becomes spin polarized which, as it encounters
the free layer, induces a STT. Thus the magnetization M of the
free layer is altered. Both ferromagnetic layers are assumed to
be uniformly magnetized [3,6]. Although this approximation

cannot explain all observations of the magnetization dynamics
in spin-torque systems, nevertheless many qualitative features
needed to interpret experimental data are satisfactorily re-
produced. Now, the current-induced magnetization dynamics
in the free layer may be described by the Landau-Lifshitz-
Gilbert-Slonczewski equation including thermal fluctuations.
This is simply the Landau-Lifshitz-Gilbert equation [12]
including the STT augmented by a random magnetic field
h(t) so that it becomes a Langevin equation [3,6,7,13], viz.,

Ṁ = −γ [M × (H + h)] + γ

MS
[M × [M × IS]]

+ α

MS
[M × Ṁ]. (1)

Here the random field h(t) is treated as spatially isotropic
Gaussian white noise with the properties

hi(t1) = 0, hi(t1)hj (t2) = 2Dδij δ(t1 − t2), (2)

where the indices i,j = 1,2,3 in Kronecker’s delta δij and hi

correspond to the Cartesian axes X, Y, Z of the laboratory
coordinate system OXYZ, δ(t) is the Dirac-delta function,
D = αkT /(vγμ0MS) is the diffusion coefficient, γ is the
gyromagnetic-type constant, α is a dimensionless damping
parameter, MS is the saturation magnetization, v is the particle
volume, μ0 = 4π × 10−7 J A−2 m−1 in SI units, and kT is
the thermal energy. The overbar means the statistical average
over an ensemble of magnetic moments μ(t) = vM(t), which
all have at time t the same sharp value vM, these sharp
values subsequently being regarded as random variables. The
effective magnetic field H comprising the anisotropy and
external applied fields is defined as

H = − 1

μ0

∂V

∂M
, (3)

where V is the free-energy density of the free layer constituting
a conservative potential. The STT-induced field IS is given by

IS = 1

μ0

∂�

∂M
. (4)
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FIG. 1. Geometry of the problem: A STT device consists of two
ferromagnetic strata labeled the free and fixed layers, respectively,
and a normal conducting spacer all sandwiched on a pillar between
two Ohmic contacts [3,6]. Here I is the spin-polarized current; M
is the magnetization of the free layer; H0 is the dc bias magnetic
field. The magnetization of the fixed layer is directed along the unit
vector eP .

Here, � is the nonconservative potential due to the spin-
polarized current, which is taken in the simplest form as

�(M) = J
kT

vMS
(eP · M). (5)

Here J = bP �I/(|e|kT ) is the dimensionless STT parame-
ter, I is the current which is taken as positive if electrons flow
from the free into the fixed layer, e is the electronic charge, � is
Planck’s reduced constant, and bP is a parameter determined
by the spin-polarization factor P [1]. In tandem with the
magnetic Langevin equation (1), one has the Fokker-Planck
equation (FPE) for the probability density function W (ϑ,ϕ,t)
of orientations of M on the unit sphere, viz., [6,14]

∂W

∂t
= LFPW, (6)

where LFP is the Fokker-Planck operator, which is given
explicitly, e.g., in Ref. [6]. Invariably STT effects on the
magnetization relaxation exist only at low damping, α � 1,
because the magnitude of these effects is governed by the ratio
J/α. For α � 1 the STT term in Eq. (1) does not influence
the reversal process at all because it is negligible compared to
the damping and random field terms. In nanomagnets the most
important region of damping is the very-low-damping (VLD)
range, α � 1, because both experimental and theoretical
estimates suggest small values of α of the order of 0.001–0.1
(see, e.g., Refs. [6,15–17]).

During the last decade, various analytical and numerical
approaches to the calculation of the measurable parameters of
STT devices such as the magnetization reversal (or switching)
time, etc., via the magnetic Langevin and/or Fokker-Planck
equations including STT have been developed [6,7,10,14,18–
30]. These mainly generalize methods originally developed for
zero STT [13,31–36] such as stochastic dynamics simulations
(e.g., Refs. [25–29]) and extensions of the mean first-passage
time (MFPT) method (e.g., Refs. [20,21]) in the Kramers
escape rate theory [37,38]. The generalization of the MFPT
to the magnetic relaxation of macrospins with nonseparable
and nonadditive Hamiltonians in the VLD limit can also be
accomplished [7,18,21,39] just as for point particles and rigid

rotators, where the Hamiltonians are separable and additive
[13,37,38]. Here, the pronounced time separation between
fast precessional and slow energy changes in lightly damped
closed phase space trajectories (called Stoner-Wohlfarth orbits
[7]) at energies near the barrier energy has been exploited
in Refs. [6,7,18,21] to formulate a one-dimensional Fokker-
Planck equation for the energy distribution function essentially
similar to that derived by Kramers [37] in the problem of the
very-low-damping (VLD) noise-activated escape rate from
a potential well. The Stoner-Wohlfarth orbits and steady
precession along such an orbit of constant energy occurs if
the spin torque cancels out the dissipative torque [cf. Eq. (1)].
The origin of the orbits arises from the structure of the
anisotropy potential allowing one to define a nonconservative
“effective” potential with damping- and current-dependent
potential barriers between stationary self-oscillatory states
(limit cycles) of the magnetization and, hence, to estimate
the reversal (switching) time τ between these states via the
MFPT method (for reviews of this method see Refs. [35,38]).
Using this method, it has been demonstrated [18,36] how the
reversal time for spins can be evaluated in the VLD limit
both for zero and nonzero STT. In particular, for zero STT, the
analytic equation for the VLD reversal time has been derived
from the energy-controlled diffusion equation in Ref. [39] via
the MFPT for arbitrary free-energy density V. In particular,
these results have allowed us to treat dc bias field effects in the
magnetization reversal time in nanomagnets [39]. Likewise,
for nonzero STT, the VLD reversal time in nanomagnets has
been evaluated [21a,b] via the MFPT for the nonconservative
potential �, Eq. (5), in the absence of a dc bias field. Here
we shall extend the results of Refs. [21] and [39] treating
simultaneously STT and dc bias field effects in nanomagnets,
when the free-energy potential V of the free layer is given in
the standard form of superimposed easy-plane and in-plane
easy-axis anisotropies [40] [see Eq. (37) below]. As far as the
verification of the MFPT formulas for the reversal time with
nonzero STT is concerned, no comparison with calculations
based on the solutions of the Fokker-Planck equation or on
numerical simulations of the Langevin dynamics has ever been
given. Thus, another purpose of this paper is to demonstrate
that the MFPT approach as applied completely agrees with
these independent methods yielding an accurate description
of STT and dc bias field effects in the magnetization reversal
time of nanoscale ferromagnets.

The paper is arranged as follows. In Sec. II, we give a
short historical overview of application of the MFPT approach
in the escape rate theory in evaluating the reversal time of
the magnetization in nanomagnets for zero STT. In Sec. III,
we present the basic equations describing STT effects in the
stochastic spin dynamics in the VLD regime. In Sec. IV,
we derive in quadratures a general equation for the VLD
reversal time for nanomagnets using the energy-controlled
diffusion equation for spins in substantially the same manner
as for zero STT [39]. Here, we also demonstrate that in the
high-barrier approximation, �E � 1, our result reduces to the
asymptotic solution of Klik and Gunther [34] [Eq. (13) below],
thus reconciling their solution with that from the Kramers
theory. By way of illustration of our general results, which
are valid for an arbitrary free energy, we determine in Sec. V
the VLD reversal time of the free-energy anisotropy potential
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taken in the standard form of superimposed easy-plane and
in-plane easy-axis anisotropies [40]. In Sec. VI, we outline
an independent numerical method of the calculation of the
reversal time via matrix continued fractions. In Sec. VII, we
compare our analytical results obtained via the MFPT with
numerical calculations. Appendixes A–C contain the details
of the calculations.

