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Rotational instability of the electric polarization and divergence of the shear elastic compliance
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The rotational instability of the electric polarization P during phase transformations between ferroelectric
phases is of great practical interest, since it may be accompanied by extremely large values of the piezoelectric
coefficient, and a divergence of the coupled shear compliance contributes to such enhancements. In the literature,
this has been explicitly calculated in the framework of the Landau theory and discussed with specific numerical
simulations involving tetragonal, orthorhombic, and rhombohedral ferroelectric phases. When monoclinic phases
are involved, such an approach is practically impossible, and an approximated treatment has been proposed,
based on the observation that in those cases there are shear strains almost linearly coupled to the transverse
component of P, implying a divergence of the Curie-Weiss type in the associated compliances. Here the
argument is extended to the general case of transitions whose major effect is a rotation of the polarization,
and the limits of its validity are discussed. As experimental verification, the elastic response of BaTiO3 is
measured and analyzed, together with those of other ferroelectric perovskites available in the literature, such
as KNN.
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I. INTRODUCTION

Considerable attention in the field of piezoelectric materials
is devoted to the rotational or transverse instability of the
polarization [1–7] and, since the piezoelectric response is
made up of dielectric and elastic contributions [8–10], the
elastic response contains important information [11,12] that
is similar and complementary to the piezoelectric constants.
In addition, the elastic properties can be measured also in
nonferroelectric phases and are practically insensitive to the
presence of free charge carriers from ionized defects, when
measured on unpoled ceramic samples [13]. On the other hand,
the elastic response at transitions between ferroelectric (FE)
phases cannot be expressed in a simple and general manner,
and only in few instances explicit expressions of the elastic
anomalies have been provided [14–16] and discussed on the
basis of numerical examples. In fact, while these expressions
can be written in reasonably transparent forms in terms of the
spontaneous polarization Ps , they become quite complicated
when explicitly written as a function of temperature. In
addition, although the derivation of these expressions in the
framework of the Landau theory of phase transitions is not
conceptually difficult, the tedious algebra does not help in
gaining an intuitive physical picture. Therefore, the numerical
curves of the compliances sij (T ) exhibit divergences where
one intuitively expects them; for example s44 and s55 of
BaTiO3 increase rapidly when the orthorhombic (O) phase is
approached from the tetragonal (T) phase [14], in accordance
with the shear deformation of the cell transforming from the
T to the O structure [14], and similar enhancements are found
when the anisotropy of the free energy versus the direction
of P vanishes in solid solutions of the PbZr1−xTixO3 (PZT)
type [15,16]. Yet, the notion that the shear compliance must
become large does not provide information on the functional
dependence on temperature, while the exact knowledge of that
dependence from a numerical example is hardly generalizable
to other cases.

An intermediate level of analysis has been provided in
an attempt to cope with the transition from T to monoclinic
(M) structure occurring at the morphotropic phase boundary
(MPB; namely a nearly vertical boundary in the composition-
temperature phase diagram) of PZT and other PbTiO3-based
ferroelectrics [17,18]. These transitions are almost intractable
from the elastic point of view with the required free energy
expansion, which must include at least up to the eighth order
of powers of P. Here it is shown that the same approach can
be applied to any case of transition essentially consisting of a
rotation of the direction of the spontaneous polarization, with
little change of its magnitude, and as experimental verification
the classical case of BaTiO3 is revisited.

Previous studies of the elastic properties of BaTiO3 have
been focused on selected elastic constants, without reference
to the rotational instability at the FE/FE transitions [19], on
the precursor FE fluctuations and softening in the paraelectric
phase [11,20–23], and on the motion of domain walls (DWs)
and defects within the FE phases [24,25].

II. EXPERIMENTAL

Two samples from different preparations by conventional
mixed-oxide power techniques were tested. For sample BT 1
the starting nominal composition was BaTiO3 + 0.01 TiO2.
After mixing (distilled H2O), calcining (1100 ◦C, 2 h), and
fine-milling (distilled H2O), the powder was densified to
rectangular bars (about 3 g/cm3) and then sintered in air
(1400 ◦C, 1 h). The powder x-ray diffraction did not reveal
any trace of impurity phases. The samples had densities of
about 92% of the theoretical value (6.02 g/cm3) and a mean
grain size of about 50 μm. Sample BT 1 was cut as a bar of
dimensions 33 × 4.2 × 1.1 mm3.

