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A functional renormalization group approach to d-dimensional, N -component, noncollinear magnets is
performed using various truncations of the effective action relevant to study their long distance behavior. With
help of these truncations we study the existence of a stable fixed point for dimensions between d = 2.8 and d = 4
for various values of N focusing on the critical value Nc(d) that, for a given dimension d , separates a first-order
region for N < Nc(d) from a second-order region for N > Nc(d). Our approach concludes to the absence of a
stable fixed point in the physical—N = 2,3 and d = 3—cases, in agreement with the ε = 4 − d expansion and
in contradiction with previous perturbative approaches performed at fixed dimension and with recent approaches
based on the conformal bootstrap program.
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I. INTRODUCTION

Noncollinear—or canted—XY or Heisenberg magnets are
one of the simplest examples of physical systems for which
the order parameter is not a vector, as in the collinear case, but
a second-order tensor, that is, a matrix [1]. As a consequence,
the rotation group is fully broken in the low-temperature
phase. This is particularly clear for the stacked triangular
antiferromagnetic (STA) spin system, since, in the ground
state, the spins on a plaquette exhibit the famous 120◦
structure, which completely breaks the SO(N ) rotation group
with N = 2 or 3. This change of symmetry-breaking pattern
between collinear and noncollinear magnets alters drastically
the critical physics, which is not yet fully clarified despite forty
years of intensive research (see Ref. [1] and references therein).

On the experimental side there is agreement that at the phase
transition, both XY and Heisenberg noncollinear magnets
exhibit scaling laws but with critical exponents differing from
those of the O(N ) model. This has led to two kinds of scenarios:
either the phase transitions belong to a new universality class
[2] or they are weakly of first order [1]. A careful analysis
of the results coming from different materials shows that the
critical exponents vary from one compound to the other and
there is in fact no universality [1]. This tends to confirm the
assumption of weak first-order transitions as do almost all
numerical simulations performed on STA or on similar models
[3–11] but one [12]. However, all these results do not rule out
definitively the possibility that some other systems undergo a
second order phase transition.

On the theoretical side, all approaches agree that in the
vicinity of four dimensions, there exists a line Nc(d) in the
(d,N ) plane above which the transition is of second order and
below which it is of first order. At two loops, Nc(d = 4 − ε) =
21.8 − 23.4ε + O(ε2) [13,14], which shows that perturbative
corrections are large and that it is therefore impossible to
extrapolate reliably this result in d = 3 without computing the
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contributions of higher orders. The perturbative calculation of
Nc(d) either within the ε or pseudo-ε expansion [13–19] or
directly in d = 3 [12,20–23] has been performed up to five or
six loops. The same quantity has also been computed within
the nonperturbative renormalization group (NPRG) approach
[1,24–30].

However, the various results so far obtained do not agree in
particular in the physically interesting N = 2 and 3 cases. On
the one hand, the ε and pseudo-ε expansion and the NPRG ap-
proach both lead to a value of Nc(d = 3) well above 3. Indeed,
Nc(d = 3) = 6.1(6) within the ε expansion at five loops [18],
Nc(d = 3) = 6.22(12) [18] and Nc(d = 3) = 6.23(21) [19]
within the pseudo-ε expansion at six loops and finally Nc(d =
3) = 5.1 within the NPRG approach [1]. Moreover, the NPRG
approach predicts that the transitions are weakly of first order
for N = 2 and 3, accompanied by a nonuniversal scaling
behavior in agreement with both numerical computations and
experiments. On the other hand, perturbative computations
performed at fixed dimension lead to completely different
predictions [12,22,23]. Those performed at six loops within
the zero momentum massive scheme [23] lead to two different
Nc(d = 3): Nc1 and Nc2. Above Nc1 = 6.4(4) there are, as
usual, two fixed points, one stable and one unstable. They
get closer when N is lowered, collide at Nc1 and disappear.
However, below Nc2 = 5.7(3), a stable fixed point reappears
and exists for N = 2 and 3. A second-order phase transition is
therefore predicted for these values of N . A puzzling feature
of this fixed-dimension computation is that it predicts, in
the (d,N ) plane, a curve Nc(d) showing a very unusual S-like
shape around d = 3 or, equivalently, a nonmonotonic curve
dc(N ), the dimension below which, for a given N the transition
is of second order. If true, this would imply that at d = 3, a
second-order transition occurs for low values of N , whereas
at larger values, it would be of first order before being again
of second order. As for computations performed at five loops
within the minimal subtraction (MS) scheme without ε expan-
sion [12], no critical value of N is found in d = 3 and, thus, a
second-order phase transition is predicted for any value of N .

In order to solve the contradiction between the different ap-
proaches, a careful reanalysis of the resummation procedures
used within fixed-dimension calculations has been performed
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in [31–33]. Some very peculiar features have been revealed
by this analysis: lack of convergence of the critical quantities
with the order of the expansion, high sensitivity of the results
with respect to the resummation parameters, existence of the
nontrivial fixed point at and above the upper critical dimension
d = 4, etc. This reanalysis have cast grave doubts upon the
reliability of the fixed-dimension approaches when applied to
noncollinear magnets.

From the results above, it is tempting to believe that
a coherent picture of the critical behavior of noncollinear
magnets has been reached and that the transitions are of (weak)
first order, whereas fixed-dimensions approaches would be not
converged or deficient. However, recently, a new approach,
based on the conformal bootstrap (CB) program (see, for
instance, Ref. [34] and references therein), has been applied to
O(N ) × O(M) models [35,36], the M = 2 case corresponding
to noncollinear magnets. This program when applied to other
systems such as the three-dimensional ferromagnetic Ising
model [37,38] leads to the best determination of the critical
exponents ever obtained. It also has the advantage of being
a priori unbiased by convergence problems since it is not
based on series expansions, contrary to RG methods. As for
the O(N ) × O(M) models, the authors of [36] have found with
the CB approach a stable fixed point for N = 3 and M = 2
in d = 3 with critical exponents in good agreement with the
fixed-dimension perturbative results and thus in disagreement
with both the ε, pseudo-ε expansion and NPRG results.
However, it is important to notice two points. First, the CB
program assumes scale invariance, that is, the existence of
a second order phase transition which is precisely the main
question addressed in the context of noncollinear magnets.
Second, in all RG-based schemes, there exists, in the RG flow
diagram, either two nontrivial fixed points or none. Indeed, the
very mechanism that determines the curve Nc(d) when N is
lowered keeping d fixed is the collapse of the stable—chiral—
fixed point C+ controlling the phase transition with another
unstable—antichiral—fixed point C−. However, this fixed
point C− is not found within the CB analysis of the O(3) ×
O(2) model [36], which contrasts with the other approaches.

The results obtained within the CB program have led
us to reexamine the NPRG approach to noncollinear mag-
nets, looking for possible failures in previous computations
[1,24–30] that were based on two kinds of approximation:
(i) the derivative expansion of the action at its lowest order,
called the local potential approximation (LPA) [24–26];
(ii) a field expansion of the effective action including the effects
of derivative terms at leading order [1,27–30]. Both of these
approximations could miss effects contributing to a change
to Nc(d), which is a very sensitive quantity. Also one has to
mention the fact that when one uses these approximations,
both performed at finite order in derivatives of the fields, only
the first order of the weak-coupling perturbative expansion
is formally reached. While this does not prevent to recover
the predictions of high-order perturbative approaches in many
systems—see, for instance, Ref. [55]—the disagreement with
the (fixed-dimension) perturbative approach in the context of
frustrated magnets can lead to question the reliability of this
kind of approximations.

In this paper, we go beyond these approximations by per-
forming: (i) an approximation—called field semi-expansion—

where the most important field dependence is considered
without approximation, i.e., functionally, the remainder being
approximated using a field expansion, and (ii) an approxima-
tion where no field expansion at all is performed. Moreover,
in these two approximations, the most important derivative
terms are taken into account at leading order. The results of our
analysis corroborate all conclusions reached within previous
NPRG approaches in particular for the value of Nc(d = 3) that
we find to be significantly larger than 3. They thus disagree
with those obtained with the fixed-dimension perturbative
approaches as well as with the CB program.