II. REVERSAL TIME FOR ZERO STT

The reversal or switching time τ , which is the longest
relaxation time of the magnetization, may be defined as the
inverse of the smallest nonvanishing eigenvalue λ1 of the
Fokker-Planck operator in Eq. (6) [32,36]. The reversal time
τ may then be estimated using three different approaches: (i)
Brownian dynamics simulations via the magnetic Langevin
equation (1), (ii) numerical solutions of the Fokker-Planck
equation (6), and (iii) analytical solutions of Eqs. (1) and
(6) such as those yielded by escape rate theory, the MFPT
method, etc. (for a review see Ref. [36]). These complementary
approaches allow one to evaluate τ over wide ranges of
temperature, damping, etc. In particular, numerical methods
and escape rate theory are very useful for the determination of τ

at low and high potential barriers, respectively. However, they
have considerable limitations: for example, escape rate theory
cannot be used at low barriers, �E � 1, while numerical
methods encounter substantial computational difficulties in
the VLD range, α � 1.

The magnetic Langevin equation (1) with zero STT,
i.e., at � ≡ 0, was originally used by Brown [32,33] for
the theoretical treatment of the magnetization reversal in
magnetic nanoparticles. His primary objective was to securely
anchor Néel’s conjectures [31] concerning the nature of the
superparamagnetic relaxation of single-domain ferromagnetic
particles within the framework of the theory of stochastic pro-
cesses. In particular, Brown [32,33] found damping-dependent
correction factors for the magnetization reversal time τ in
magnetic nanoparticles originally calculated by Néel [31] via
transition-state theory (TST) as

τ ∼ τTST = f −1
A e�E. (7)

Here fA is the so-called attempt frequency associated with
the gyromagnetic precession frequency of M in the potential
well A and �E is the dimensionless (normalized by the thermal
energy kT) potential barrier. We recall that the TST reversal
time τTST is independent of damping and represents the lower
bound of τ because all dissipation to the bath is ignored
in that time [36]. The Néel-Brown theory is in effect an
adaptation of the Kramers theory [37,38] originally given for
point Brownian particles to magnetization relaxation governed
by a gyromagneticlike equation. Hence, the verification of that
theory in the nanomagnet context nicely illustrates the Kramers
conception of a thermal relaxation process over a potential
barrier arising from the shuttling action of the Brownian
motion. In his earliest calculations of the reversal time of the
magnetization in magnetic nanoparticles, Brown [32] confined
himself to uniaxial nanomagnet subjected to a dc external
magnetic field H0 applied along the easy (here Z) axis of the

magnetization, where the free-energy density is given by

V (ϑ) = −K(cos2ϑ + 2h cos ϑ). (8)

Here K is an anisotropy constant and h = μ0MSH0/(2K) is
the external field parameter. In this axially symmetric situation,
since no dynamical coupling between the longitudinal and the
transverse modes of motion exists, the longitudinal relaxation
is governed by a single state variable, namely, the polar angle ϑ

of M. The second state variable, namely, the azimuthal angle ϕ

gives rise only to a steady precession of M. By recognizing this
fact, Brown obtained from Eq. (6) a Fokker-Planck equation
in ϑ only, viz. [32],

∂W

∂t
= 1

2τN sin ϑ

∂

∂ϑ

[
sin ϑ

(
∂W

∂ϑ
+ vW

kT

∂V

∂ϑ

)]
, (9)

where τN = (1 + α2)/(2γ 2D) is the free diffusion time of the
magnetization. Equation (9) has the form of the Smoluchowski
equation for the overdamped rotation of the Brownian particle
in a liquid [13]. However, in contrast to that equation, Eq. (9)
for spins is valid for all values of the damping parameter α

including the VLD range because it follows from the axial
symmetry of V (ϑ) and not from the overdamped rotational
Brownian motion. For axially symmetric potentials, Brown
[32] and others (see Ref. [36] for a review) have developed
various techniques such as variational methods, MFPT, etc., for
the calculation of the reversal time of uniaxial nanomagnets.
As an example, we mention Brown’s well-known high-barrier
asymptotic formula for the reversal time, which at h = 0
becomes in the VLD limit [32]

τVLD
as = τTST

4α
√

πσ

(
1 + 1

σ
+ · · ·

)
, (10)

where τTST = πμ0MSe
σ /(Kγ ) and σ = vK/(kT ) is the

dimensionless barrier height parameter.
In the context of the MFPT approach, the magnetization

reversal time τVLD of a uniaxial nanomagnet can be evaluated
via an equation for the MFPT τ (ϑ), viz. [13,35,38],

L†
FPτ (ϑ) = −1, (11)

with the appropriate boundary condition. Here L†
FP is the

adjoint Fokker-Planck operator associated with Eq. (9). The
MFPT is the average time needed to reach the barrier point
C for the first time from a starting point ϑ inside the initial
potential well (domain of attraction). In particular, for V (ϑ)
from Eq. (8) with h = 0, i.e., when V (ϑ) is a symmetric
bistable potential with minima at ϑ = 0 and ϑ = π and a
maximum at ϑ = π/2, the MFPT τVLD from the minimum A
at ϑA = π to reach the barrier point C at ϑC = π/2 is given
by the exact analytic equation [13,35]

τVLD = vμ0MS

αγ kT

∫ π

π/2

e−σcos2ϑ

sin ϑ

∫ π

ϑ

eσcos2ϑ ′
sin ϑ ′dϑ ′dϑ

= vμ0MS

2αγ kT

√
π

σ

∫ 0

−1

[erfi(
√

σ ) − erfi(z
√

σ )]e−σz2

1 − z2
dz,

(12)
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where

erfi(x) = 1√
π

∫ x

0
et2

dt

is the imaginary error function. For high barriers, σ � 1, the
MFPT τVLD from Eq. (12) is closely approximated by Brown’s
asymptotic equation (10).

The calculation of the MFPT of nanomagnets in the VLD
range via the Fokker-Planck equation (6) for nonaxially
symmetric free-energy potentials V (ϑ,ϕ), even at zero STT,
is very complicated due to the mathematical difficulties
encountered, which arise because more than one space variable
is involved. Nevertheless, the VLD magnetization reversal
time τVLD was evaluated via the MFPT by Klik and Gunther
[34] in the high-barrier limit, �E � 1. They derived, via the
MFPT originally developed for point particles by Matkowsky
et al. [41], the magnetization reversal time from an individual
well A over a saddle point C with a single escape path for
nonaxially symmetric free-energy densities V (ϑ,ϕ), viz. [34],

τVLD
as = τTST

αSEC

. (13)

Here τTST is the TST reversal time given by Eq. (7) and
SEC

is the dimensionless action at the saddle-point energy EC

given by

SEC
= v

kT

∮
E=EC

(
1

sin ϑ

∂V

∂ϕ
dϑ − sin ϑ

∂V

∂ϑ
dϕ

)
. (14)

The contour integral in Eq. (14) is taken along the critical
energy trajectory, or separatrix, on which the magnetization
may reverse by passing through the saddle point C. The critical
energy is the energy required by a spin to just escape the
well and the separatrix delineates the bounded precessional
motion in the well from that outside it. In the VLD regime,
the system is only very lightly coupled to the bath so that the
energy loss per cycle of the almost-periodic noisy motion of the
magnetization on the saddle-point energy (escape) trajectory
is much less than the thermal energy, αSEC

� 1, so that
τVLD

as � τTST for VLD [39]. Everywhere the tacit assumption
is made that the separatrix lies infinitesimally near to the
closed noiseless and undamped trajectory with the energy
EC . We remark that like point Brownian particles, in the
escape rate problem as it pertains to spins three regimes of
damping appear [36–38], where each one arises as a direct
consequence of the particular asymptotic method involved
in the solution of the Fokker-Planck equation, namely, VLD
αSEC

� 1, intermediate-to-high damping (IHD) αSEC
� 1,

and a more or less critically damped turnover range αSEC
∼ 1.