Sample BT 2 was prepared from stoichiometric amounts
of BaCO3 (Aldrich, 99%) and TiO2 (Aldrich, 99.9%) pow-
ders wet-mixed in water using zirconia media and adding
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ammonium polyacrylate as dispersant. After freeze drying, the
mixture was calcined in air for 4 h at 1100 ◦C. The resulting
powder was sieved, compacted in bars by means of isostatic
cold pressing, and sintered for 2 h at 1450 ◦C. The final relative
density of the ceramics was 97% of the theoretical density.
X-ray diffraction did not reveal any trace of secondary phases
within the detection limit of the technique (1–2 wt. %). The
final shape of sample BT 2 was 46 × 4.5 × 0.5 mm3, but since
not all the sides were cut after sintering, some irregularities
in the shape made the measurement of the higher frequencies
noisy.

The dynamic Young’s modulus E = E′ + iE′′ was mea-
sured by suspending the sample on two thin thermocouple
wires in correspondence with the nodal lines of the first free
flexural resonance mode, almost coinciding with a pair of
the nodes of the fifth mode. Silver paint was applied at the
center of one of the faces and the edge, in order to make
electrical contact between the region facing an electrode and
the thermocouple, also acting as ground. The vibration at
frequency f is electrostatically excited by application of an
alternate voltage with frequency f/2 to the electrode. The
same electrode is part of a resonating circuit whose high
frequency (∼12 MHz) is modulated by the distance from the
sample, so that the vibration is monitored with a frequency
modulation technique [26]. From the fundamental resonance
frequency f1 of the sample it is possible to deduce the Young’s
modulus [27] E ∝ f 2

1 . During the same run also the next odd
flexural vibrations may be excited, whose frequency ratios
with f1 are 5.4 and 13.2. The data are presented as compliance
s = s ′ − is ′′ = 1/E, normalized to its minimum value s0, as
s ′(T )/s0 � f 2

0 /f 2
1 (T ), neglecting the changes in cell size with

temperature. The elastic energy loss coefficient Q−1 = s ′′/s ′
is measured from the decay of the free oscillations, if longer
than 0.1 s, or from the width of the resonance peak.

III. RESULTS

Figure 1 displays the real part of the compliance s and the
losses measured at 6 kHz during heating and cooling of sample
BT 1. All three phase transitions are clearly visible, similarly
to previous measurements on ceramic samples [23–25,28].
The temperatures of the extrema of s ′(T ) are TC = 399.5 K
during cooling, with a shift of �TC = 1.5 K during heating,
TOT = 286 K with �TOT = 5 K, and TRO = 191.6 K with
�TRO = 11 K. Therefore, they are all first order, particularly
the R/O transition, but outside the temperature range of the O
phase the s ′(T ) curves are well reproducible between heating
and cooling.

The most important feature for the present purposes is
the fact that s ′ has a step at TC but peaks at TOT and TRO.
The step at TC is rounded by some precursor softening in
the C-PE phase, which has been amply studied in terms of
fluctuations of the polarization [11,20–22]. In addition, the
stiffening just below TC is mainly related to domain wall
(DW) relaxation, as shown later. On the other hand, the two
anomalies at TOT and TRO completely lack the step and exhibit
progressive softening on approaching the transitions from both
high and low temperature. Actually, s ′ makes a jump during
heating through the R/O transition, but this is due to large
thermal hysteresis: the R phase remains metastable well into

FIG. 1. Normalized compliance s ′ and elastic energy losses s ′′/s ′

of sample BT 1 measured at 6 kHz during cooling and heating.

the stability region of the O phase and the transition appears
more abrupt. The different behaviors at the three transitions
are better put in evidence by normalizing the three anomalies
as s ′/s ′(Tx) vs T/Tx in Fig. 2.

In order to verify a possible dependence of the shapes of
the elastic anomalies on DW relaxation, the measure has been
repeated on the longer and thinner BT 2 (Fig. 3), where it was
possible to excite also the third and fifth free flexural modes.