The paper is organized as follow. In Sec. II, we briefly
recall the principle and properties of the NPRG approach that
we use. In Sec. III, we present the effective action relevant
for noncollinear magnets within this approach. We discuss in
particular its symmetries, the symmetry breaking scheme and,
finally, the approximations used. In Sec. IV, we present the
NPRG equations for noncollinear magnets. In Sec. V, we give
the results obtained under the form a field semi-expansion of
the associated effective potential. In Sec. VI, we discuss the
results obtained using a full functional approximation of the
effective action where only the derivative terms are truncated.
In Sec. VII, we conclude.

II. THE EFFECTIVE ACTION METHOD

The central object of the NPRG approach is a running effec-
tive action—or Gibbs free energy—�k [39,40] that includes
the statistical fluctuations between the typical microscopic
momentum scale � of the system—the inverse of a lattice
spacing for instance—down to the running scale k < �. In
the limit k → �, no fluctuation is taken into account and
�k=� identifies with the classical action—or microscopic
Hamiltonian—while when k → 0, all fluctuations are summed
over and the usual Gibbs free energy � is recovered:{

�k=� = S

�k=0 = �.
(1)

Thus, at any finite scale k < �, �k interpolates between the
action and the Gibbs free energy. To construct the running
effective action, the original partition function:

Z[J ] =
∫

Dζ exp

(
−S[ζ ] +

∫
q

J (q)ζ (−q)

)
(2)

where
∫
q

= ∫ ddq/(2π )d , is modified by adding a cutoff term
to the classical action:

�Sk[ζ ] = 1

2

∫
q

Rk(q2) ζ (q)ζ (−q) (3)

in which Rk(q2) is a cutoff function that ensures the sep-
aration between the low- and high-momentum modes. The
k-dependent partition function thus writes

Zk[J ] =
∫

Dζ exp

(
−S[ζ ] − �Sk[ζ ] +

∫
q

J (q)ζ (−q)

)
.

(4)
It is convenient to choose Rk(q2) such that (i) it behaves as a

mass at low momentum q in order to freeze the low-momentum
fluctuations; and (ii) it vanishes at large momentum q in order
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to keep unchanged the high-momentum fluctuations. Thus one
has {

Rk(q2) ∼ k2 when q2 � k2

Rk(q2) → 0 when q2 � k2 . (5)

These constraints on Rk(q2) also imply that Rk=0(q2) ≡
0, which is consistent with the fact that when k = 0 all
fluctuations have been summed over and the original model
is retrieved: Zk=0[J ] = Z[J ]. Finally, note that Rk=�(q2) is
very large for all momenta much smaller than �. A typical
cutoff function satisfying all the previous requirements is

Rk(q2) = Zkq
2

eq2/k2 − 1
, (6)

where Zk is the field renormalization—see below. Another
useful cutoff function, called theta cutoff, has been proposed
by Litim [41]. It writes

Rk(q2) = Zk(k2 − q2) �(k2 − q2), (7)

where � is the usual step function.
The running Gibbs free energy �k is then defined as the

(slightly modified) Legendre transform of the Helmoltz free
energy Wk[J ] = logZk[J ] (see [1,42–46]):

�k[φ] = −Wk[J ] + J.φ − �Sk[φ], (8)

where φ is the order parameter field and where a mass
term analogous to (3) has been added with respect to the
usual definition of � for the following reason. Clearly, since
Rk=0(q2) ≡ 0, with the definition Eq. (8) one recovers the
usual free energy in the limit k → 0: �k→0 = �. The limit
k → � is less trivial since, there, the cutoff function Rk(q2) is
very large. But one can show [1,42–46] that the cut-off term
�Sk[φ] in Eq. (8) conspires with that included in Wk[J ] and
makes that �k=�[φ] � S[φ]. One thus recovers the conditions
Eq. (1).

The effective action follows an exact flow equation, the
Wetterich equation [47–50]

∂t�k[φ] = 1

2
Tr
∫

q

Ṙk(q2)
(
�

(2)
k [q, − q,φ] + Rk(q2)

)−1
, (9)

where t = ln k/� and Ṙk = ∂tRk . In Eq. (9), Tr must be
understood as a trace over internal vector or tensor indices
if the order parameter φ spans a nontrivial representation of
a group which is the case for noncollinear magnets. Finally,
�

(2)
k [q, − q,φ] stands for the Fourier transform of the second

functional derivative of �k with respect to the order parameter
field:

�
(2)
k,i,j [x,y,φ] = δ�k[φ]

δφi(x)δφj (y)
(10)

for a N -component field with components φi . Thus the
quantity (�(2)

k [φ] + Rk)−1 appearing in Eq. (9) represents the
exact, i.e., field-dependent, propagator.

The general properties of Eq. (9) have been discussed
at length in the literature [1,42–46]. We recall only some
of them that are directly relevant for our purpose. First,
Eq. (9) is exact, notably because the propagator (�(2)

k [φ] +
Rk)−1 is the exact, field-dependent one. As a consequence,
Eq. (9) embodies all perturbative and nonperturbative features

of the model under study: spin-waves, topological excitations,
bound states, tunneling, etc. Second, due to the property
of the cutoff function Rk , Eq. (9) is, due to the presence
of a “mass term” Rk in the propagator, infrared finite for
any k > 0. Also, due to presence of the function Ṙk that
rapidly decays for high momenta, i.e., q2 > k2, it is ultraviolet
finite. Thus Eq. (9) allows to explore criticality directly in
three dimensions without having recourse to tricks like ε

expansion techniques for instance. Third, Eq. (9) has a one-
loop structure which implies that all integrals encountered are
single integrals in contrast with perturbative expansions at high
orders that lead to involved multiple integrals. This property
makes straightforward comparisons with leading order of
all perturbative approaches: weak coupling, low-temperature,
large-N , expansions in their respective domains of validity.

Now, although exact, Eq. (9) must be approximated in order
to get concrete results for complicated problems with optimal
efforts. This is realized by choosing a truncation for �k[φ].
Among the most popular ones one finds, for a scalar field
theory:

(i) derivative expansion—�k is expanded in powers of the
derivatives of the order parameter:

�k[φ] =
∫

x

[
Uk(φ) + 1

2
Zk(φ) (∂φ)2 + O((∂φ)4)

]
, (11)

from which one gets functional RG equations for the potential
part Uk(φ) and kinetic part Zk(φ) of the running effective
action by appropriate functional derivations of Eq. (9). The
rationale behind this approximation is that when the anomalous
dimension is small, gradient terms should play only a small
role at long distance and high-order derivative terms should be
negligible.

(ii) Combined derivative and field expansions. On top
of the derivative expansion, the functions Uk(φ) and Zk(φ)
are expanded in powers of φ around a given field config-
uration. This kind of approximation converts the functional
equation (9) into a set of ordinary coupled differential equa-
tions for the coefficients of the expansion. This approximation
relies on the double assumption that the anomalous dimension
is small and that the correlation functions with a high number
of legs have a small back-reaction in the RG flow on those
with a small number of legs. Neglecting them should therefore
not spoil the dominant critical behavior.

(iii) Field expansion. �k is expanded in powers of the order
parameter φ. One has

�k[φ] =
∞∑

n=0

1

n!

(∫
xi

n∏
i=0

φ(xi)

)
V (n)

k (x1, . . . ,xn), (12)

where V (n)
k (x1,...,xn) are the vertices of the theory. Applying

then Eq. (9) to this expansion allows to generate a hierarchy
of RG equations for the vertices. Approximations are then
performed on �k in order to close this hierarchy. This kind
of approach relies on the assumption that vertices of high
orders in the field can be neglected while the full functional
dependence with respect to derivatives—or momenta—must
be kept. This is very likely not the generic situation.

(iv) Green function, also called Blaizot–Méndez-Galain–
Wschebor (BMW) [51–53], approach. Its aim is to keep
the full momentum dependence of the two-point functions
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and the functional dependence of the potential Uk(φ) and
Zk(φ) functions. It consists in approximating the momentum
dependence of the three- and four-point functions in the flow of
the two-point functions. It thus reproduces the results obtained
within the derivative expansion at small momenta while being
also nonperturbative at high momenta.

