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First-principles equation of state calculations of warm dense nitrogen
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Using path integral Monte Carlo (PIMC) and density functional molecular dynamics (DFT-MD) simulation
methods, we compute a coherent equation of state (EOS) of nitrogen that spans the liquid, warm dense matter

(WDM), and plasma regimes. Simulations cover a wide range of density-temperature space, 1.5-13.9 gem™

3

and 103-10° K. In the molecular dissociation regime, we extend the pressure-temperature phase diagram beyond
previous studies, providing dissociation and Hugoniot curves in good agreement with experiments and previous
DFT-MD work. Analysis of pair-correlation functions and the electronic density of states in the WDM regime
reveals an evolving plasma structure and ionization process that is driven by temperature and pressure. Our
Hugoniot curves display a sharp change in slope in the dissociation regime and feature two compression maxima
as the K and L shells are ionized in the WDM regime, which have some significant differences from the predictions

of plasma models.

DOLI: 10.1103/PhysRevB.93.064101

I. INTRODUCTION

Nitrogen is a prototypical molecular system known for
its large cosmological abundance, ability to form numerous
chemical compounds, and its interesting solid, liquid, and
electronic phase transitions at high pressures and temperatures
[1,2]. Nitrogen can be found over a wide range of physical and
chemical conditions throughout the universe, ranging from low
densities in interstellar space [3] to extreme densities in stellar
cores [4], and it plays important roles in planetary atmospheres
[5] and interiors of ice giant planets [6]. In the condensed
matter regime, nitrogen is capable of forming a wide variety of
triple-, double-, and single-bonded compounds, which makes
it of interest to geological and energy sciences. At higher
densities and temperatures, nitrogen exists as a molecular fluid
that undergoes a pressure-induced dissociation transition to
polymeric and atomic fluids of interest in planetary science
[7-9]. In the warm dense matter (WDM) regime, nitrogen ex-
ists in partially ionized plasma states, which are of fundamental
interest to shock physics and astrophysics communities. An
accurate understanding of the equation of state (EOS) in
these regimes is important for determining the thermodynamic
properties of the various nitrogen phases and their implications
for science and technology.

At ambient conditions, nitrogen exists as a diatomic gas
comprised of strong, triply-bonded dimers. At low 7', nitrogen
forms a molecular solid that undergoes a series of solid
phase transitions with increasing pressure (see Fig. 1), which
have been identified by a number of static compression
experiments [10-15]. Around 50-70 GPa, density functional
molecular dynamics (DFT-MD) simulations first predicted
[16-21] the triple bond would destabilize to form various
lower-energy, nonmolecular (possibly amorphous), polymeric
phases composed of double- or single-bonded atoms, such as
cubic gauche [18]. Later, static compression experiments con-
firmed the transition to nonmolecular phases [14,15,22-30].
The most extreme static compression experiments thus far
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have measured the equation of state up to a pressure of
270 GPa [24] and temperatures ranging up to 2000 K [15].
First-principles simulations [18,20,21,31-39] have predicted
solid molecular and nonmolecular phases up to pressures as
high as 400 GPa [20]. However, first-principles predictions
do not agree with experiments on what high pressure phases
are stable at 7 = 0 K (Fig. 1), which continues to make solid
nitrogen an interesting test case for improved experimental
and theoretical methods.

While the solid phases have been intensely studied, the
liquid, and, particularly the WDM and plasma states, have
been investigated to a lesser extent. In this paper, we focus on
extending the studies of the EOS of liquid, WDM, and plasma
states of nitrogen (Fig. 2). Several experimental measurements
of dense, liquid nitrogen states have been performed using
dynamic shock compression experiments [7,40—47], with the
most extreme ones reaching up to a pressure of 180 GPa
[47] and a temperature of 14 000 K [7]. The main focus
of these experiments was to understand the shock-induced
dissociation of molecular nitrogen at 30-80 GPa on the
Hugoniot curve, as reviewed by Ross [1] and Nellis [2].
Nitrogen is also particularly interesting among the diatomic
molecules because it exhibits unexpected phenomena, such as
reflected-shock-induced cooling, where the dissociation to a
polymeric fluid gives rise to a region of the phase diagram
with (AP/90T)y < 0 (Fig. 1). In this paper, we revisit the
dissociation curve and connect the liquid EOS to the WDM
and plasma regimes.