The dependence on frequency is much more evident in
the losses than in the real part, because they are totally
due to relaxation of DWs, defects, and fluctuations, while s ′
has a prevalent elastic intrinsic contribution from the phase
transformations. The frequency dispersion of s ′ is more evident

FIG. 2. Compliance anomalies measured during cooling normal-
ized in magnitude and temperature.
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FIG. 3. Normalized compliance s ′ and elastic energy losses s ′′/s ′

of sample BT 2 measured at 0.9, 4.7, and 12 kHz during cooling.

below TOT and TC, in correspondence with the highest values
of the losses, and can therefore be attributed to DW relaxation.
The inset shows that at higher frequencies the upturn of s ′
just below TC shifts to higher temperature and also decreases,
suggesting that it is totally due to DW relaxation. A similar
feature has been observed more clearly in PZT [10,17]. Instead,
the rise of s ′ below TOT cannot be attributed to DW relaxation,
because passing from 0.9 to 12 kHz the amplitude of the losses,
and hence of DW relaxation, is halved, while s ′ is almost
unchanged.

IV. DISCUSSION

A. Elastic anomaly at a second-order phase transition from
Landau theory

We recall the main results that can be obtained from the
Landau theory of the phase transitions regarding the elastic
anomalies at ferroelectric transitions, referring to the simplest
case of a second-order transition with one-dimensional order
parameter P . In this case the Gibb’s free energy is written
as [10,29]

G = α

2
P 2 + β

4
P 4 − 1

2
s0
ij σiσj − LiσiP − QiσiP

2,

(1)
α = α′(T − TC),

where all the coefficients of the expansion in powers of P

and stress σ are independent of temperature except that of
P 2, which decreases linearly and becomes negative below TC.
The elastic energy of the symmetric PE phase is expressed
in terms of s0

ij , where i,j = 1–6 are in Voigt notation (xx →
1, yy → 2, zz → 3, yz → 4, xz → 5, xy → 6) and there is
summation over repeated indexes. The first coupling term, lin-
ear in both P and σ , is forbidden by symmetry, because it must

be symmetric under inversion, like the cubic symmetric phase
that it also describes. Since an inversion causes P → −P and
σ → σ (stress σ and strain e are centrosymmetric second-rank
tensors), the bilinear term changes sign and is forbidden:
it must be L = 0. Then the first allowed coupling term is
the electrostrictive QσP 2. The resulting anomalies in the
compliance sij = dei

dσj
, taking into account the variation of the

equilibrium P due to the application of σ , have been calculated
also for more complicated [15,16] and general [29,30] cases.
Even though we have just shown that it must be L = 0 in
the free energy Eq. (1) of a cubic PE phase, in the following
discussion it will be useful to see the effect of the bilinear
coupling term on the elastic anomaly, which in the general
case L �= 0 can be written as [10,29]

sij (T > TC) = s0
ij + LiLj

α′(T − TC)
, (2)

sij (T < TC) = s0
ij + LiLj

2α′(TC − T )
+ (LiQj + LjQi)√

α′β(TC − T )

+ 2QiQj

β
. (3)

Normally, L = 0 and the only effect of the ferroelectric
transition is a steplike softening below TC of magnitude
2Q2/β, as observed at TC in BaTiO3 and Ti-rich PZT [17].
Instead, the bilinear coupling alone causes a divergence exactly
of the Curie-Weiss type both above and below TC, of magnitude
∝ L2/α′. This type of behavior is indeed observed when the
PE phase is piezoelectric; for example, a much studied case is
the c66 elastic constant of KDP [31]. Notice also that, already
in the simple case of a one-dimensional order parameter, the
two types of anomalies are not simply additive below TC, since
there is a mixed term, but above TC only the Curie-Weiss term
from bilinear coupling is present.

B. Relationship between dielectric, elastic,
and piezoelectric responses

Before discussing further the nature of the softenings at the
FE transitions, we would like to stress that they participate
in the enhancement of the piezoelectric effect. A particularly
simple relationship in this respect can be obtained starting
from the original model [32] of ferroelectricity in terms
of thermodynamic equilibrium of the possible orientations
of the spontaneous polarization in each cell, producing
a high-frequency dielectric relaxation with amplitude �χ ,
and also considering the anelastic relaxation with amplitude
�s (enhancement of the compliance) from the associated
anisotropic strain (e.g., tetragonality in a T-FE phase) [10].
Then, the amplitude of the piezoelectric effect can be expressed
as [10] (see Refs. [8,9] for an analogous expression for the
relaxation of noninteracting point defects)

d =
√

�χ�s �
√

ε�s, (4)

where the magnitude of the dielectric constant can be almost
completely associated with the FE phase, while the compliance
s0 in the paraelectric phase in general cannot be neglected with
respect to the enhancement �s in the FE phase. The above
formula expresses the fact that the piezoelectric effect is made
on an equal basis of a change in polarization and in strain, the
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first producing an enhancement of the dielectric susceptibility
and the latter of the elastic compliance.