From a practical point of view, the main difficulty lies in
the choice of approximation that contains the most important
features of the model under study while being also techni-
cally manageable. For critical phenomena, one can focus on
momenta q close to 0. The method of choice is therefore the
derivative expansion [see (i) above]. This is in contrast with
situations where bound states—or, more generally, excitations
exhibiting a nontrivial momentum structure—are expected
in which a more or less important momentum dependence
should be considered through the use of (iii) or (iv). At leading
order of the derivative expansion one completely neglects the
effects of derivative terms and sets the field renormalization
function Zk(φ) equal to one, keeping a full function Uk(φ)
for the potential part. This is the so-called local potential
approximation (LPA). A possible improvement of this ap-
proach consists in replacing now Zk(φ) by a nontrivial constant
Zk from which follows a k-dependent anomalous dimension
ηk = −(1/Zk)∂tZk , the usual anomalous dimension being
given by ηk at a fixed point. This approximation is sometimes
called the LPA’. It is essentially this approach that is employed
in this article. Note for completeness that one can also try to
treat the kinetic terms Zk(φ) as a function. However, in practice
this has only been performed in the simplest case of O(N )
models [54]. For more involved models only approximation
(ii) has been used. This approach, when used at reasonably
high orders in the field expansion, is in general sufficient to
obtain high precision results. For the Ising model, for instance,
the best estimates of the critical exponents in d = 3 have been
recovered with this combined derivative and field expansion
employed at fourth order in the derivative and tenth order in
the field [55].

Finally, let us emphasize that while the accuracy of the
results obviously depend on the order of the truncations none of
the approximations presented above spoils the nonperturbative
character of the method. Indeed, although the effective action
itself is approximated, the very structure of Eq. (9) is kept
unchanged as far as the left-hand side is not expanded in
powers of one of the usual perturbative parameters: coupling
constant, temperature, or 1/N . Thus even at the lowest order
of the combined derivative and field expansion one already
gets results unreachable by perturbative methods [1,42–46].

III. THE EFFECTIVE ACTION FOR NONCOLLINEAR
MAGNETS

We now present the derivative expansion of the effective
action relevant to noncollinear magnets. First, we recall that
for N -component noncollinear magnets, the order parameter
consists of two N -component real vectors 
φ1 and 
φ2 which, in
the STA model, represent linear combinations of the spins of a
plaquette [1]. It is convenient to gather these two fields into a
N × 2 matrix:  = ( 
φ1, 
φ2). In the continuum limit, the action
for noncollinear magnets displays a O(N ) × O(2) invariance
where O(N ) stands for the usual rotational invariance, while

O(2) reflects the original C3v symmetry of the lattice [1]. The
left O(N ) and right O(2) transformations are implemented on
 by {

 → U, U ∈ O(N )

 → V, V ∈ O(2)
. (13)

As said above the derivative expansion consists in expanding
�k in powers of ∂φ at a finite order. We consider here the
expansion at second order in derivatives where �k writes [1]

�k[ 
φ1, 
φ2] =
∫

x

[
Uk(ρ,τ ) + 1

2
Zk(ρ,τ )((∂ 
φ1)2 + (∂ 
φ2)2)

+ 1

4
Y

(1)
k (ρ,τ )( 
φ1 · ∂ 
φ2 − 
φ2 · ∂ 
φ1)2

+ 1

4
Y

(2)
k (ρ,τ )( 
φ1 · ∂ 
φ1 + 
φ2 · ∂ 
φ2)2

+ 1

4
Y

(3)
k (ρ,τ )(( 
φ1 · ∂ 
φ1 − 
φ2 · ∂ 
φ2)2

+ ( 
φ1 · ∂ 
φ2 + 
φ2 · ∂ 
φ1)2)

]
. (14)

In Eq. (14), ρ and τ are the two independent O(N ) × O(2)
invariants that read in terms of 
φ1 and 
φ2:⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

ρ = Tr(t.) = 
φ 2
1 + 
φ 2

2

τ = 1

2
Tr
(

t. − 1
ρ

2

)2

= 1

4

( 
φ 2
1 − 
φ 2

2

)2 + ( 
φ1 · 
φ2) 2.

(15)

The term Uk(ρ,τ ) in Eq. (14) represents the potential part
of the effective action while Zk(ρ,τ ) and Y

(i)
k (ρ,τ ), i = 1,2,3,

are kinetic parts. At the minimum of the potential Uk(ρ,τ ), the
vectors 
φ1 and 
φ2 are orthogonal with the same norm, which
corresponds to the following configuration:

0 =

⎛⎜⎜⎜⎜⎜⎝
φ 0
0 φ

0 0
...

...
0 0

⎞⎟⎟⎟⎟⎟⎠, (16)

where φ is a constant. For the spins on the lattice, the
configuration Eq. (16) corresponds to the 120◦ structure.
Notice that τ has been built such that it vanishes in this
configuration. The ground state Eq. (16) is invariant under
the O(N − 2) group of left rotations and a diagonal O(2)
group—O(2)diag—that combines left and right rotations:(

O(2) 0
0 O(N − 2)

)
0 O(2) = 0. (17)

The symmetry breaking scheme is thus given by O(N ) ×
O(2) → O(N − 2) × O(2)diag. For N = 3, one recovers the
symmetry breaking scheme:

G = O(3) × O(2) → H = ZZ2 × O(2)diag, (18)

which shows that the order parameter space is given by SO(3).
For N = 2, the symmetry breaking scheme is given by

G = O(2) × O(2) → H = O(2)diag (19)
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or simply by SO(2) × ZZ2 → 1 where the degrees of freedom
associated with the ZZ2 group are referred to as chirality
excitations.

We now proceed to further approximations. As explained
in Ref. [1], only the functions Zk and Y

(1)
k contribute to the

physics of Goldstone modes and thus are supposed to be the
most relevant at the transition. Thus we consider the following
simplified effective action:

�k =
∫

x

[
Uk(ρ,τ ) + 1

2
Zk(ρ,τ )((∂ 
φ1)2 + (∂ 
φ2)2)

+1

4
Y

(1)
k (ρ,τ )( 
φ1 · ∂ 
φ2 − 
φ2 · ∂ 
φ1)2

]
. (20)

A last approximation consists in neglecting the field-
dependence of the functions Zk(ρ,τ ) and Y

(1)
k (ρ,τ ) and, thus,

in setting Zk(ρ,τ ) = Zk and Y
(1)
k (ρ,τ ) = ωk . This approxima-

tion has been used in Refs. [1,27–30] in which the function
Uk(ρ,τ ) was further expanded in powers of the invariants ρ and
τ . All perturbative results were recovered this way, that is, the
one-loop results obtained either in d = 4 − ε or in d = 2 + ε.
Note that around d = 2, it is necessary to take into account
the so-called “current term”— ( 
φ1 · ∂ 
φ2 − 
φ2 · ∂ 
φ1)2—to get
the phenomenon of enlarged symmetry at the fixed point [56],
although it is irrelevant by power-counting in the vicinity of
d = 4. In d = 3, the dimension in which we are interested
in this article, such a term should not contribute significantly.
We, however, keep it as we are tracking possible weaknesses
of previous NPRG approaches.

IV. RENORMALIZATION GROUP EQUATIONS

We now present the RG equations relevant to noncollinear
magnets. In the case of a model with O(N ) × O(2) symmetry,
the exact flow equation Eq. (9) writes

∂t�k[ 
φ1, 
φ2] = 1

2
Tr
∫

q

Ṙk(q)
(
�

(2)
k [q, − q, 
φ1, 
φ2] + Rk

)−1
,

(21)

where �
(2)
k [q, − q, 
φ1, 
φ2] is the Fourier transform of the

second functional derivatives of �k:

�
(2)
k,(a,i),(b,j )[x,y, 
φ1, 
φ2] = δ�k[ 
φ1, 
φ2]

δφi
a(x)δφj

b (y)
, (22)

where a,b = 1,2 and i,j = 1, . . . ,N .

The flow equation for the effective potential Uk(ρ,τ )
follows from its definition:

Uk(ρ,τ ) = 1

�
�k[ 
φ1, 
φ2]

∣∣∣

, (23)

where � is the volume of the system and  a constant field
configuration. Since Uk is an O(N ) × O(2) invariant, it is
possible to use O(N ) × O(2) transformations to simplify as
much as possible the configuration  in which its RG flow (21)
is evaluated. It is easy to show using these transformations that
one can to recast any constant matrix  in a diagonal “form”:

 = UDV with U ∈ O(N ) and V ∈ O(2) (24)
with

D =

⎛⎜⎜⎜⎜⎜⎝
φ1 0
0 φ2

0 0
...