Theoretical studies of shock-induced dissociation of dense,
fluid nitrogen have been performed with a variety of ap-
proaches. A number of semiempirical techniques have been
employed, such as fluid variational theory [8,44,48-51],
molecular dynamics [52], chemical equilibrium models [53—
55], Monte Carlo [56], and integral equation theory [57].
First-principles DFT-MD has also been used to study shocked,
fluid states [58—60]. The semiempirical and DFT-MD studies
have been successful in predicting the principal Hugoniot
curve and doubly shocked cooling within the dense, fluid
dissociation regime (up to 110 GPa and 20 600 K) [58],
in good agreement with the experimental measurements. In
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FIG. 1. Pressure-temperature phase diagram of nitrogen. The
lower panel displays solid phases, molecular, polymeric, and atomic
fluid phases, and the plasma regime. Phases well characterized
by experiments are outlined with solid black lines, while others
are outlined with a dashed line. Circles represent a subset of
our DFT-MD isochore data used to compute the Hugoniot (thick,
short-dashed curve) and dissociation curves. The latter changes from
a dashed to solid curve to indicate the change to a first order
liquid-liquid transition region. The upper panel is a magnified view
of the molecular dissociation region, showing a larger subset of
our DFT-MD calculations. The thick and thin dashed curves are
our predicted Hugoniot curves for two different initial densities of
0.808 and 1.035 g cm™3, respectively. Here, we also compare our
dissociation curve with previous DFT-MD simulations by Boates
et al. [9] (blue line). The green shaded area marks the region from
the onset of dissociation, where the isochores begin to show that
(@P/0T)y < 0, to the point at which pressure returns to its value
before the onset of dissociation.

addition, Ross and Rogers [8] have used the activity expansion
method (ACTEX) [61] to compute the Hugoniot curve in
the plasma regime. ACTEX is a semianalytic plasma model
parameterized by spectroscopic data and is based on the grand
partition function for a Coulomb gas of ions and electrons.
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FIG. 2. Temperature-pressure isochores computed with DFT-MD
(circles) and PIMC (squares) at densities of 2.5, 3.7, 7.8, and
13.9 g cm™3. The blue dash-dotted line shows the Hugoniot curve

for an initial density of pp = 1.035 g cm™>.

It has been successful at predicting plasma properties in the
weak-to-moderate coupling regime [62]. The ACTEX model
identifies a Hugoniot curve compression maximum associated
with K shell (1s) ionization, which will be discussed in more
detail in Sec. VL.

DFT-MD has provided the most accurate description of
liquid and warm dense states of nitrogen up to moderate
temperatures (~10° K). However, for higher temperature
applications, such as astrophysical modeling and exploring
pathways to fusion, a first-principles method that extends the
EOS across the entire high energy density physics regime,
bridging the liquid, WDM, and plasma regimes, is still needed.
PIMC is one of the most promising first-principle methods to
extend our study beyond the scope of DFT-MD because it
is based on a quantum statistical many-body framework that
naturally incorporates temperature effects and, in addition,
becomes more efficient at higher temperatures. Building on
earlier simulations of hydrogen [63—68] and helium [69-71],
we have been extending the PIMC methodology for WDM
composed of increasingly heavy elements [70,72-76]. Here,
we apply our PIMC and DFT-MD simulations to liquid
and WDM states of nitrogen over a much wider density-
temperature range (1.5-13.9 gecm ™3 and 10°-10° K, see Figs. 1
and 2) than has been previously explored with DFT-MD alone.

The paper is organized as follows: In Sec. II, we describe
PIMC and DFT-MD simulation methods for liquid and WDM
regimes. In Sec. III, we first discuss the DFT-MD calculations
of the liquid EOS, its dissociation transition, and present an
updated phase diagram. We then extend the liquid EOS into
the WDM and plasma regimes and show that DFT-MD and
PIMC produce consistent results for intermediate tempera-
tures. In Sec. IV, we characterize the structure of the plasma
and ionization processes by examining changes in different
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pair-correlation functions as a function of temperature and
density. In Sec. V, we discuss the electronic density of states to
provide further insight into the ionization process. In Sec. VI,
we discuss shock Hugoniot curves. Finally, in Sec. VII, we
summarize our findings.