C. Nearly linear coupling between polarization
rotation and shear strain

At the middle of the MPB of PZT a large softening
reminiscent of the Curie-Weiss term is observed, which has
been associated with the T/M transition, with the M phase
intermediate between T and R [17,18]. In order to explain
the peaked softening, anomalously large and extended in
temperature, it has been observed that the main effect of the
T/M transition is a rotation of P away from (001), and the shear
strains e4 and e5 are almost linearly coupled to the rotation
angle, so that the elastic compliances s44 and s55 are expected
to diverge as Eqs. (2) and (3) with L �= 0 [17,18].

We reproduce here the argument for the case of the T/O
transition of BaTiO3 and observe that it is more general than the
case of the T/M transition with little change of the orientation
of P; in fact it applies to any transition where the main result
is a rotation of P.

Looking at Fig. 4, we express P in terms of P0 in the
T phase and of the transverse components Px = P0 sin θx ,
Py = P0 sin θy , where θx and θy are the rotation angles of P
away from the T direction in the xz and yz planes. Then, the
electrostrictive coupling term permitted by symmetry, Gc =
−QijkσiPjPk , becomes

− Gc = Q11
[
σ1P

2
x + σ2P

2
y + σ3P

2
0

]
+Q12

[
(σ1 + σ2)P 2

0 + σ3
(
P 2

x + P 2
y

)]
+Q44[(σ4Px + σ5Py)P0 + σ6PxPy], (5)

where the Voigt notation is used also for the last pair of indexes
of Qijk . Until we disregard the variation of P0 compared to
that of the transverse components Px,Py , the latter behave
as the order parameters of the T/O transition. In addition, as
long as Px,Py 
 P0, we also neglect the terms quadratic in
Px,Py , considered as constants, or producing steplike elastic
anomalies those quadratic in P0, and focus on

Gc � −Q44(σ4Px + σ5Py)P0, (6)

FIG. 4. Polarization at the T/O transition; exz is the strain coupled
to the polarization rotation. The magnitudes of P are according to the
eight-site model of BaTiO3, and also shown are the eight off-center
positions of Ti.

FIG. 5. Expected anomalies in the compliance at a phase transi-
tion from the linear and the quadratic coupling of stress to the order
parameter [Eq. (1)]. (1) Steplike softening from the linear-quadratic
coupling. (2) Curie-Weiss-type softening from bilinear coupling.
(3) Simulation of polycrystalline average of curve (2) with other
constant compliances.

which is linear both in the shear stresses σ4 and σ5 and in the
order parameters Px and Py . We are exactly in the situation of
Eqs. (1) and (2) with L = −Q44P0 yielding

s44 = s55 = s0
44 + Q2

44P
2
0

α′

{
1

T −T0
(T > T0),

1
2

1
T0−T

(T < T0),
(7)

where T0 = TOT for the O/T transition. Apart from the approx-
imations done, including that of a second-order transition,
the divergence in ceramic samples is trimmed down by the
fact that one measures a combination of elastic constants, of
which only c44 = 1/s44 and c55 = 1/s55 vanish at T0, while
the others keep the effective modulus finite. The appearance
of this type of elastic anomaly is demonstrated in Fig. 5 for
the two main types of elastic responses. Curve (1) is Eq. (3)
with 2Q2/β = 1.5, s0 = 1, corresponding for example to s33

at TC; curve (2) is Eq. (7) with Q2
44P

2
0 /α′ = 0.1, s0 = 1;

curve (3) is a polycrystalline average of the latter response
with other constant compliances, the Voigt-type average of
2/3 of curve (2) with another constant compliance s1 = 1/3:

s = (s−1
1 + s−1

44 )
−1

.
Notice that the condition for nearly isotropic free energy,

which is not applicable in the simple free energy Eq. (1) but has
been amply discussed [15,16,33], makes possible the rotational
instability of the polarization, and hence the T/O transition,
but the above expression of the diverging compliance contains
additional information related to the piezoelectric response.
In fact, the magnitude of the effect is proportional to
(i) the square of the electrostrictive coupling involved in the
transition, (ii) the square of the magnitude of the polarization,
and (iii) the reciprocal curvature or flatness of the free energy
minimum near the transition. This means that the magnitude
of the maximum of the compliance is closely correlated
to that of the piezoelectric effect, and, considering that the
elastic measurements on unpoled ceramics at kHz and lower
frequencies are insensitive to free charges, make this type
of measurement a valid tool for investigating solid solutions
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where large piezoelectric responses from the rotation of the
polarization are expected.

The assumption leading to Eq. (7) of a transition with
continuous rotations of the polarization and no change of
its magnitude is akin to the introduction of a reduced free
energy depending only on the polarization direction in order
to study the equilibrium ranges of the possible FE phases,
including the monoclinic ones [34]. In another approach to
the same problem, Hudak [35] redefined the order parameter
as P = P sin θ , as above. The present approach is to neglect
the variation of P and focus on that of sin θ ∼ θ , since the
analysis of the possible phases has already been done in various
approximations [34–36] and we are only interested in the effect
of the polarization rotation, hence of θ , on the elastic response.
The presence of additional components of the order parameter
will introduce additional features to the elastic anomaly, like
a jump.

D. The case of BaTiO3

In Sec. III it has been shown that the peaks in the reciprocal
Young’s modulus of ceramic BaTiO3 are intrinsic and not
a result of DW relaxation. To the same conclusion lead
the measurements made with the torsional pendulum over
a broad range of lower frequencies [28] (0.01–1 Hz): the
peaked softenings are independent of frequency, even though
the losses contain large relaxational contributions. We do
not attempt fits of the s ′(T ) curves in terms of Eq. (7)
because they would be of limited significance, considering the
polycrystalline average, the overlapping of the effects of two
rotational transitions of the polarization, the approximation of
the second-order transition leading to Eq. (7), and its limited
validity below the rotational transition, when Px becomes
comparable to P0. Nonetheless, it is clear that the peaked
softenings at TOT and also TRO are of the type of Eq. (7).

In BaTiO3 the schematization of the spontaneous polar-
ization changing direction but not magnitude at the FE/FE
transition is not strictly valid. In fact, the transitions can also
be schematized in terms of progressive localization of the Ti
ions in the 〈111〉 off-center positions belonging to a same
cube face (T), edge (O), and a single off-center site (R).
The experimental evidence supporting such an order-disorder
character comes for example from EXAFS experiments [37]
and from the observation of a non-null electric field gradient
at the Ti site also in the cubic phase [38]. In the model of
progressive localization of Ti over the eight off-center sites,
the magnitude of the polarization should increase by a factor of√

2 in the O phase with respect to the T phase, and of
√

3 in the
R phase. In practice, the change in the magnitude of P during
the various transitions is smaller and nearly continuous [39],
and appears as a consequence of the FE/PE transition; only
the Pz projection on the c axis has jumps at the first-order
FE/FE transitions, validating the approximation of their order
parameter as the rotation angle or transverse component of
P. In addition, the transitions in BaTiO3 are generally treated
as displacive [38] or at least the displacive and order-disorder
characters are seen to coexist [40]. Therefore, the assumption
that the FE/FE transitions in BaTiO3 consist mainly of
rotations of the polarization is correct. The assumption of
the smallness of the transverse components of P producing

its rotation is certainly valid and explains the rise of the
compliance when approaching TOT and TRO from above,
where these components only fluctuate with null mean value.
The strong first-order nature of the FE-FE transitions may
invalidate the approximation of small magnitude of the order
parameter below their temperatures TOT and TRO, but this does
not exclude the enhancement of the elastic compliance of
the Curie-Weiss type, as experiments show; simply, in these
temperature regions one cannot exploit the approximation of
nearly bilinear stress-polarization coupling and has to carry
out the full calculations.