...
0 0

⎞⎟⎟⎟⎟⎟⎠, (25)

where φ1 and φ2 are constants.
The—derivative—coefficients Zk and ωk are defined by

Zk = (2π )d

δ(0)
lim

p2→0

d

dp2

(
∂2�k

δφ1
1(p)δφ1

1(−p)

∣∣∣∣
I

)
, (26)

ωk

2
= (2π )d

κδ(0)
lim

p2→0

d

dp2

(
∂2�k

δφ2
1(p)δφ2

1(−p)

∣∣∣∣
I

)
− Zk

κ
, (27)

where we choose a uniform field configuration I proportional
to the identity

I =

⎛⎜⎜⎜⎜⎜⎜⎝

√
κ 0

0
√

κ

0 0
...

...
0 0

⎞⎟⎟⎟⎟⎟⎟⎠ (28)

with
√

κ being a constant that can be different from the
minimum φ of the potential, Eq. (16). Finally, the running
anomalous dimension ηk is defined by ηk = −∂t log Zk .

The flow equation for the potential writes in terms of the
various propagators associated with the mass spectrum of the
model (see Appendix A):

∂tUk(ρ,τ ) = 1

2

∫
q

Ṙk(q2)

[
1

Zkq2+Rk(q2) + m 2
1+

+ 1

Zkq2 + Rk(q2) + m 2
1−

+ 1

Zkq2 + Rk(q2) + m 2
2+

+ 1

Zkq2 + Rk(q2) + m 2
2−

+ (N − 2)

(
1

Zkq2 + Rk(q2) + m 2
3+

+ 1

Zkq2 + Rk(q2) + m 2
3−

)]
, (29)

where the (momentum-dependent) square “masses” are given by⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
m 2

1± = 2U
(1,0)
k + 2ρU

(2,0)
k + ρU

(0,1)
k + 2ρτU

(0,2)
k + 8τU

(1,1)
k

± [τ(4U
(0,1)
k + 4U

(2,0)
k + 4τU

(0,2)
k + 4ρU

(1,1)
k

)2 + (ρ2 − 4τ )
(
2U

(2,0)
k − U

(0,1)
k − 2τU

(0,2)
k

)2] 1
2

m 2
2± = 2U

(1,0)
k + ρU

(0,1)
k + ωk

4 ρ q2 ± 1
2

[
ω2

kτq4 + (ρ2 − 4τ )
(− ωk

2 q2 + 2U
(0,1)
k

)2] 1
2

m 2
3± = 2U

(1,0)
k ± 2

√
τU

(0,1)
k

, (30)
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with U
(m,n)
k = ∂m+nUk(ρ,τ )/∂mρ ∂nτ , ρ = φ1

2 + φ2
2, and τ = 1/4(φ1

2 − φ2
2)2, where φ1 and φ2 parametrize the configuration

Eq. (25).
We are interested, in the following, in fixed points of the RG flow equations. Finding them requires to work with dimensionless

renormalized quantities that are defined by ρ̃ = Zkk
2−dρ, τ̃ = Z2

kk
2(2−d)τ , Ũk(ρ̃,τ̃ ) = k−dUk(ρ,τ ), ω̃k = Z−2

k kd−2ωk , y =
q2/k2, and r(y) = Rk(yk2)/Zkyk2. In terms of these variables the flow equation of the potential writes

∂t Ũk = −dŨk(ρ̃,τ̃ ) + (d − 2 + ηk)
[
ρ̃Ũ

(1,0)
k (ρ̃,τ̃ ) + 2τ̃ Ũ

(0,1)
k (ρ̃,τ̃ )

]
+ 2vd

[
ld0 (m̃ 2

1+) + ld0 (m̃ 2
1−) + ld0 (m̃ 2

2+) + ld0 (m̃ 2
2−) + (N − 2)

(
ld0 (m̃ 2

3+) + ld0 (m̃ 2
3−)
]
, (31)

where v−1
d = 2d+1πd/2�[d/2], m̃i are the dimensionless analogues of the masses defined in Eq. (30) and the threshold functions

ldn (w) are defined by

ldn (w) = −n + δn,0

2

∫ ∞

0
dy yd/2 ηkr(y) + 2yr ′(y)

[y(1 + r(y)) + w]n+1
. (32)

The RG equations for the running anomalous dimension ηk and the coupling constant ωk are given in terms of dimensionless
quantities by

ηk = 2vd

d

[
dω̃k ld1,0

(
m̃ 2

3 ,0,0
)+ 64κ̃

(
Ũ

(0,1)
k

)2
md

2,2

(
m̃ 2

3 ,m̃ 2
1−,0

)+ 128κ̃
(
Ũ

(2,0)
k

)2
md

2,2

(
m̃ 2

3 ,m̃ 2
1+,0

)
+ (d − 2)κ̃ω̃2

k l
d+2
1,1

(
m̃ 2

3 ,m̃ 2
3 ,κ̃ω̃k

)+ 2κ̃ω̃2
km

d+4
2,2

(
m̃ 2

3 ,m̃ 2
3 ,κ̃ω̃k

)− 2κ̃ω̃2
kn

d+2
1,2

(
m̃ 2

3 ,m̃ 2
3 ,κ̃ω̃k

)
+ 2κ̃ω̃2

kn
d+2
2,1

(
m̃ 2

3 ,m̃ 2
3 ,κ̃ω̃k

)− 2κ̃2ω̃3
k l

d+4
1,2

(
m̃ 2

3 ,m̃ 2
3 ,κ̃ω̃k

)+ 2κ̃2ω̃3
kn

d+4
2,2

(
m̃ 2

3 ,m̃ 2
3 ,κ̃ω̃k

)]
, (33)

dω̃k

dt
= (d − 2 + 2η) ω̃k + 2vd

d

[
dω̃k

κ̃

(
ld1,0

(
m̃ 2

3 ,0,0
)− ld1,0

(
m̃ 2

1+,0,0
))+ (d − 2)ω̃2

k ld+2
1,1

(
m̃ 2

3 ,m̃ 2
3 ,κ̃ω̃k

)
+ (10 − d) ω̃2

k ld+2
1,1

(
m̃ 2

1+,m̃ 2
3 ,κ̃ω̃k

)− 2κ̃ω̃3
k ld+4

1,2

(
m̃ 2

3 ,m̃ 2
3 ,κ̃ω̃k

)+ 6κ̃ω̃3
k ld+4

1,2

(
m̃ 2

1+,m̃ 2
3 ,κ̃ω̃k

)
+ 4(N − 2) ω̃2

k ld+2
2,0

(
m̃ 2

3 ,0,0
)+ 4ω̃2

k ld+2
2,0

(
m̃ 2

1−,0,0
)+ 64

(
Ũ

(0,1)
k

)2
md

2,2

(
m̃ 2

3 ,m̃ 2
1−,0

)+ 2ω̃2
km

d+4
2,2

(
m̃ 2

3 ,m̃ 2
3 ,κ̃ω̃k

)
− 2ω̃2

km
d+4
2,2

(
m̃ 2

1+,m̃ 2
3 ,κ̃ω̃k

)− 2ω̃2
kn

d+2
1,2

(
m̃ 2

3 ,m̃ 2
3 ,κ̃ω̃k

)+ 6ω̃2
kn

d+2
1,2

(
m̃ 2

1+,m̃ 2
3 ,κ̃ω̃k

)+ 2ω̃2
kn

d+2
2,1

(
m̃ 2

3 ,m̃ 2
3 ,κ̃ω̃k

)
− 6ω̃2

kn
d+2
2,1

(
m̃ 2

1+,m̃ 2
3 ,κ̃ω̃k

)+ 128
(
Ũ

(2,0)
k

)2(
md

2,2

(
m̃ 2

3 ,m̃ 2
1+,0

)− md
2,2

(
m̃ 2

1+,m̃ 2
3 ,0
)− κ̃ω̃kn

d
2,2

(
m̃ 2

1+,m̃ 2
3 ,κ̃ω̃k

))
+ 8Ũ

(2,0)
k

(
d ld1,1

(
m̃ 2

1+,m̃ 2
3 ,κ̃ω̃k

)− 6κ̃ω̃kl
d+2
1,2

(
m̃ 2

1+,m̃ 2
3 ,κ̃ω̃k

)+ 4md+2
2,2

(
m̃ 2

1+,m̃ 2
3 ,κ̃ω̃k

)− 6nd
1,2

(
m̃ 2

1+,m̃ 2
3 ,κ̃ω̃k

)
+ 6nd+2

2,1

(
m̃ 2

1+,m̃ 2
3 ,κ̃ω̃k

)+ 4κ̃ω̃kn
d+2
2,2

(
m̃ 2

1+,m̃ 2
3 ,κ̃ω̃k

))+ 2κ̃ω̃3
kn

d+4
2,2

(
m̃ 2

3 ,m̃ 2
3 ,κ̃ω̃k

)− 2κ̃ω̃3
kn

d+4
2,2

(
m̃ 2

1+,m̃ 2
3 ,κ̃ω̃k

)]
, (34)

where the masses are evaluated in the configuration I , Eq. (28)—where τ = 0—and are given by⎧⎪⎪⎨⎪⎪⎩
m̃ 2

1+ = 2Ũ
(1,0)
k + 8̃κŨ

(2,0)
k

m̃ 2
1− = m̃ 2

2+ = 2Ũ
(1,0)
k + 4̃κŨ

(0,1)
k

m̃ 2
3 = m̃ 2

3+ = m̃ 2
3− = m̃ 2

2− = 2Ũ
(1,0)
k

(35)

where U
(a,b)
k stands here for U

(a,b)
k (ρ̃ = 2̃κ,τ = 0) and where the threshold functions ldn1,n2

, md
n1,n2

and nd
n1,n2

are given in the
Appendix B.