II. SIMULATION METHODS

PIMC [77-79] is a state-of-the-art first-principles method
for computing the properties of interacting quantum systems at
finite temperature. Since PIMC is based on the thermal density
matrix formalism, it naturally incorporates temperature into
the framework. The density matrix is expressed in terms of
Feynman’s imaginary time path integrals, which are evaluated
by efficient Monte Carlo techniques, treating electrons and
nuclei equally as quantum paths that evolve in imaginary
time without invoking the Born-Oppenheimer approximation.
Therefore, PIMC is able to explicitly treat all the effects
of bonding, ionization, exchange-correlation, and quantum
degeneracy in a many-body framework that simultaneously
occurs in the WDM regime [80]. The Coulomb interaction
is incorporated via pair density matrices derived from the
eigenstates of the two-body Coulomb problem [81,82]. The
efficiency of PIMC increases with temperature as particles
behave more classically at higher temperatures and fewer time
slices are needed to describe quantum mechanical many-body
correlations.

PIMC requires a minimal number of controlled approxi-
mations, which are minimized by converging the time step
and system size. We determined the necessary time step by
converging total energy until it changed by less than 1.0%.
We use a time step of 1/256 Ha™! for temperatures below
4 x 10° K. For higher temperatures, we decreased the time
step as 1/T. In order to study finite size errors, we perform
simulations with 8 and 24 atoms in cubic simulations cells and
found that the total energy differed by 0.4% or less [75]. All
results for the internal energy and pressure that we report have
statistical errors of 0.3% or less.

The only uncontrolled approximation in PIMC is the fixed-
node approximation that is introduced to avoid the fermion
sign problem [77]. We employ a free-particle nodal structure,
which we have shown to work reliably for partially ionized
hydrogen [67], helium [70], carbon [72], water [72], oxygen
[74], and neon [75]. Free-particle nodes work well as long as
only a small number of bound electronic states are occupied.
For plasmas of first-row elements, we have found that free
particle nodes yield good results for conditions where the 1s
states are fully occupied and the 2s states are partially occupied
[72]. Lower temperature conditions can be studied efficiently
with DFT-MD.

DFT-MD [84] is an efficient, state-of-the-art, first-
principles method for zero and low temperatures (7 < 1 x
10% K). DFT formalism provides a mapping of the many-body
problem onto a single-particle problem with an approximate
exchange-correlation potential to describe many-body effects.
In the WDM regime, where temperatures are at or above
the Fermi temperature, the exchange-correlation functional is
not explicitly designed to accurately describe the electronic
excitations [85]. However, in our previous PIMC and DFT-MD
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work [72], we found existing DFT functionals to be sufficiently
accurate even at high temperatures.

DFT incorporates effects of finite electronic temperature by
using a Fermi-Dirac function to smear out the thermal occu-
pation of single-particle electronic states [86]. As temperature
grows large, an increasing number of bands are required to
account for the occupation of excited states in the continuum,
which typically causes the efficiency of the algorithm to
become intractable at temperatures beyond 1 x 10° K. In
addition, pseudopotentials replace the core electrons in each
atom to improve efficiency. Here, we are careful to avoid using
DFT-MD at temperatures where the K shell electrons undergo
excitations and study those conditions with PIMC instead.

Progress has been made in orbital-free (OF) DFT and
average-atom DFT methods, which introduce additional ap-
proximations beyond standard Kohn-Sham DFT-MD in order
to improve the efficiency of the scaling with temperature.
OF-DFT approximates the free energy of the homogeneous
electron gas by a functional that is independent of the single-
particle orbitals [87,88]. The speed-up gained has resulted
in a significant trade-off in accuracy, but recent OF-DFT
developments have shown the method is potentially capable of
being competitive with KS-DFT [89,90]. In an effort to make
even greater gains in efficiency, DFT-based average-atom
models make further approximations based on solving for
the electronic properties of a single atom within the plasma
[91]. Such models have been shown to predict the electronic
structure of the isolated atoms well, and recent developments
have begun a more consistent treatment of many-body systems
[92]. OF-DFT and average-atom models are capable of
simulating systems sizes up to a few hundred particles, but
ultimately, along with DFT-MD, they are based on a ground-
state framework, and it is important to develop more accurate,
finite-temperature methods with fewer approximations, such
as PIMC, to benchmark such calculations.