In each range, the damping dependence of the escape rates,
reversal time, etc., differ substantially. Furthermore, the VLD
reversal time for spins [Eq. (13), etc.] can be obtained [39]
from the energy-controlled diffusion equation just for point
particles. The interested reader can find a detailed discussion
and appropriate formulas in Refs. [13,36–39].

The methods of evaluating the reversal time originally
developed for zero STT can be generalized to take into account
STT effect [21]. In the VLD limit, the calculations can be
accomplished using the energy-controlled diffusion equation
and the MFPT [7,39] as follows.

III. ENERGY-CONTROLLED DIFFUSION EQUATION
IN THE VLD REGIME

The dynamics of the magnetization M in the presence of
the STT may be very different from those with zero STT.
In particular, due to the STT the Gilbert damping torque
may be overcome so that the reversal of the magnetization
becomes possible in the absence of thermal fluctuations. As
far as the joint action of the STT and thermal fluctuations are
concerned, the overall situation, albeit more complicated, is
in some way reminiscent of that occurring in the resistively
shunted junction (RSJ) model of a Josephson junction which
is an electric analog of the motion of a Brownian particle
in a tilted periodic potential [13,42,43]. Now just as the bias
current in the junction, which constitutes a nonconservative
electrical source giving rise to the motion in a tilted cosine
periodic potential, ensures that the stationary distribution
is no longer the Boltzmann distribution, in like manner
the stationary distribution of magnetization orientations in a
ferromagnet subjected to spin-polarized current is no longer a
Boltzmann one. Rather it depends both on the spin-polarized
current and damping analogous to the dependence of the
stationary distribution in the RSJ model on the bias current (or
tilt) parameter. Moreover, the damping and external current
parameters now govern the reversal time so that the effect of
the STT may be as much as several orders of magnitude [6].

As we have already mentioned in the Introduction, the
stochastic spin dynamics in the VLD limit (which is the case
of our interest) may be described via the energy-controlled
diffusion equation for spins derived by Apalkov and Visscher
[18] and others [6,7,19]. By analogy with Kramers’ derivation
[37] of the energy-controlled diffusion equation for point par-
ticles, one may parametrize the instantaneous magnetization
direction M = M(E,φ) by the slow dimensionless energy
variable E = vV/(kT ) and the fast phase variable φ [7]: In
the VLD limit, the energy varies very slowly compared to
φ. For the slightly damped precession in the presence of the
random field h(t) with white noise properties given by Eq. (2),
the Langevin equations for the random variables E and φ can
be written as [7] (see Appendix A)

dE

dt
= F1 + (g1 · h), (15)

dφ

dt
= F2 + (g2 · h), (16)

where

F1(E,φ) = − vαμ0

γ kT MS
|Ṁpr|2 + vμ0

kT MS
(IS · [M × Ṁpr]),

(17)

F2(E,φ) = 2πfE

[
1 − γMS

|Ṁpr|2
(IS · Ṁpr)

]
, (18)

g1(E,φ) = 2πvμ0fE

kT

∂M
∂φ

, (19)

g2(E,φ) = −2πvμ0fE

kT

∂M
∂E

. (20)
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Here fE is the frequency of the precession in the potential
well at a given energy E, which can be calculated explicitly via
the corresponding precession period PE = 1/fE by taking a
closed line integral along a Stoner-Wohlfarth orbit of constant
energy E, viz. [7],

PE = γ −1
∮

E

([H × M] · dM)

|[H × M]|2 .

Furthermore, Ṁpr in Eqs. (15) and (16) must be understood
in the purely conservative sense as

Ṁpr = γ [H × M]. (21)

Equations (15) and (16), which are the Langevin equations
with multiplicative noise interpreted in the Stratonovich sense
[13,43], describe the precession of the magnetization subject to
weak damping and STT torques and weak thermal fluctuations.

Apalkov and Visscher [18] and others [6,7,19,39] were
then able to derive, via the Langevin equations (15) and
(16), the Fokker-Planck equation for the probability density
function W (E,φ,t) in energy-phase space [see Eq. (A17)
in Appendix A]. Since in the VLD regime, the energy E

diffuses very slowly over time, i.e., is almost constant, while
in contrast, the phase φ varies rapidly, the φ dependence may
be eliminated. This is accomplished by averaging W (E,φ,t)
along a closed trajectory of the energy ultimately yielding
the energy-controlled diffusion equation for the probability
density function W (E,t) in energy space, viz. [7,18] (see
Appendix A for detail),

∂W

∂t
= α

∂

∂E

[
SE

(
1 + ∂

∂E

)
fEW

]
− ∂

∂E
(VEfEW ), (22)

where the dimensionless action SE and the dimensionless work
VE done by the STT are given by

SE = vμ0

γ kT MS

∫ 1/fE

0
|Ṁpr|2dt, (23)

VE = J

M2
S

∫ 1/fE

0
(ep · [M × Ṁpr])dt. (24)

In the derivation of Eq. (22), it has been also assumed that
the damping parameter α is independent of M. However, the
results may be also generalized to magnetization-dependent
damping α(M) [7]. We remark that SE and VE given by
Eqs. (23) and (24) are closely related to the corresponding
terms in Langevin equation (15) for the energy variable,
namely,

− vαμ0

γ kT MS
|Ṁpr|2 and

vμ0

kT MS
(IS · [M × Ṁpr]);

these terms take into account, respectively, the energy dissipa-
tion due to the damping and the pumping of the energy into
the system due to the spin-polarized current and determine the
magnetization reversal process and Stoner-Wohlfarth orbits for
the steady-state precession of the magnetization [7]. We also
remark that the energy-controlled diffusion equation (22) for
spins is very similar but not identical to that for point Brownian
particles in a potential V (x), viz. [13,37,38],

∂W

∂t
= α

∂

∂E

[
SE

(
1 + ∂

∂E

)
fEW

]
. (25)

The differences lie in the presence of the STT term and in
the definitions of the damping coefficient α and of the action
SE . For point particles, they are α = ζ/m and

SE =
√

2m

kT

∮
E

√
kT E − V (x)dx = m

kT

∫ 1/fE

0
|ẋ|2dt.

Here E = [mẋ2/2 + V (x)]/(kT ) is the normalized energy;
x and m define the position and mass of a particle, respectively;
ζ is the drag coefficient; and fE = ∂E/∂SE is the librational
frequency in the potential well [13]. For zero STT when VE =
0, the energy-controlled diffusion equation (22) for spins has
the same form as Eq. (25) for particles.