V. FIELD SEMI-EXPANSION

The part of the potential that a priori needs to be represented
as accurately as possible is the vicinity of the minimum
Eq. (16) since it describes the thermodynamics of the system.
The minimum occurs at a finite value ρ and at vanishing τ .
We thus expect that the nontrivial field dependence occurs in
the ρ direction and not in the τ one. The idea of the field
semi-expansion is thus to keep the full ρ dependence of Uk

and to expand it in powers of τ :

Ũk(ρ̃,τ̃ ) =
pmax∑
p=0

Ũp,k(ρ̃) τ̃ p . (36)

The flow of the functions Ũp,k(ρ̃) can be easily obtained by
differentiating Eq. (31) with respect to τ . We have truncated
the expansion at pmax = 2, 3 and 4. For the sake of simplicity,
we only display the flow of Ũ0,k(ρ̃):

∂t Ũ0,k(ρ̃) = −d Ũ0,k(ρ̃) + (d − 2 + ηk) ρ̃ Ũ ′
0,k(ρ̃)

+ 2 vd

[
ld1,0

(
m̃ 2

1+,0,0
)+ 2 ld1,0

(
m̃ 2

1−,0,0
)

+ ld1,0(0,m̃ 2
1−,ρ̃ω̃k/2) + 2(N − 2) ld1,0

(
m̃ 2

3+,0,0
)]

(37)
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with Ũ ′
0,k(ρ̃) = dŨ0,k(ρ̃)/dρ̃ and where the square masses are

given by ⎧⎪⎪⎨⎪⎪⎩
m̃ 2

1+ = 2Ũ ′
0,k(ρ̃) + 4ρ̃Ũ ′′

0,k(ρ̃)

m̃ 2
1− = 2Ũ ′

0,k(ρ̃) + 2ρ̃Ũ1,k(ρ̃)

m̃ 2
3+ = 2Ũ ′

0,k(ρ̃).

(38)

A. Procedure

In order to integrate the RG flow equations of the functions
Ũp,k(ρ̃), we need an initial condition, that is, their values
at k = �. We choose the usual Ginzburg-Landau-Wilson
potential:

Ũk=�(ρ,τ ) = r̃� ρ̃ + g̃1,� ρ̃ 2 + g̃2,� τ̃ , (39)

which implies that Ũ0,k=�(ρ) = r̃� ρ̃ + g̃1,�ρ̃ 2, Ũ1,k=�(ρ) =
g̃2,�τ̃ , and Ũp>1,k=�(ρ) = 0. Criticality can be reached by
varying the mass parameter r̃� while keeping fixed g̃1,� and
g̃2,�. This can be repeated in principle in any dimension d

and for all values of N greater than Nc(d). We focus on the
three dimensional case and thus on the value of Nc(d = 3). We
recall that Nc(d) results from the collapse of two fixed points,
one stable—the chiral C+—and one unstable—the antichiral
C−—when N is decreased from N > Nc(d) to Nc(d). These
two fixed points are related by a RG flow line. When C+ and
C− get closer, the speed of the flow decreases and vanishes
at N = Nc(d). Thus a way to determine Nc(d) consists in
identifying the value of N for which the first correction to
scaling critical exponent ω vanishes. In order to compute this
quantity, we parametrize the potential close to the fixed point
by

Ũk(ρ̃,̃τ ) = Ũ ∗(ρ̃,̃τ ) + F̃ (ρ̃,̃τ ) e−t/ν + G̃(ρ̃,̃τ ) eωt , (40)

where ν is the usual critical exponent associated with the
relevant direction and ω the subleading critical exponent.

B. LPA

In order to measure the impact of the derivative terms
ηk and ωk on Nc(d = 3), we perform two calculations, one
where these two coupling constants are set to 0 (LPA) and
the other one where we take them into account (LPA’). As
for the potential we consider, in the expansion (36), the
functions Ũp,k(ρ̃) up to pmax = 4. This allows us to analyze the
convergence of the expansion in powers of τ . Finally, we have
optimized our results. Indeed, as well known, finite truncations
of the effective action in the field and/or derivatives of the
field induce a residual dependence of the physical quantities
on the regulator Rk . By definition, an optimal regulator is
such that the dependence of the physical quantity under study
upon this regulator is minimal: this is the principle of minimal
sensitivity (PMS). Applied to the O(N ) models, this principle
indeed leads to the best determination of the critical exponents
in d = 3 in the sense that the results thus obtained are closest
to the Monte Carlo values [55,57]. To optimize our results,
we have used the exponential cutoff (6) that we have extended
to a whole family of cutoff functions parametrized by a real

2 4 6 8 10 12

0.44

0.46

0.48

0.50

Ω

2 4 6 8 10 12

0.762

0.764

0.766

0.768

Ν

Α

Α

FIG. 1. N = 6, d = 3 case: critical exponents ω (top) and ν

(bottom) as functions of the regulator parameter α [see Eq. (41)]
calculated with pmax = 2 (dotted curve), 3 (dashed curve), and 4
(solid curve). The black dots indicate the position of the minima of
the curves.

number α:

Rα
k (q2) = α

Zk q2

eq2/k2 − 1
. (41)

We have varied α in order to reach a point of minimal
sensitivity, i.e., a point where the physical quantities – here
mainly Nc(d), now denoted Nc(d,α)—are as insensitive as
possible to α. This obviously corresponds to an extremum of
Nc(d,α) as a function of α.

1. The N = 6 case

Before discussing the value of Nc(d) within the derivative
expansion, it is useful to consider a value of N where,
very likely, there exists a fixed point C+, i.e., N > Nc(d =
3). We choose N = 6 since a clear second-order phase
transition has been found in this case by Monte Carlo
simulations [58]. This allows us to check the convergence
of our computation. We find a stable fixed point for N = 6
in agreement with the results obtained numerically [58].
Figure 1 displays the correction-to-scaling critical exponent
ω and the correlation length critical exponent ν as functions
of the regulator parameter α with pmax = 2, 3, and 4. First,
one finds, for any pmax, a unique extremum for each curve
ω(d = 3,α) and ν(d = 3,α) when varying α. Second, one
clearly observes a very good convergence with pmax. This
means that the PMS can be safely applied and that optimal
values of the critical exponents can be determined. We find
for pmax = 4: ωopt. = ω(d = 3,α = 5.4) = 0.455(5), νopt. =
ν(d = 3,α = 6.2) = 0.7625(5) where error bars are evaluated
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from the difference between two successive orders of the field
expansion. The value of ν can be compared with the Monte
Carlo value ν = 0.700(11) [58]. Clearly, our value of ν lies
well above the numerical result. This relies on the fact that the
effects of derivative terms have been neglected—see below.