We employ standard Kohn-Sham DFT-MD simulation
techniques for our calculations of liquid and WDM matter
states. Simulations are performed with the Vienna ab initio
simulation package (VASP) [93] using the projector augmented-
wave (PAW) method [94], and a NVT ensemble, regulated
with a Nosé-Hoover thermostat. Exchange-correlation effects
are described using the Perdew-Burke-Ernzerhof [95] gen-
eralized gradient approximation. Electronic wave functions
are expanded in a plane-wave basis with an energy cutoff as
high as 2000 eV in order to converge total energy. For liquid
simulations, we used 64-atom supercells with a time step of
1.5 fs. For WDM calculations, size convergence tests up to a
24-atom simulation cell at temperatures of 10 000 K and above
indicate that total energies are converged to better than 0.1%
in a 24-atom simple cubic cell. We find, at temperatures above
250 000 K, 8-atom supercell results are sufficient since the
kinetic energy far outweighs the interaction energy at such high
temperatures [75]. The number of bands in each calculation
is selected such that thermal occupation is converged to better
than 10~%, which requires up to 8000 bands in a 24-atom cell
at 1 x 10® K. All simulations are performed at the I' point
of the Brillouin zone, which is sufficient for high temperature
fluids, converging total energy to better than 0.01% relative to
a comparison with a converged grid of k points.
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III. EOS OF LIQUID, WDM, AND PLASMA PHASES

In this section, we report our DFT-MD and PIMC EOS
results for the liquid, WDM, and plasma regimes. The
Supplemental Material [83] provides all of our computed
pressure and energy data. The VASP DFT-MD energies
have been shifted by —54.3064682071 Ha/atom in order to
bring the PAW-PBE pseudopotential energy in alignment with
all-electron DFT calculations. The shift was calculated by
performing an all-electron atomic calculation with the OPTUM
code [96] and a corresponding isolated-atom calculation in
VASP.

In the liquid regime, we computed isochores with DFT-MD
on a dense grid of 15 densities spanning conditions from
1.5-3.7 gem™3 and 10°-5 x 10* K, in order to accurately map
out the molecular dissociation transition. We extend the work
of Boates et al. [9] to higher temperatures and lower pressures.
Our pair-correlation curves agree with the experimental molec-
ular bond length of 1.1 A atlow temperature and are generally
consistent with the work of Boates et al. Our dissociation curve
was constructed by determining the temperature at which the
molecular lifetime reached 0.2 ps, which is the same cutoff
for molecular stability used by Boates and limits it to 15
vibrations. Consistent with previous work [7,9,43,45,59], we
find (0P/dT)y < 0in the dissociation region with a first order
dissociation transition at pressures near 78-90 GPa. Below
18 GPa, we find no (0 P/3T)y < 0 region exists.

Figure 1 shows the pressure-temperature phase diagram
with our dense grid of DFI-MD isochores in the liquid
region, as well as the dissociation and Hugoniot curves.
The lower panel of Fig. 1, which includes a subset of our
DFT-MD isochores, shows the phase diagram ranging from
solid to low-temperature plasma phases. The solid phase
boundaries, outlined with solid lines, are reproduced from a
variety of experiments [11-15,97-99]. The melting curve is
also reproduced from experiments [97-99], which agrees with
DFT-MD calculations [ 100], and displays a negative slope with
a triple point near 90 GPa and 1000 K. We include phases that
have been predicted to be stable by a DFT random structure
searching algorithm at 7 = 0 K [20], which have not been
seen by experiment.

The upper panel of Fig. 1 is a magnified view of the
dissociation region, displaying a larger subset of the DFT-
MD isochores performed in our study. The molecules may
dissociate into polymeric or atomic fluid through a first order
phase transition, marked by the solid portion of dissociation
line in the figure. As pressure decreases, the dissociation curve
reaches a critical point near 78 GPa and 4100 K, marked by
a white dot and a change to a dashed line to indicate the
transition is no longer first order. Starting at 18 GPa, where
our DFT-MD data ends, we constructed a free energy model
[101] with noninteracting atoms and molecules that extends the
dissociation curve to low pressures, marked by a thin, dashed
line. We postpone the discussion of the liquid Hugoniot until
Sec. VL.