IV. REVERSAL TIME IN THE VLD LIMIT

In order to evaluate the magnetization reversal time from
Eq. (22) via the MFPT, we consider an assembly of classical
spins in a potential well with a minimum at point A. In the
true VLD case, αSE � 1, where the energy loss per cycle of a
precessing spin is very much less than the thermal energy, the
energy trajectories diffuse very slowly so that they do not differ
significantly from those of the undamped precessional motion
in a well. Then because of thermal fluctuations, on a noisy
trajectory near the saddle energy the spin may have enough
energy to escape over the potential barrier at the saddle point
C. The energy-controlled diffusion equation for spins, Eq. (22),
represents the continuity equation

∂W

∂t
+ ∂JP

∂E
= 0, (26)

where JP is the probability current. Now, like the Kramers
calculation [37] for particles (see also [38], Sec. II D,
and [39]), we consider the quasistationary solution W0(E)
of Eq. (26). Here with Ẇ0 = 0 and JP (E) = JP = const
representing a steady injected current of spins to replenish
those continually being lost at a saddle point C, we then
find that the quasistationary distribution W0(E) satisfies the
first-order linear differential equation, viz.,

JP = −αSE

(
1 − VE

αSE

+ ∂

∂E

)
fEW0. (27)

Next, considering the behavior of W0(E) at EC and
assuming that W0(EC) = 0, i.e., all spins that reach the barrier
go over, we have the particular solution of Eq. (27) as

W0(E) = JP

αfE

∫ EC

E

1

SE′
e
E′−E−∫ E′

E

V
E′′

αS
E′′ dE′′

dE′. (28)

In order to find the population N in the well A, we integrate
the quasistationary distribution W0(E) over the domain of the
well energy so that

N =
∫ EC

EA

W0(E)dE

= JP

α

∫ EC

EA

e−E

fE

∫ EC

E

1

SE′
e
E′−∫ E′

E

V
E′′

αS
E′′ dE′′

dE′dE. (29)

We then have via the flux-over-population method [38,39]
the characteristic MFPT τVLD = N/JP from a potential well
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with minimum energy EA over the saddle point C, namely,

τVLD = 1

α

∫ EC

EA

e−E

fE

∫ EC

E

1

SE′
e
E′−∫ E′

E

V
E′′

αS
E′′ dE′′

dE′dE

(30)

or after integrating by parts,

τVLD = 1

α

∫ EC

EA

1

SE

e
E− 1

α

∫ E

EA

V
E′′

S
E′′ dE′′

×
∫ E

EA

1

fE′
e
−E′+ 1

α

∫ E′
EA

V
E′′

S
E′′ dE′′

dE′dE. (31)

τVLD is the time to reach a separatrix from the point
A provided that all spins there are absorbed, which is the
boundary condition that W vanishes at E = EC . The inverse
of τVLD also determines the escape rate from the well. We
emphasize that for the calculation of τVLD from Eq. (30) only
a knowledge of the deterministic dynamics is required; i.e.,
SE , VE , and fE in Eq. (30) are always calculated via the
deterministic Larmor equation (21). For zero STT, J = 0,
Eq. (30) can be reduced to Eq. (4.48a) derived by Hänggi
et al. [38] (noting that dE = fEdSE) while Eq. (31) reduces
to that given in Ref. [39].

The quadrature solution, Eq. (31), is valid for all barrier
heights including low barriers. However, in the high-barrier
limit, Eq. (31) can be considerably simplified. Indeed, the
main contribution to the inner integral of Eq. (31) comes
from near the bottom of the well because the negative
exponential dominates the integral in that region. Furthermore,
the precession frequency now satisfies fEA

≈ fA, where fA is
the well precession frequency, which is independent of E in
the paraboloid approximation for the potential near the bottom
of the well. Thus∫ E

EA

1

fE′
e
−E′+ 1

α

∫ E′
EA

V
E′′

S
E′′ dE′′

dE′ 	 1

fA

∫ ∞

EA

e−EdE = e−EA

fA

.

(32)

In contrast, the main contribution to the outer integral of
Eq. (31) comes from the positive exponential factor domi-
nating the integrand near the saddle point C of the potential.
Therefore, noting Eq. (23) and using the approximation SE′ ≈
SEC

, where

SEC
= vμ0

γ kT MS

∫ 1/fEC

0
|Ṁpr|2E=EC

dt

= v

kT M2
S

∮
E=EC

([M × ∇V ] · dM), (33)

we have

∫ EC

EA

1

SE

e
E− 1

α

∫ E

EA

V
E′′

S
E′′ dE′′

dE ≈ e
− 1

α

∫ EC
EA

V
E′′

S
E′′ dE′′

SEC

∫ EC

−∞
eE′

dE′

= 1

SEC

e
EC− 1

α

∫ EC
EA

VE
SE

dE
. (34)

Here the contour integral in Eq. (33) is taken along the
critical energy trajectory on which the magnetization may
reverse by passing through the saddle point C. Using Eqs. (32)

and (34) in Eq. (31) yields Eq. (13), namely,

τVLD
as ∼ e�E

αfASEC

, (35)

where the effective barrier �E, which now depends on both
the spin-polarized current and damping coefficient, is given by

�E = EC − EA − 1

α

∫ EC

EA

VE

SE

dE. (36)

In spherical polar coordinates (er ,eϑ ,eϕ) [44], where u =
M/MS = er , du = eϑdϑ + eϕ sin ϑdϕ, and ∇V = eϑ∂ϑV +
eϕ csc ϑ∂ϕV , SEC

from Eq. (33) becomes Eq. (14). Hence,
for zero STT, Eq. (35) predicts in the low-temperature limit
exactly the same reversal time as Eq. (13) of Klik and Gunther
[34]. In order to evaluate τVLD from Eq. (35), we require only
explicit equations for EA, EC , fA, SE , and VE . The method of
calculation of the precession frequency fA and the well and
saddle energies EA and EC is described in Refs. [13,33,36],
while SE and VE can be calculated analytically or numerically
by solving Eq. (21) as in the zero STT case [39] (see
Appendix B).

V. VLD REVERSAL TIME FOR SUPERIMPOSED
EASY-PLANE AND IN-PLANE EASY-AXIS ANISOTROPIES

By way of practical illustration of Eq. (31), here we
calculate the reversal time of the magnetization for the free-
energy density taken in the standard form of superimposed
easy-plane and in-plane easy-axis anisotropies with the dc
bias field H0 along the easy X axis, viz. [6,40],

E = σ
(
δu2

Z − u2
X − 2huX

)
= σ (δcos2ϑ − sin2ϑcos2ϕ − 2h sin ϑ cos ϕ). (37)

Here σ = vμ0M
2
SD‖/(kT ) is the dimensionless anisotropy

parameter, which can also be regarded as an inverse tem-
perature parameter; h = H0/(2MSD‖) is the external field
parameter; δ = D⊥/D‖ is the dimensionless biaxiality pa-
rameter; while D‖ and D⊥ account for both demagnetizing
and magnetocrystalline effects. We shall also suppose for
simplicity that the unit vector eP , which defines the orientation
of the magnetization of the fixed layer (see Fig. 1), is applied
along the easy (X) axis, so that Eq. (5) for the nonconservative
potential � becomes

� = (JkT /v)uX = (JkT /v) sin ϑ cos ϕ.

In general, the normalized free-energy density E(ϑ,ϕ) from
Eq. (37) has two nonequivalent wells and two equivalent saddle
points (see Fig. 2).

For the biaxial anisotropy potential, Eq. (37), the gyromag-
netic equation (21) can be written in terms of the Cartesian
components (uX, uY , uZ) of the unit vector u = M/MS as

τ0u̇X(t) = δuZ(t)uY (t), (38)

τ0u̇Y (t) = −[(1 + δ)uX(t) + h]uZ(t), (39)

τ0u̇Z(t) = [uX(t) + h]uY (t), (40)
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FIG. 2. Free-energy potential V of the free layer presented in the
standard form of superimposed easy-plane and in-plane easy-axis
anisotropies, Eq. (37).

where a characteristic time τ0 is given by

τ0 = 1

2γMSD‖
= τN

σ (α + α−1)
.

The solutions of Eqs. (38)–(40) are subject to the obvious
constraints of

u2
X + u2

Y + u2
Z = 1, (41)

and energy conservation

ε = δu2
Z − u2

X − 2huX, (42)

where ε = E/σ is the normalized free energy. Equations (38)–
(42) can then be used to calculate Sε, Vε, and fε as explained
in Appendix B.