2. Nc(d = 3)

We have then computed Nc(d,α) for d = 3.8, 3.5, 3.0,
and 2.7 within the LPA and for pmax = 2, 3, and 4. In all
cases, we find a maximum of Nc(d,α) when varying α, see
Fig. 2. Moreover we find that Nc(d,α) at its maximum
converges when pmax is increased. However, it appears that the
speed of convergence decreases drastically with the dimension
d, see Fig. 2. The convergence is very good for 3 < d < 4
and becomes bad typically around d = 2.8. This is clearly a
limit of the field expansion performed here. Indeed standard
power counting implies the relevance of more and more powers
of the field as the dimension is decreased. Another problem
encountered at low dimensions is that there exists, for any
dimension d lower that d = 3, a line Ñ (d) located above the
line Nc(d) where the critical exponent ω vanishes; this is again
an artifact of the field expansion. For these reasons we focus,
in this article, on dimensions between d = 2.8 and d = 4. In
the physically relevant d = 3 case one finds that the optimal
value of Nc(d = 3,α) is given by Nc,opt. = Nc(d = 3,α =
6.2) = 4.68(2). This value is almost identical to that found
by Zumbach [24–26] who has found Nc(d = 3) = 4.7 using
the LPA implemented on the Polchinski equation without any
field expansion. This suggests that our result for Nc(d = 3) is
almost converged as far the field expansion is concerned. This
will be confirmed in Sec. VI where we evaluate Nc(d = 3)
without any field expansion.

C. LPA’

Let us now consider the contributions coming from the
leading derivative terms and thus the impact of the anomalous
dimension ηk and of the coupling constant ωk onto Nc(d).
The corresponding flow equations are given by Eqs. (33) and
(34). The flow of these new coupling constants involves a new
degree of freedom which is the choice of the field configuration
I where they are evaluated [see Eqs. (26)–(28)]. In order to
implement the PMS we vary I and look for a extremum of
the quantities we compute, that is, the critical exponents for
N = 7, 6, and finally Nc(d).

1. The N = 7 case

We first address the N = 7 case, which corresponds to the
smallest integer value of N for which there is a stable fixed
point both within the NPRG and the perturbative approaches
performed either within the ε or pseudo-ε- expansion. We
find a fixed point for all pmax. The curves for the critical
exponents ω, η, and ν as functions of α computed with
pmax = 4 in d = 3 are given in Figs. 3 and 4. The different
curves correspond to different values of I or, equivalently, to
different values of ρfix ≡ 2κ , going from 0.4 to 1.2. Although
calculations were performed for all ρfix between 0.4 to 1.2
with step 0.1 we present only the main curves in order
not to overload the figures. The results for ω show that a
stationary curve is obtained for ρfix � 0.9 (solid curve in

2 4 6 8 10 12
Α15.2

15.3

15.4

15.5

15.6

15.7

15.8

Nc

2 4 6 8 10 12
Α

9.5

9.6

9.7

9.8

9.9

10.0

10.1
Nc

2 4 6 8 10 12
Α

4.4

4.5

4.6

4.7

4.8
Nc

2 4 6 8 10 12
Α

2.6

2.7

2.8

2.9

3.0

3.1

Nc

FIG. 2. Nc(d,α) obtained with the LPA with pmax = 2 (dotted
curve), pmax = 3 (dashed curve) and pmax = 4 (solid curve) for, from
top to bottom: d = 3.8, 3.5, 3, and 2.8. For d = 3.8 and 3.5, the two
curves obtained with pmax = 3 and 4 are superimposed at this scale.
The black dots indicate the position of the maxima of the curves.

Fig. 3). For the corresponding curve, the minimum is reached
for α � 7.5 which provides the optimal value ωopt. = ω(d =
3,α = 7.5) � 0.475. For η, the stationary curve is obtained for
ρfix � 0.6 (dot-dashed curve in Fig. 3). In this case, however,
there is no genuine stationarity in α. By continuity with the
results obtained for ρfix � 0.4 and 0.5 (respectively, dotted and
dashed curves on Fig. 3) for which we get genuine minima
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2 4 6 8 10 12
Α

0.48

0.49

0.50

0.51
Ω

2 3 4 5 6 7 8
Α0.030

0.032

0.034

0.036

0.038

0.040

0.042

0.044

Η

FIG. 3. Critical exponents ω (top) and η (bottom) as functions
of the parameter α for N = 7, d = 3, pmax = 4. Curves of different
styles correspond to various values of ρfix: the dotted curve corre-
sponds to ρfix = 0.4, the dashed curve to ρfix = 0.5, the dot-dashed
curve to ρfix = 0.6, the long dot-dashed curve to ρfix = 0.7, the solid
curve to ρfix = 0.9, and the long dashed curve to ρfix = 1.2. The black
dots indicate the position of the minima of the curves.

5 10 15 20 25 30
Α0.73

0.74

0.75

0.76

0.77

Ν

FIG. 4. Critical exponent ν as a function of the parameter α for
N = 7, d = 3, pmax = 4. The dotted curve corresponds to ρfix = 0.4,
the dashed curve to ρfix = 0.5, the dot-dashed curve to ρfix = 0.6,
the long dot-dashed curve to ρfix = 0.7, the solid curve to ρfix = 0.9,
and the long dashed curve to ρfix = 1.2. There are no extrema for the
different curves.

one can consider that there exists, in the case ρfix � 0.6, a
quasiminimum at α = 2. This provides the almost optimal
value ηopt. = η(d = 3,α = 2) = 0.039. The determination of
ν is more problematic, see Fig. 4. Indeed, whereas there
is a stationary curve when varying ρfix at ρfix = 0.7 (long
dot-dashed curve in Fig. 4) there is no extremum when
varying α. However, as the curve ν(d = 3,α) varies only
weakly with α for large values of α, one can provide a
rough estimate of ν(d = 3,α) by the range 0.730–0.740.
We finally provide the values of the critical exponents with
estimation of error bars: ω = 0.475(2), η = 0.039(2), and
ν = 0.735(5). These values can be compared with the those
obtained perturbatively. The ε expansion performed at five
loops within the MS scheme [18] provides ω = 0.33(10),
γ = 1.39(6), and ν = 0.71(4) that leads to, through scaling
relations, η = 0.042(4). Computations, still at five-loop order
and within the MS scheme without ε expansion [12] leads to
ω = 0.5(2), η = 0.047(15), and ν = 0.68(4). Finally, within
a six-loop computation performed using the zero momen-
tum massive scheme and resummed using the conformal
mapping technique (Padé approximant techniques provide
close results) one finds [23]: ω = 0.23(5), η = 0.042(2), and
ν = 0.68(2). Being given the large error bars provided by
both the perturbative and nonperturbative computations the
results are all compatible so that the N = 7 does not show
strong indications of a disagreement between the different
approaches.

2. The N = 6 case

For N = 6, we again find a fixed point for all pmax. The
curves for the critical exponents ω, η and ν as functions of α

computed with pmax = 4 in d = 3 are given in Figs. 5 and 6.
For ω a stationary curve is obtained for ρfix � 0.9 (solid curve
in Fig. 5) with a minimum reached for α � 10.5. This provides
the optimal value ωopt. = ω(d = 3,α = 10.5) � 0.330. For η,
a stationary curve is obtained for ρfix � 0.6 (dotted-dashed
curve in Fig. 5). In this case, again, there is no genuine
stationarity in α. Note nevertheless that for close values of ρfix

(of order 0.4–0.5, corresponding to dotted and dashed curves
in Fig. 5) one gets clear minima. By continuity this provides an
almost optimal value of η lying between 0.040 and 0.045. The
same problem as in the N = 7 case is encountered for ν—see
Fig. 6—since, whereas there is a stationary curve when varying
ρfix at ρfix = 0.8 (long dot-dashed curve in Fig. 6) there is no
extremum when varying α. As in the N = 7 case, one can
consider the variation of ν(d = 3,α) as smooth with α for
large values of α and an estimate of ν(d = 3,α) can be given
by the range 0.69–0.70. We finally provide the values of the
critical exponents with estimation of error bars: ω = 0.330(5),
η = 0.042(2), and ν = 0.695(5). The critical exponent ν can
be favorably compared with the Monte Carlo results ν =
0.700(11) [58], what provides indications of convergence of
our computations. One can compare these results with those
obtained using a five-loop computation and performed within
the MS scheme without ε expansion [12] for which a fixed
point is found for all values of N . In the N = 6 case, these
computations lead to η = 0.052(14) and ν = 0.66(4). These
values are compatible with both the NPRG and Monte Carlo
results. However, it is at the cost of large error bars, that
are very likely consequences of the poor convergence of the
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FIG. 5. Critical exponents ω (top) and η (bottom) as functions
of the parameter α for N = 6, d = 3, pmax = 4. Curves of different
styles correspond to various values of ρfix: the dotted curve corre-
sponds to ρfix = 0.4, the dashed curve to ρfix = 0.5, the dot-dashed
curve to ρfix = 0.6, the long dot-dashed curve to ρfix = 0.8, the solid
curve to ρfix = 0.9, and the long dashed curve to ρfix = 1.2.The black
dots indicate the position of the minima of the curves.
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FIG. 6. Critical exponent ν as a function of the parameter α for
N = 6, d = 3, pmax = 4. The dotted curve corresponds to ρfix = 0.4,
the dashed curve to ρfix = 0.5, the dot-dashed curve to ρfix = 0.6,
the long dot-dashed curve to ρfix = 0.8, the solid curve to ρfix = 0.9,
and the long dashed curve to ρfix = 1.2. There are no extrema for the
different curves.
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FIG. 7. Nc(d = 3,α) for pmax = 4. The dotted curve corresponds
to ρfix = 0.4, the dashed curve to ρfix = 0.5, the dot-dashed curve to
ρfix = 0.6, the long dot-dashed curve to ρfix = 0.8, the solid curve to
ρfix = 0.9, and the long dashed curve to ρfix = 1.2. The black dots
indicate the position of the maxima of the curves.

computations performed at fixed dimensions already observed
in Refs. [31–33].