In order to extend our nitrogen EOS into the WDM and
plasma regimes, we compute additional isochore data with
DFT-MD and PIMC for temperatures ranging up to 10° K for
four of the densities (2.5, 3.7, 7.8, and 13.9 gcm_3). Figure 2
shows the data computed for the four isochores and compares
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FIG. 3. Isochores computed with PIMC (squares), DFT-MD
(circles), and the Debye-Hiickel model (dashes) at four densities.
The high-temperature relativistic correction is shown as a dotted line.
To improve visibility on a log scale, the energies of the four isochores
have been shifted by the N, molecule energy, —54.614969 Ha/atom,
and multiplied by factors of 10, 100, 1000, and 10 000 as indicated

in the labels. The original energies are given in the Supplemental
Material [83].

pressures obtained for nitrogen from PIMC and DFT-MD.
Likewise, Fig. 3 compares internal energies and also compares
with results from the Debye-Hiickel model [102], constructed
for the fully ionized plasma. Using a relativistic, fully-ionized
model [103], we also show the magnitude of the relativistic
correction to the internal energy, which results in a 14%
change at the high-temperature limit. There is not a significant
relativistic correction to the pressure. In both pressure and
energy, we find good agreement between PIMC and DFT-MD
results in the temperature range of 5.0 x 10°—1 x 10° K. At
a temperature of 2.5 x 10° K, the PIMC free-particle nodes
start to become insufficient for describing bound electronic
states, and the results begin to deviate significantly from that
of DFT-MD. At high temperature, the PIMC pressures and
energies converge to the weakly interacting plasma limit, in
agreement with the classical Debye-Hiickel model.

Figure 4 shows the differences between the PIMC and DFT-
MD pressures and energies as a function of temperature in the
overlap regime where both methods operate efficiently. DFT-
MD and PIMC internal energies differ by at most 2 Ha/atom,
and pressures differ by less than 8% in the temperature range
of 2.5 x 10°-1 x 10° K. The size of the discrepancy between
our PIMC and DFT-MD results also places an approximate
limit on the magnitude of the correction that a new free-energy
functional, such as those used in OF-DFT, can change existing
KS-DFT results. Typically, the error is largest at the lowest
and highest temperatures. This is possibly because, at low
temperature, the PIMC free-particle nodes are expected to
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break down, while, at high temperature, the DFT exchange-
correlation functional and pseudopotential may break down.
The pseudopotential, with a frozen 1s core, may also begin
to leave out excitation effects at temperatures close to 10° K.
In our previous studies, we found it is not uncommon for one
third of the energy discrepancy at 10° K to be attributed to
pseudopotential error [72,74,75].

Together, Figs. 2 and 3 show that the DFT-MD and PIMC
methods form a coherent EOS over all temperatures ranging
from condensed matter to the WDM and plasma regimes.
The good agreement between PIMC and DFT-MD indicates
that DFT exchange-correlation potential remains valid even
at high temperatures and that the PIMC free-particle nodal
approximation is valid as long as the 2s state is sufficiently
ionized. The analytic Debye-Hiickel models agree well with
PIMC at high temperatures, but the Debye-Htickel model does
not include bound states and, therefore, cannot describe low
temperatures.

IV. PAIR-CORRELATION FUNCTIONS

In this section, we study pair-correlation functions [71] in
order to understand the evolution of the fluid structure and
ionization in nitrogen plasmas as a function of temperature
and density. Figure 5 shows the nuclear pair-correlation
functions g(r) computed with PIMC over a temperature
range of 2 x 10°~1.034 x 10° K and for densities of 2.527
and 13.946 gcm™3. Atoms are kept farthest apart at low
temperatures due to a combination of Pauli exclusion among
bound electrons and Coulomb repulsion. As temperature
increases, kinetic energy of the nuclei increases, making it
more likely to find atoms at close range. In addition, the
atoms become increasingly ionized, which gradually reduces
the Pauli repulsion but increases the ionic Coulomb repulsion.
As density increases, the likelihood of finding two nuclei at
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FIG. 5. Nuclear pair-correlation functions for nitrogen from
PIMC over a wide range of temperatures and densities.

close range slightly rises. At high temperatures, the system
approaches the Debye-Hiickel limit, behaving like a weakly
correlated system of screened Coulomb charges.