If |h| < 1, the potential from Eq. (37) has two nonequiv-
alent wells with minima εA = −1 ± 2h at uX = ∓1 and two
equivalent saddle points εC = h2 at uX = −h (see Fig. 2).
Thus, we must define two individual MFPTs, namely, τ+
from the deeper well around the energy minimum at uX = +1
(−1 − 2h � ε � h2) and τ− from the shallow well around
the energy minimum at uX = −1 (−1 + 2h � ε � h2). These
times are unequal in general, i.e., τ+ �= τ−, so that Eq. (31), as
specialized to the potential Eq. (37), becomes

τ± = σ 2

α

∫ h2

−1∓2h

1

S±
ε

e
σε− σ

α

∫ ε

−1∓2h

V
±
ε′

S
±
ε′

dε′

×
∫ ε

−1∓2h

1

f ±
ε′

e
−σε′+ σ

α

∫ ε′
−1∓2h

V
±
ε′′

S
±
ε′′

dε′′
dε′dε. (43)

Here the energy-dependent functions f +
ε , S+

ε , and V +
ε are

given, respectively, by Eqs. (B11), (B10), and (B14) from
Appendix B. For the MFPT τ− from the well around the energy
minimum at uX = −1, S−

ε , V −
ε , and f −

ε can be obtained simply
by replacing h by −h and J by −J in all the equations for
S+

ε , V +
ε , and f +

ε . Thus, we have τ− = τ+(−h, − J ). Now
recalling that τ+ and τ− are related to the corresponding escape
rates from the individual wells via �+ = (2τ+)−1 and �− =
(2τ−)−1 [38] so that the VLD reversal time is given by τVLD =

(�+ + �−)−1, we have

τVLD = 2τ+τ−
τ+ + τ−

. (44)

In the high-barrier limit, we have from Eqs. (35), (B11),
(B10), and (B14) a simple asymptotic equation,

τ± ∼ 1

αf ±
A S±

εC

e
σ (1±h)2− σ

α

∫ εC

ε
±
A

V
±
ε′

S
±
ε′

dε′
, (45)

where

f ±
A = 1

2πτ0

√
(1 ± h + δ)(1 ± h), (46)

S±
εC

= 8δσ

(
1 − h2

1 + δ

){√
1 − h2

δ

+ h√
1 + δ

arctan

[
h√

(1 − h2)(1 + δ−1)

]
± hπ

2

}
.

(47)

In the absence of a dc bias field, h → 0, where

S±
ε |h→0 = 8σ

√
δ − ε[εK(mε) + E(mε)],

V ±
ε |h→0 = ±2πJ

1 + ε√
1 + δ

,

f ±
ε |h→0 =

√
δ − ε

4τ0K(mε)
,

mε = δ(1 + ε)

δ − ε
.

Equation (43) coincides with corresponding equations of
Taniguchi et al. [21a,b]. Here K(m) and E(m) are the complete
elliptic integrals of the first and second kind, respectively [45].

For zero STT, i.e., J = 0, and nonzero dc bias field, the
high-barrier asymptotic equation (45) yields the known results
[32]

τ as
± ∼ eσ (1±h)2

αf ±
A S±

εC

, σ (1 − h)2 � 1. (48)

Furthermore, for zero STT (J = 0) and zero dc bias field
(h = 0), the free energy Eq. (37) is a double-well potential
with two equivalent wells. Therefore, τ+ = τ− = τ , so that the
overall reversal time is then τVLD = τ , which can be written
as the analytic equation

τVLD = τ0σ

2α

∫ 0

−1

eσε
∫ ε

−1
K(mε′ )e−σε′

√
δ−ε′ dε′

√
δ − ε[E(mε) + εK(mε)]

dε. (49)

For δ = 0 (uniaxial anisotropy), we have from Eq. (49),

τVLD = τ0σ

2α

∫ 0

−1

eσε

√−ε(1 + ε)

∫ ε

−1

e−σε′
dε′

√−ε′ dε

= τ0

√
πσ

α

∫ 0

−1

[erfi(
√

σ ) − erfi(z
√

σ )]e−σz2

1 − z2
dz.

(50)
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Equation (50) agrees in all respects with the MFPT τVLD

from Eq. (12). For high barriers, σ � 1, τVLD from Eqs. (49)
and (50) are closely approximated by the known formula
[32,36]

τVLD
as ∼ τ0πeσ

4ασ
√

δ(1 + δ)
(δσ > 0.5), (51)

and Brown’s asymptotic equation (10), respectively.

VI. MATRIX CONTINUED FRACTION SOLUTION

Alternatively, the magnetization reversal time can be
calculated numerically by using the matrix continued fraction
approach [13,46] developed for nonzero STT in Ref. [30a].
The solution of the Langevin equation (1) can be reduced to
the solution of an infinite hierarchy of differential-recurrence
equations for the after effect functions of the statistical mo-
ments (averaged spherical harmonics Yl,m(ϑ,ϕ) [44])cl,m(t) =
〈Yl,m〉(t) − 〈Yl,m〉0 (where 〈Yl,m〉0 are the equilibrium averages
of the statistical moments) governing the magnetization
relaxation of a nanomagnet [30a],

d

dt
cl,m(t) =

∑
l′,m′

el′,m′,l,mcl,m(t), (52)

where el′,m′,l,m are time-independent coefficients; the explicit
formulas for el′,m′,l,m for the problem at hand are given in
Appendix C. A method of derivation of the moment system
Eq. (52) for arbitrary anisotropy and nonzero STT is given in
Ref. [30a]. We remark that Eq. (52) can also be derived from
the Fokker-Planck equation (6) [30a].

The differential-recurrence Eq. (52) for the statistical
moments can always be transformed into the tridiagonal vector
differential-recurrence equation [13,43]

Ċn(t) = Q−
n Cn−1(t) + QnCn(t) + Q+

n Cn+1(t), (53)

where Cn(t) are the column vectors arranged in an appropriate
manner from cl,m(t), and Q±

n ,Qn are matrices with elements
defined via el′,m′,l,m (these column vectors and matrices are
given in Appendix C). The general method of evaluating the
smallest nonvanishing eigenvalue λ1 of the Fokker-Planck
operator from the tridiagonal vector differential-recurrence
equation (53) is described in Chap. 10 of Ref. [43]. Further-
more, as shown in Ref. [46] (see also [13], Chap. 2, Sec.
2.11.2), one can calculate λ1 from the secular or characteristic
equation

det (λI − S) = 0, (54)

where I is the unit matrix and the matrix S is defined in terms
of the matrices Q±

n ,Qn as

S = −[Q1 + Q+
1 �2(0)Q−

2 ][I − Q+
1 �′

2(0)Q−
2 ]−1. (55)

Here �n(s) is the matrix continued fraction defined by the
recurrence equation

�n(s) = [sI − Qn − Q+
n �n+1(s)Q−

n+1]−1,

and the prime designates the derivative of �2(s) with respect to
s. Thus λ1 is the smallest nonvanishing eigenvalue of S yielding
the reversal time of the magnetization τ = 1/λ1. Matrix
continued fractions provide an easy method of computation of

the reversal time via λ1 due to the relatively small dimension of
all the matrices involved in Eq. (55). Here, the primary purpose
of the matrix continued fraction method is to determine the
accuracy of the MFPT equations.