3. Nc(d = 3)

Let us now consider Nc(d = 3) computed with pmax = 4
within the LPA’. We find an optimal value of Nc(d = 3,α)
for ρfix ∈ [0.8,0.9] (see solid and long dot-dashed curves in
Fig. 7). However, there is no true extremum of Nc(d = 3) in
the direction of α for these values of ρfix although Nc(d = 3)
is almost insensitive to α for α ∼ 15, see Fig. 7. This provides
the best possible value of Nc(d = 3): Nc,opt(d = 3,α = 15) =
5.24(2). The comparison with the value obtained using a
usual field expansion [1,27–30], Nc(d = 3) = 5.1, shows that
the effects of high orders in the field neglected in previous
approaches were not negligible. Moreover, compared with the
value Nc(d = 3) = 4.7 obtained within the LPA, one sees
that derivative terms also play an important role. Our value
of Nc(d = 3) can finally be compared with those obtained
perturbatively via the ε or pseudo-ε- expansions. Within the
ε expansion, one finds at five loops Nc(d = 3) = 6.1(6) [18],
and the pseudo-ε expansion at six loops leads to Nc(d = 3) =
6.22(12) [18] and Nc(d = 3) = 6.23(21) [19]. The quantitative
agreement is not excellent. One can suspect contributions of
higher orders in derivatives of the field within the NPRG
approach or/and contributions of higher orders in the loop
expansions. However, from the qualitative point of view all
these results agree as for the absence of a nontrivial fixed point
for N = 2 and 3.

D. The curve Nc(d)

Finally we have computed Nc(d) for values of d going
from d = 2.8 to d = 4. The corresponding (solid) curve is
shown in Fig. 8 together with that (dashed) obtained within
the perturbative five-loops ε expansion of Ref. [23] and
that (dot-dashed) obtained within the perturbative six-loop
without ε expansion [12]. The qualitative agreement between
the NPRG and the ε expansion results is apparent although,
quantitatively, there remain some relatively important gaps
between the different values of Nc(d) for some dimensions
between d = 3 and 4. On the other hand, the singular character
of the result obtained without ε expansion—for which the
curve Nc(d) displays a S-like shape—is also obvious.
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FIG. 8. Curves Nc(d). Solid curve (this work): LPA’ with four
functions. Diamond (this work) Nc(d = 3) obtained by LPA’ with
the full potential. Dashed curve: perturbative five loops (MS

scheme) with ε expansion [23]. Dot-dashed curve with black points:
perturbative six loops (MS scheme) without ε expansion [12].

VI. FULL POTENTIAL APPROACH

We finally present preliminary results obtained when one
takes into account the full field content of the effective
potential. In this case, we have employed the theta cutoff
(7) what allows to obtain analytical expressions for the RG
equations and thus a manageable integration of the RG flow.
However, due to the massive computational requirements of
this approach we have focused our attention on the d = 3
case delaying the study of the general case in Ref. [59].
Note that, for simplicity, we set ωk = 0, which is justified
by the observation that this coupling constant plays a minor
role around d = 3. First, we have determined the critical
exponent in the N = 7 case and have obtained: η = 0.0438
and ν = 0.760. These values are roughly compatible with
those obtained within the field semi-expansion [η = 0.039(2)
and ν = 0.735(5)]. This is also true in the N = 6 case for
which one finds: η = 0.0487 and ν = 0.716 to be compared
to η = 0.042(2) and ν = 0.695(5), with a critical exponent
ν still compatible with that found within the Monte Carlo
approach (ν = 0.700(11)). As for Nc(d = 3) the full potential
approach leads to the value Nc(d = 3) = 4.8 using the LPA.
Compared to the value Nc(d = 3) = 4.7 obtained within the
LPA in a field semi-expansion this shows that our expansion
was almost converged, as claimed in Sec. V B. Taking now
into account the derivative terms at lowest order (LPA’)
one finds Nc(d = 3) = 5.4, see Fig. 8. Compared with the
value Nc(d = 3) = 5.24(2) obtained within the LPA’ in a field
semi-expansion this confirms that the field expansion is almost
converged. However, compared to the value Nc(d = 3) = 4.8
obtained using the LPA this also shows that the effects of
derivatives terms are not negligible. Clearly, one cannot firmly
conclude that convergence of the derivative expansion has been
reached and one can expect that higher-order terms contribute.
However, it is very unlikely that these derivative terms drasti-
cally change the overall shape of the curve Nc(d) obtained here.

VII. CONCLUSION

We have investigated the behavior of noncollinear magnets
using a functional RG approach, focusing on the critical
value Nc(d). First, from the methodological point of view,
our approach, which combines computations based on a
field semi-expansion and computations performed without any
field expansion, confirms the validity of former approach to
investigate complex systems. Second, as for the physics of
frustrated magnets, our computations clearly favours a value of
Nc(d = 3) significantly larger than 3 excluding the occurrence
of a second-order phase transition in the physical N = 2 and
N = 3 cases. Our result confirms ε (and pseudo-ε) expansions
as well as early NPRG approaches based on the Polchinski
and Wetterich equations. It contradicts both those obtained
using fixed dimension perturbative approaches as well as
those resulting from recent CB approach. Up to now, there
is no indication of failure or even of weakness coming from
ε expansion. As for the NPRG approach one can wonder
about the effects of higher-order terms in derivative of the
fields on Nc(d). As already mentioned finite order truncations
in derivatives of the fields prevent to formally recover the
weak-coupling perturbative expansion beyond one-loop order.
Thus speculating on the possible origin of the discrepancy
between the NPRG and (fixed-dimension) perturbative ap-
proaches, one can wonder about the limitations of this kind of
approximation. A Green function, BMW, approach involving
the full momentum content could be of interest to answer
this question precisely. On the opposite, the conclusion of
second-order phase transition obtained within fixed dimension
approaches have been shown to be extremely dubious. There
is no such suspicion concerning the CB approach. However,
several points must be clarified in this context. First, it is
crucial to understand the status of the assumptions made in
this context and, in particular, that of the existence of scale
invariance. Second, it would be interesting to get, within this
approach, an account of the antichiral fixed point C− and the
“dynamics” of C+ and C− that generates the curve Nc(d) when
N is lowered or, at least, to get a more complete picture of the
fixed point structure within the (N,d) plane. In particular, it
would be very valuable to determine where, in this (N,d)
plane, the predictions of the CB approach disagree with those
of the NPRG and perturbative ε expansion approaches.

ACKNOWLEDGMENTS

This work was supported in part by the European Union’s
Research and Innovation funding programme FP7 IRSES
Marie-Curie Grant No. PIRSES-GA-2010-269139 “Dynam-
ics and Cooperative Phenomena in Complex Physical and
Biological Environments”. M.D. thanks the LPTMC for
hospitality during preparation of this work as well as for
financial support from short-time scholarship granted by the
Embassy of French Republic in Ukraine at initial stage of
the work. S.Y. was supported in part by a Grant-in-Aid for
Young Scientists (B) (15K17737), Grants-in-Aid for Japan
Society for Promotion of Science (JSPS) Fellows (Grants No.
241799 and No. 263111) and the JSPS Core-to-Core Program
“Non-equilibrium dynamics of soft matter and information”.