E. Generality of the shear softening at the rotational transition
of the polarization

As also shown in a recent review [10], PZT at the
MPB is an outstanding case of a maximum of the com-
pliance associated with a rotational instability of the polar-
ization, but there are other perovskite solid solutions that
conform to the present analysis: that of PbTiO3 with
the relaxor ferroelectric PbMg1/3Nb2/3O3 [41], the pseu-
dobinary (1 − x)Ba(Ti0.8Zr0.2)O3 − x(Ba0.7Ca0.3)TiO3 with
x ∼ 0.5 [12,42,43], which can be seen as a tuning close
to room temperature of the sequence of transitions of
BaTiO3, of K1−xNaxNbO3 (KNN) and some KNN-based
compounds [44], and possibly (Na1/2Bi1/2)1−xBaxTiO3 (NBT-
BT) [45]. The case of NBT-BT is uncertain; indeed a broad
peak in the elastic compliance develops on approaching the
MPB composition x ∼ 0.06 separating R and T phases, but
there is scarcity of elastic data at higher Ba content, and
it seems that the softening is connected to a strain-glass
transition, involving short-range ordering of strain rather than
polarization rotation [46].

Instead, the K1−xNaxNbO3 system with x � 0.5 is particu-
larly interesting in the present context. It exhibits a C-PE/T-FE
transition at TC = 670 K, followed by a transition to O or
M phase with rotation of P at TOT = 470 K, and below TOT

there is a vertical MPB in the x-T phase diagram between
O and M phases differing in octahedral tilting rather than
in the direction of P [47]. The piezoelectric coupling d

presents a sharp maximum right at TOT, the temperature of
the rotational instability, and at the MPB is lower than within
the T phase [48], confirming the essential role of the rotational
instability of P compared to the presence of lattice disorder
and MPBs [49]. The latter enhance d in as much as they favor
the rotational instability and extend its temperature range.
Accordingly, resonant ultrasound spectroscopy measurements
reveal that the bulk modulus of KNN undergoes minor changes
at TOT, while the shear modulus behaves similarly to the
Young’s modulus of PZT close to the MPB and of the other
systems just mentioned: step at TC and minimum of the type
of Eq. (7) at TOT [50]. Evidently, while the bulk modulus
has no contributions from the volume-conserving shears, the
shear modulus has an important contribution from the step of
c11–c12 at TC and from the Curie-Weiss-type softening of c44

and c55 at TOT. The latter must be responsible for the peak in
the piezoelectric coupling [48].

We emphasize that the approximation of quasibilinear
coupling between shear and rotation of the polarization does
not depend on the fact that the rotational instability is obtained
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by changing only temperature, as in undoped BaTiO3, or also
the composition, as in the PbTiO3-based solid solutions. The
approximation holds until the order parameter is close to a
rotation of the polarization and its mean value is small. The
condition of smallness of the order parameter is certainly
satisfied above the temperature of the transition, where its
mean value is null, and possibly also in a temperature range
below the transition temperature, unless a strong jump in the
direction of the polarization occurs due to a marked first-order
character of the transition. In the latter cases one cannot avoid
working out the full calculations.

V. CONCLUSION

The relationship between enhancement of the piezoelectric
coupling and rotational instability of the polarization with con-
sequent enhancement of the shear elastic compliance has been
discussed. The previous analysis of the tetragonal/monoclinic
transition at the morphotropic phase boundary of PZT [17,18]
has been extended to the general case of transitions with
rotation of the electric polarization, and as experimental
verification the elastic response of BaTiO3 has been revisited.

The important point is that the rotation of the polarization
is almost linearly coupled to the corresponding shear strain,
leading to an enhancement of the shear compliance of the type
1/|T − T0|, whereas normally ferroelectric transitions cause
steps in the elastic constants. Particularly the enhancement at
T > T0 is obtained within the usual Landau theory without
introducing the fluctuations. Therefore, this divergence is
an intrinsic robust feature to be found whenever there is a
rotational instability of the polarization, and it substantially
contributes to the enhancement of the piezoelectric coefficient.

It follows that the measurement of the elastic properties
is very informative in the study of the phase diagrams of
solid solutions designed for obtaining giant piezoelectricity,
particularly in possible cases where extrinsic defects and
the associated free charges obscure the ferroelectric and
piezoelectric responses.
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