VII. COMPARISON OF ANALYTICAL AND
NUMERICAL RESULTS

We can now compare the reversal time τVLD from
the exact integral solutions of Eqs. (43) and (44) both with the
asymptotic VLD escape rate τVLD

as , Eqs. (45)–(47), and with the
inverse of the smallest nonvanishing eigenvalue λ1 calculated
numerically by the matrix continued fraction method. All
the calculations have been done for damping parameters
corresponding to the true VLD limit, αSEC

� 1 for all values
of the barriers. The spin-polarization factor P selected is
P = 0.3 yielding bP = 4P 3/2/[3(1 + P )3 − 16P 3/2] = 0.166
(P ≈ 0.3 − 0.4 are typical values for ferromagnetic metals
[6]). Furthermore, for D‖ = 0.034, γ = 2.2 × 105 m A−1 s−1,
MS ≈ 1.4 × 106 A m−1 (cobalt), we have τ0 ≈ 4.8 × 10−11 s.

The magnetization reversal time is shown in Fig. 3 as a
function of the anisotropy (inverse temperature) parameter
σ for various spin-polarized current parameters J , damping
parameters α, and dc bias field parameters h and typical
values of the other model parameters. Apparently, τVLD

and λ1
−1 lie very close to each other for virtually all σ .

Furthermore, in the high-barrier limit (large σ ), τVLD
as from the

asymptotic Eqs. (45)–(47) provides an accurate approximation
to both λ1

−1 and τVLD. However, for σ < 5, τVLD
as deviates

considerably from both of these so that it cannot be used
to calculate the reversal time. Clearly, the STT effects are
governed by the ratio J/α so that by altering J/α the ensuing
variation of τ may be as much as several orders of magnitude
[Fig. 3(a)]. Furthermore, τ may greatly exceed or, on the other
hand, be much less than the value pertaining to zero STT
J = 0. Moreover, the increase or decrease in τ is entirely
governed by the direction of the current, i.e., by the sign of J
as indeed expected. The temperature dependence of τ can be
understood via the effective potential barriers�E± in Eq. (45),
namely,

�E± = σ (1 ± h)2 − σ

α

∫ εC

ε±
A

V ±
ε′

S±
ε′

dε′. (56)

Evidently, for large anisotropy parameters, σ > 5, the
temperature dependence of τ has the customary Arrhenius
behavior τ ∼ e�E±

, i.e., exponential increase with decreasing
temperature. Here τ is markedly dependent on the ratio J/α

and the dc bias field parameter h because the barrier height of
the shallow well is strongly influenced by both J/α and h.

VIII. CONCLUSION

We have derived analytic formulas for the magnetization
reversal time of nanomagnets driven by spin-polarized currents
in the VLD range. Our principal result is the general equation
(31) yielding the reversal time via quadratures, which can,
in principle, be evaluated for any anisotropy potential. Yet
another merit of Eq. (31) is that it is valid in parameter
ranges where escape rate equations such as Eqs. (45)–(47)
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FIG. 3. Normalized times τ/τ0, τas/τ0, and 1/(τ0λ1) versus the
anisotropy (inverse temperature) parameter σ for various spin-
polarized currents J (a), damping coefficients α (b), and dc field
parameters h (c). Solid lines: numerical solution for the inverse of
the smallest nonvanishing eigenvalue 1/(τ0λ1) of the Fokker-Planck
operator. Dashed lines: τ/τ0 from the MFPT Eqs. (43) and (44).
Asterisks: the VLD asymptotic, Eqs. (45)–(47).

do not apply at all, e.g., for low barriers. Equation (31) is
also valuable as a benchmark solution with which numerical
calculations of the reversal time from the magnetic Langevin
and/or Fokker-Planck equation in the VLD limit must agree.
As already mentioned, the range of the validity of the results
obtained is defined by the inequality, αSEC

� 1. However,
the asymptotic formula Eq. (35) for the VLD reversal time
may be generalized to a wider damping range as is so for
nanomagnets for zero STT. Indeed, for values of damping up
to intermediate values, α � 1, Coffey et al. [47] have shown

that the Mel’nikov Meshkov formalism [48] for bridging the
VLD and TST escape rates as a function of the dissipation
parameter for mechanical particles can be extended to estimate
the relaxation time of the magnetization of nanomagnets in the
absence of STT. According to Coffey et al. [47], an asymptotic
equation for bridging the magnetization reversal time from a
single well for α � 1 and �E � 1 is given by

τ = τTST

A(αSEC
)
, (57)

where τTST = f −1
A e�E is the TST reversal time, SEC

is the
dimensionless action variable defined by Eq. (14), and A(αS)
is the so-called depopulation factor given by [48]

A(αS) = e
1
π

∫ ∞
0

ln{1−exp[−αS(λ2+1/4)]}
λ2+1/4

dλ
. (58)

Because A(αS) → 1 as αS � 1 and A(αS)/α → S as
α → 0 [48], Eq. (57) transparently reduces to Eqs. (7) and
(35) in the TST and VLD limits, respectively. Furthermore,
for bistable potentials with nonequivalent wells (as treated
here), τ can be evaluated as [13,36]

τ ≈ τTST
+ τTST

− A
(
αS+

EC
+ αS−

EC

)
(τTST+ + τTST− )A

(
αS+

EC

)
A

(
αS−

EC

) . (59)

Equations (57) and (59) are also valid for nonzero STT.
In particular, using the formal definition of the TST reversal
times for two wells, viz.,

τTST
± = 1

f ±
A

e
σ (1±h)2− σ

α

∫ εC

ε
±
A

V
±
ε′

S
±
ε′

dε′
, (60)

and Eqs. (46) and (47), Eq. (57) yields STT and dc bias field
effects on the magnetization reversal time for the anisotropy
potential equation (37) for α � 1 and �E � 1.

ACKNOWLEDGMENTS
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APPENDIX A: DERIVATION OF THE
ENERGY-CONTROLLED EQUATION (22)

In order to transform the magnetic Langevin equation (1)
to the Langevin equations (15) and (16) for the energy E

and phase φ variables, we first notice that the parametrization
M = M(E,φ) is specified by the following relations [7,39]:

∂M
∂φ

= γ

�E

[H × M], (A1)

vμ0

kT

∂M
∂E

= − [M × [H × M]]

|[H × M]|2 , (A2)
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and the equation of motion for E(t) and φ(t) are given by

dE

dt
=

(
∂E

∂M
· Ṁ

)
= −vμ0

kT
(H · Ṁ), (A3)

dφ

dt
= �E

γ

([H × M] · Ṁ)

|[H × M]|2 , (A4)

where �E = 2πfE . Now, substituting Ṁ from Eq. (1) into
Eqs. (A3) and (A4), we have

dE

dt
= vμ0γ

kT
(H · [M × H]) − vαμ0

kT MS
(H · [M × Ṁ])

− vμ0γ

kT MS
(H · [M × [M × IS]]) + γ vμ0

kT
(H · [M × h]),

(A5)

dφ

dt
= �E

[
1 + α

MS

([H × M] · [M × Ṁ])

γ |[H × M]|2

+ ([H × M] · [M × [M × IS]])

MS |[H × M]|2

+ ([H × M] · [h × M])

|[H × M]|2
]
, (A6)

Noticing that the first term in the right-hand side of Eq. (A5)
is zero due to the scalar triple-product definition; noting that
in the VLD regime and for small spin-polarized currents, all
terms of order α2, Jα, J 2, etc., in Eqs. (A5) and (A6) may be
neglected; and using Eqs. (A1) and (A2), we obtain

dE

dt
= − vαμ0

γ kT MS
|Ṁpr|2 + vμ0

kT MS
(IS · [M × Ṁpr])

+ vμ0�E

kT

(
∂M
∂φ

· h
)

, (A7)

dφ

dt
= �E

[
1 − γMS

|Ṁpr|2
(IS · Ṁpr) − vμ0

kT

(
∂M
∂E

· h
)]

. (A8)

The two terms in Eq. (A7) for the energy originate,
respectively, from Gilbert damping and STT terms while the
second term in Eq. (A8) originates from the fact that STT
may have a component along the Stoner-Wohlfarth orbit. The
Larmor term obviously does not contribute to Eq. (A7) while
Gilbert damping drops from Eq. (A8) for φ whose dynamics in
the VLD limit are mostly governed by the uniform precession.
Obviously, Eqs. (A7) and (A8) can be written in the form of
the Langevin equations (15) and (16).