064405-11



B. DELAMOTTE, M. DUDKA, D. MOUHANNA, AND S. YABUNAKA PHYSICAL REVIEW B 93, 064405 (2016)

APPENDIX A: PROPAGATOR

The propagator of the model is a matrix whose components are given by the (Fourier transform) second derivative of �k with
respect to the field [see Eq. (22)] evaluated in the configuration Eq. (25). It is given by

�
(2)
k,(a,i),(b,j )[q1,q2] + Rk(q) =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

�k,(1,1),(1,1) �k,(1,1),(1,2) �k,(1,1),(2,1) �k,(1,1),(2,2)

�k,(1,2),(1,1) �k,(1,2),(1,2) �k,(1,2),(2,1) �k,(1,2),(2,2)

�k,(2,1),(1,1) �k,(2,1),(1,2) �k,(2,1),(2,1) �k,(2,1),(2,2) 0
�k,(2,2),(1,1) �k,(2,2),(1,2) �k,(2,2),(2,1) �k,(2,2),(2,2)

. . .

�k,(1,i>2),(1,i>2)

�k,(2,i>2),(2,i>2)

0
. . .

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
,

(A1)
or, taking account of the vanishing components and the symmetries, by

�
(2)
k,(a,i),(b,j )[q1,q2] + Rk(q) =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

A 0 0 C

0 E D 0
0 D F 0 0
C 0 0 B

. . .

H

G

H

0 G

. . .

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

, (A2)

where the matrix elements A,B,C,D,E,F,G, and H , are given by

A = Zkq
2 + Rk(q2) + 2U

(1,0)
k + (φ1

2 − φ2
2
)
U

(0,1)
k + φ1

2
(
4U

(2,0)
k +4

(
φ1

2−φ2
2
)
U

(1,1)
k +2U

(0,1)
k +(φ1

2 − φ2
2
)2

U
(0,2)
k

)
,

(A3)
B = Zkq

2 + Rk(q2) + 2U
(1,0)
k − (φ1

2 − φ2
2
)
U

(0,1)
k + φ2

2
(
4U

(2,0)
k −4

(
φ1

2−φ2
2
)
U

(1,1)
k +2U

(0,1)
k +(φ1

2 − φ2
2
)2

U
(0,2)
k

)
,

C = φ1φ2
(
4U

(2,0)
k − 2U

(0,1)
k − (φ1

2 − φ2
2)2U

(0,2)
k

)
, D = φ1φ2

(
−ωk

2
q2 + 2U

(0,1)
k

)
, (A4)

E = Zkq
2 + Rk(q2) + ωk

2
φ1

2q2 + 2U
(1,0)
k + ρU

(0,1)
k , F = Zkq

2 + Rk(q2) + ωk

2
φ2

2q2 + 2U
(1,0)
k + ρU

(0,1)
k , (A5)

G = Zkq
2 + Rk(q2) + 2U

(1,0)
k − (φ1

2 − φ2
2
)
U

(0,1)
k , H = Zkq

2 + Rk(q2) + 2U
(1,0)
k + (φ1

2 − φ2
2
)
U

(0,1)
k . (A6)

The eigenvalues of Eq. (A2) are given by

λ1,2 = A + B ±
√

(A − B)2 + 4C2

2
, λ3,4 = E + F ±

√
(E − F )2 + 4D2

2
, (A7)

λ5 = · · · = λ2N−1 = H, λ6 = · · · = λ2N = G. (A8)

Taking into account of the fact that in the configuration Eq. (25) that we consider to establish the equation of the effective
potential, one has φ1

2 + φ2
2 = ρ and (φ1

2 − φ2
2)2 = 4τ and the eigenvalues read

λ1± = Zkq
2 + Rk(q2) + 2U

(1,0)
k + 2ρU

(2,0)
k + ρU

(0,1)
k + 2ρτU

(0,2)
k + 8τU

(1,1)
k

±[τ(4U
(0,1)
k + 4U

(2,0)
k + 4τU

(0,2)
k + 4ρU

(1,1)
k

)2 + (ρ2 − 4τ )
(
2U

(2,0)
k − U

(0,1)
k − 2τU

(0,2)
k

)2] 1
2 = Zkq

2 + Rk(q2) + m 2
1±,

λ2± = Zkq
2 + Rk(q2) + 2U

(1,0)
k + ρU

(0,1)
k + ωk

4
ρ q2 ± 1

2

[
ω2

kτq4 + (ρ2 − 4τ )
(
−ωk

2
q2 + 2U

(0,1)
k

)2
] 1

2

= Zkq
2 + Rk(q2) + m 2

2±, (A9)
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where one has to take care about the fact that the “masses” m2+ and m2− are momentum-dependent. There are moreover N − 2
modes with eigenvalues λ3+ and N − 2 modes with eigenvalues λ3− with

λ3± = Zkq
2 + Rk(q2) + 2U

(1,0)
k ± 2

√
τU

(0,1)
k = Zkq

2 + Rk(q2) + m 2
3±. (A10)

For completeness, the mass spectrum at the minimum of the potential is given. In this case, one has U
(1,0)
k = 0 and τ = 0.

This implies that m 2
1+ = 4ρU

(2,0)
k , m 2

1− = 2ρU
(0,1)
k , m 2

2+ = 2ρU
(0,1)
k = m 2

1−, and m2− = m3+ = m3− = 0. As a consequence,

one obtains the following spectrum: one massive singlet with square mass m2
s = 4ρU

(2,0)
k , one massive doublet with square mass

md = 2ρU
(0,1)
k , and 2N − 3 Goldstone modes.

APPENDIX B: THE THRESHOLD FUNCTIONS

We finally discuss the different threshold functions l, m and n appearing in the flow equations.

1. Definitions

The threshold functions are defined as

ldn1,n2
(w1,w2,w) = −1

2

∫ ∞

0
dy yd/2−1∂̃t

[
1

(P1 + w1)n1 (P2 + w2)n2

]
,

md
n1,n2

(w1,w2,w) = −1

2

∫ ∞

0
dy yd/2−1∂̃t

[
y(∂yP1)2

(P1 + w1)n1 (P2 + w2)n2

]
, (B1)

nd
n1,n2

(w1,w2,w) = −1

2

∫ ∞

0
dy yd/2−1∂̃t

[
y∂yP1

(P1 + w1)n1 (P2 + w2)n2

]
,

where

P1 = P1(y) = y(1 + r(y))
(B2)

P2 = P2(y,w) = y(1 + r(y) + w)

and r(y) is the dimensionless cutoff: r(y) = Rk(yk2)/Zkyk2.
We recall that the tilde in ∂̃t means that only the t dependence of the function Rk is to be considered. As a consequence, we

should not consider the t dependence of the coupling constants to perform this derivative. Therefore, in the preceding equations,

∂̃tPi = ∂Rk

∂t

∂Pi

∂Rk

= −y(ηr(y) + 2yr ′(y)). (B3)

Now, threshold functions can be expressed as explicit integrals if we compute the action of ∂̃t . To this end, it is interesting to
notice the equality ∂̃t ∂yPi = ∂y∂̃tPi , so that

∂̃t ∂yr(y) = −η(r(y) + yr ′(y)) − 2y(2r ′(y) + yr ′′(y)). (B4)

We then get

ldn1,n2
(w1,w2,w) = −1

2

∫ ∞

0
dy yd/2 ηr(y) + 2yr ′(y)

(P1 + w1)n1 (P2 + w2)n2

(
n1

P1 + w1
+ n2

P2 + w2

)
, (B5)

nd
n1,n2

(w1,w2,w) = −1

2

∫ ∞

0
dy yd/2 1

(P1 + w1)n1 (P2 + w2)n2

[
y(1 + r(y) + yr ′(y))(ηr(y) + 2yr ′(y))

×
(

n1

P1 + w1
+ n2

P2 + w2

)
− η(r(y) + yr ′(y)) − 2y(2r ′(y) + yr ′′(y))

]
, (B6)

md
n1,n2

(w1,w2,w) = −1

2

∫ ∞

0
dy yd/2 1 + r(y) + yr ′(y)

(P1 + w1)n1 (P2 + w2)n2

[
y(1 + r(y) + yr ′(y))(ηr(y) + 2yr ′(y))

×
(

n1

P1 + w1
+ n2

P2 + w2

)
− 2η(r(y) + yr ′(y)) − 4y(2r ′(y) + yr ′′(y))

]
. (B7)
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