Now the Fokker-Planck equation for the probability density
function W (E,φ,t) corresponding to the Langevin equations
(15) and (16) is formally given in energy and phase variables,
ξ1 = E and ξ2 = φ, by [43]

Ẇ = − ∂

∂E

[
D

(1)
1 W −

∑
j

∂

∂ξj

(
D

(2)
1j W

)]

− ∂

∂φ

[
D

(1)
2 W −

∑
j

∂

∂ξj

(
D

(2)
2j W

)]
, (A9)

where D
(1)
i and D

(2)
ij are, respectively, the drift and diffusion

coefficients defined as

D
(1)
i = Fi + D

(
g1 · ∂gi

∂E

)
+ D

(
g2 · ∂gi

∂φ

)
, (A10)

D
(2)
ij = D(gi · gj ). (A11)

Fi and gi are defined by Eqs. (17)–(20), and the diffusion
coefficient D is defined in Eq. (2). Noting that [7,39](

g2 · ∂g1

∂ξi

)
= −

(
g1 · ∂g2

∂ξi

)
,

and

∂g2

∂φ
= −∂g1

∂E
+ g1

∂ ln �E

∂E
,

we can write the drift and diffusion coefficients Eqs. (A10)
and (A11) as

D
(1)
1 = F1 + ∂|g1|2

∂E
− ∂ ln �E

∂E
|g1|2, (A12)

D
(1)
2 = F2 + ∂

∂φ
|g2|2, (A13)

D
(2)
12 = D

(2)
21 = 0, (A14)

D
(2)
11 = D|g1|2, (A15)

D
(2)
22 = D|g2|2. (A16)

Substituting (A12)–(A16) into Eq. (A9) and noting
Eqs. (17)–(20), we obtain

∂W

∂t
= α

∂

∂E

[
vμ0

γMSkT �E

|Ṁpr|2
(

1 + ∂

∂E

)
�EW

− vμ0

αMSkT
(IS · [M × Ṁpr])W

]

+ ∂

∂φ

[
−�EW + �E

γMS

|Ṁpr|2
(IS · Ṁpr)W

+ vμ0α

γMSkT
�2

E

∣∣∣∣∂M
∂E

∣∣∣∣
2
∂W

∂φ

]
. (A17)

The Fokker-Planck equation (A17), because the two state
variables E and φ are again involved, is difficult to treat.
However, since in the VLD limit on long time scales, fEt � 1,
φ is a fast variable and E is slow and is almost conserved (so
that W (E,φ,t) nearly equilibrates in φ and slowly evolves
in E), the φ dependence in Eq. (A17) can be eliminated by
exploiting the periodicity of W in φ along a precessional
orbit that formally corresponds to averaging W (E,φ,t) over
φ, namely [7,39],

W (E,t) = 1

2π

∫ 2π

0
W (E,φ,t)dφ.
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Thus noting that

vμ0

2πfEγ kT MS

∫ 2π

0
|Ṁpr|2dφ = vμ0

γ kT MS

∫ 1/fE

0
|Ṁpr|2dt

= vμ0

MSkT

∮
E

([H × M] · dM) = SE,

vμ0

2πfEMSkT

∫ 2π

0
(IS · [M × Ṁpr])dφ

= vμ0

MSkT

∫ 1/fE

0
(IS · [M × Ṁpr])dt = VE,

we find that after averaging, Eq. (A17) becomes the energy-
controlled diffusion equation (22) for W (E,t). Here we have
used that dφ = 2πfEdt [7].

APPENDIX B: CALCULATIONS OF S+
ε , V +

ε , AND f +
ε

Because Eqs. (41) and (42) lead to the equality(
uX + h

δ + 1

)2

+ δ

δ + 1
u2

Y = const = p2
ε ,

we can formally introduce a new function u(t) related to
uX(t), uY (t), and uZ(t) via

uX(t) = pεu(t) − h(δ + 1)−1, (B1)

uY (t) = pε

√
(1 + δ−1)[1 − u2(t)], (B2)

uZ(t) = pε

√
δ−1[u(t) − e+][u(t) − e−], (B3)

where

p2
ε = δ − ε

δ + 1
+ h2

(δ + 1)2 ,

e± = − hδ

pε(δ + 1)
±

√
h2 − ε

pε

.

By substitution of uX(t), uY (t), uZ(t) from Eqs. (B1)–(B3)
into Eq. (38), we see that u(t) satisfies the following differential
equation:

du

dt
= pε

τ0

√
(1 + δ)(1 − u2)(u − e+)(u − e−). (B4)

The solution of the differential equation (B4) within the
energy region between the bottom of the well and the saddle
point −1 − 2h � ε � h2, 0 � mε � 1 is [49]

u(t) = aε − sn2(ωεt + w|mε)

aε + sn2(ωεt + w|mε)
, (B5)

where sn(u|m) is Jacobi’s doubly periodic elliptic function
[45,49], w is an integration constant (initial phase), and

aε = 1 + e+
1 − e+

, mε = (1 + e−)(1 − e+)

(1 + e+)(1 − e−)

ωε = pε

2τ0

√
(δ + 1)(1 + e+)(1 − e−).

Now noticing Eqs. (38)–(42) and (B1)–(B3), we can write the dimensionless action S+
ε from Eq. (23) as

S+
ε = 2τ0σ

∫ 1/f +
ε

0

[
u̇2

X(t) + u̇2
Y (t) + u̇2

Z(t)
]
dt

= 2σp2
ε

τ0f +
ε

[
ε(δ + 1) − h2 + 2hpε(δ + 1)f +

ε

∫ 1/f +
ε

0
u(t)dt+(1 + δ − h2)f +

ε

∫ 1/f +
ε

0
u2(t)dt

]
, (B6)

where u(t) is given by Eq. (B5). The integrals in Eq. (B6), namely,
∫ 1/f +

ε

0 u(t)dt and
∫ 1/f +

ε

0 u2(t)dt , can be evaluated as

f +
ε

∫ 1/f +
ε

0
u(t)dt = −1 + 2aεI (1), (B7)

f +
ε

∫ 1/f +
ε

0
u2(t)dt = 1 − 4aεI (1) + 4a2

ε I (2), (B8)

where the integrals I (n) defined as

I (n) = f +
ε

∫ 1/f +
ε

0

dt

[aε + sn2(ωεt + w|mε)]n
(B9)

can be expressed using the table of integrals from Sec. 1.17.1 of Ref. [50] as

I (1) = �(−a−1
ε |mε)

aεK(mε)
,

I (2) = 1

2aε(1 + aε)

[
−1 + E(mε)

(1 + aεmε)K(mε)
+ 1 + 3a2

εmε + 2aεmε + 2aε

(1 + aεmε)aεK(mε)
�

(−a−1
ε |mε

)]
.
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Here K(m), E(m), and �(n|m) are the complete elliptic integrals of the first, second, and third kind, respectively [45]. By
substituting Eqs. (B7) and (B8) into Eq. (B6), we ultimately have the action S+

ε in terms of known functions, viz.,

S+
ε = 2σp2

ε (1 + δ)

τ0f +
ε

{
ε + 2hpε − h2

1 + δ
+ 1 + δ − h2

(1 + δ)(1 + aε)

[
1 − aε + 2aεE(mε)

(1 + aεmε)K(mε)

]

+
[

4hpε − 2
(1 + δ − h2)

(
1 − a2

εmε

)
(1 + δ)(1 + aε)(1 + aεmε)

]
�

(−a−1
ε |mε

)
K(mε)

}
, (B10)

where the precession frequency f +
ε is given by

f +
ε = ωε

4K(mε)
= pε

√
(δ + 1)(1 + e+)(1 − e−)

8τ0K(mε)
. (B11)

(Jacobi’s elliptic function sn(u|m) has the period 4K(m) [45]).
Finally, we can also find V +

ε from Eq. (24) yielding

V +
ε = J

∫ 1/f ±
ε

0
[u̇Z(t)uY (t) − u̇Y (t)uZ(t)]dt, (B12)

which can be rearranged using Eqs. (38)–(42) and (B1) as

V +
ε = J

τ0

∫ 1/f +
ε

0

[
h + (ε + 1)uX(t) + hu2

X(t)
]
dt

= J

τ0f +
ε

[
hp2

ε + pε

(
ε + 1 − 2h2

δ + 1

)
f +

ε

∫ 1/f +
ε

0
u(t)dt + hp2

εf
+
ε

∫ 1/f +
ε

0
u2(t)dt

]
. (B13)

By substituting Eqs. (B7) and (B8) into Eq. (B13), we ultimately have V +
ε in terms of known functions, namely,

V +
ε = J

τ0f +
ε

{
h + h3

(δ + 1)2 − h(ε + 1)

δ + 1
+ pε

(
ε + 1 − 2h2

δ + 1

)[
2
�

( − a−1
ε |mε

)
K(mε)

− 1

]

+ hp2
ε

1 + a−1
ε

[
a−1

ε − 1 + 2
a−1

ε E(mε) − (
a−2

ε − mε

)
�

( − a−1
ε |mε

)
(
a−1

ε + mε

)
K(mε)

]}
. (B14)

APPENDIX C: EXPLICIT FORM OF THE DIFFERENTIAL-RECURRENCE EQUATIONS

For the free-energy density given by Eq. (37) and the nonconservative potential given by Eq. (5) where the magnetization
direction of the fixed layer eP is along the easy (X) axis, a 21-term differential-recurrence relation can be found from Eq. (52) as
described in details in Ref. [30a] and is given by

d

dt
cn,m(t) = v−−

n,mcn−2,m−2(t) + vn,mcn−2,m(t) + v++
n,mcn−2,m+2(t)

+w−−
n,mcn−1,m−2(t) + w−

n,mcn−1,m−1(t) + wn,mcn−1,m(t) + w+
n,mcn−1,m+1(t) + w++

n,mcn−1,m+2(t)

+ x−−
n,mcn,m−2(t) + x−

n,mcn,m−1(t) + xn,mcn,m(t) + x+
n,mcn,m+1(t) + x++

n,mcn,m+2(t)

+ y−−
n,mcn+1,m−2 + y−

n,mcn+1,m−1(t) + yn,mcn+1,m(t) + y+
n,mcn+1,m+1(t) + y++

n,mcn+1,m+2(t)

+ z−−
n,mcn+2,m−2(t) + zn,mcn+2,m(t) + z++

n,mcn+2,m+2(t), (C1)

where

vn,m = − n + 1

2n − 1

√
[(n − 1)2 − m2](n2 − m2)

(2n + 1)(2n − 3)

σ

τN

(
1

2
+ δ

)
,

v±±
n,m = σ

4τN

n + 1

2n − 1

√
(n ∓ m − 3)(n ∓ m − 2)(n ∓ m − 1)(n ∓ m)

(2n + 1)(2n − 3)
,

wn,m = − imσ

ατN

√
n2 − m2

4n2 − 1

(
1

2
+ δ

)
,

w±
n,m = ± 1

τN

√
(n ∓ m)(n ∓ m − 1)

4n2 − 1

{
n + 1

2
σh − J (n + 1)

4α

}
,
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w±±
n,m = ±i

σ

4τNα

√
(n ∓ m − 2)(n ∓ m − 1)(1 + n ± m)(n ∓ m)

4n2 − 1
,

xn,m = −n(n + 1)

2τN
− n(n + 1) − 3m2

(2n − 1)(2n + 3)

σ

τN

(
1

2
+ δ

)
,

x±
n,m = i

τN

√
(n ± m + 1)(n ∓ m)

{
σh

2α
+ J

4

}
,

x±±
n,m = −

√
(n ± m + 1)(n ± m + 2)(n ∓ m − 1)(n ∓ m)

(2n − 1)(2n + 3)

3σ

4τN
,

yn,m = −i
mσ

ατN

√
(n + 1)2 − m2

(2n + 1)(2n + 3)

(
1

2
+ δ

)
,

y±
n,m = ± 1

τN

√
(1 + n ± m)(2 + n ± m)

(1 + 2n)(3 + 2n)

{
nσh

2
− nJ

4α

}
,

y±±
n,m = ∓i

σ

4ατN

√
(1 + n ± m)(2 + n ± m)(3 + n ± m)(n ∓ m)

(1 + 2n)(3 + 2n)
,

zn,m = n

2n + 3

√
[(n + 1)2 − m2][(n + 2)2 − m2]

(2n + 1)(2n + 5)

σ

τN

(
1

2
+ δ

)
,

z±±
n,m = − σ

4τN

n

2n + 3

√
(n + 1 ± m)(2 + n ± m)(3 + n ± m)(4 + n ± m)

(2n + 1)(2n + 5)
.

Equation (C1) is a particular case of a 25-term differential-recurrence relation for a general form of the nonconservative
potential derived in Ref. [30a] with v±

n,m = 0 and z±
n,m = 0.

In order to rewrite Eq. (C1) in the form of the tridiagonal vector differential-recurrence equation (53), we define the column
vectors Cn(t) via cn,m(t) as follows:

C0(t) = 0, Cn(t) =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

c2n,−2n(t)
c2n,−2n+1(t)

...
c2n,2n(t)

c2n−1,−2n+1(t)
c2n−1,−2n+2(t)

...
c2n−1,2n−1(t)

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

, n � 1,

while the matrices Qn,Q+
n ,Q−

n are defined as

Qn =
(

X2n W2n

Y2n−1 X2n−1

)
, Q+

n =
(

Z2n Y2n

0 Z2n−1

)
, Q−

n =
(

V2n 0
W2n−1 V2n−1

)
.

In turn, the matrices Qn,Q+
n ,Q−

n themselves consist of five submatrices Vl , Wl , Xl , Yl , and Zl of dimensions (2l + 1) × (2l −
3), (2l + 1) × (2l − 1), (2l + 1) × (2l + 1), (2l + 1) × (2l + 3), and (2l + 1) × (2l + 5), respectively. The elements of these five-
and three-diagonal submatrices, which are formed from the coefficients occurring in Eq. (C1), are given by

(Vl)n,m = δn−4mv−−
l,−l+m+3 + δn−2mvl,−l+m+1 + δnmv++

l,−l+m−1,

(Wl)n,m = δn−3mw−−
l,−l+m+2 + δn−2mw−

l,−l+m+1 + δn−1mwl,−l+m + δnmw+
l,−l+m−1 + δn+1mw++

l,−l+m−2,

(Xl)n,m = δn−2mx−−
l,−l+m+1 + δn−1mx−

l,−l+m + δnmxl,−l+m−1 + δn+1mx+
l,−l+m−2 + δn+2mx++

l,−l+m−3,

(Yl)n,m = δn−1my−−
l,−l+m + δnmy−

l,−l+m−1 + δn+1myl,−l+m−2 + δn+2my+
l,−l+m−3 + δn+3my++

l,−l+m−4,

(Zl)n,m = δnmz−−
l,−l+m−1 + δn+2mzl,−l+m−3 + δn+4mz++

l,−l+m−5,

where δij is Kronecker’s delta.
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