Figure 6 compares the nuclear pair-correlation functions
of PIMC and DFT-MD at a temperature of 1 x 10° K in an
8-atom cell at a density of 13.946 g cm . The overlapping g(r)
curves verify that PIMC and DFT predict consistent structural
properties.

Figure 7 shows the integral of the nucleus-electron pair
correlation function Ny_.(r), which represents the average
number of electrons within a sphere of radius r around a given
nucleus. At the lowest temperature, 1 x 10° K, we find that the
1s core state is always fully occupied, as it agrees closely with
the result of an isolated 1s state. As temperature increases, the
atoms are gradually ionized and electrons become unbound,

1.0}

Iy-n(r)

0.5F

FIG. 6. Comparison of PIMC and DFT nuclear pair-correlation
functions for nitrogen at a temperature of 1 x 10% K and a density of
13.946 gcm™3.
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causing Ny _.(r) to decrease. At higher density, an even higher
temperature is required to fully ionize the atoms, indicating
that the 1s ionization fraction decreases with density.

There are two important physical points to note about this
result. First, it is clear that the 1s ionization fraction is not
affected by pressure ionization in the considered density range,
which is supported by the fact that the nuclei are not yet close
enough for Pauli exclusion to trigger the ionization of the 1s
state. Pauli exclusion effects decay on the scale of ~0.04 A
(size of 1s orbital), while Fig. 6 shows that the nuclei remain
at least 0.3 A apart at our highest density. Secondly, we note
that in our work on dense oxygen [74] we performed all-
electron DFT-MD calculations and found that the 1s ionization
fraction for a fixed temperature decreases because the Fermi
energy shifts to higher energies more rapidly than the 1s state
shifts towards the continuum when density increases. Thus,
the decrease in the 1s ionization fraction in Fig. 7 at a fixed
temperature with increasing density is due to a rapid shift of
the Fermi energy. Eventually, the 1s ionization fraction will
increase when density is high enough to push the 1s states into
the continuum, but we have not studied such densities here.

Figure 8 shows electron-electron pair correlations for
electrons having opposite spins. The function is multiplied
by the density p, so that the integral under the curves is
proportional to the number of electrons. The electrons are
most highly correlated for low temperatures, which reflects
that multiple electrons occupy bound states around a given
nucleus. As temperature increases, electrons are thermally
excited, decreasing the correlation among each other. The
positive correlation at short distances increases with density,
consistent with a lower ionization fraction.

Figure 9 shows electron-electron pair correlations for
electrons with parallel spins. The positive correlation at
intermediate distances reflects that different electrons with
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FIG. 8. The electron-electron pair-correlation functions for elec-
trons with opposite spins computed with PIMC.

parallel spins are bound to a given nucleus. For short
separations, electrons strongly repel due to Pauli exclusion
and the functions decay to zero. As density increases, the peak
at intermediate distances decreases, which clearly shows the
effect of pressure ionization on the L shell. These orbitals
are much larger than the 1s state and are therefore subject to
Pauli exchange with nearby nuclei. As temperature increases,
electrons become less bound, which also causes the correlation
to become more like an ideal fluid.
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FIG. 9. The electron-electron pair-correlation functions for elec-
trons with parallel spins computed with PIMC.
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V. ELECTRONIC DENSITY OF STATES

In this section, we report DFT-MD results for the electronic
density of states (DOS) as a function of temperature and
density in order to gain further insight into temperature
and pressure ionization effects. Figure 10 shows the total
and occupied DOS at two temperatures and two densities.
Results were obtained by averaging over ten uncorrelated
snapshots chosen from a DFT-MD trajectory. Smooth curves
were obtained by using a4 x 4 x 4k-point grid and applying a
Gaussian smearing of 2 eV. The eigenvalues of each snapshot
were shifted so that the Fermi energies align at zero. The
integral of the DOS is normalized to 1.

At low temperature and density, the general structure is
composed of two peaks below the Fermi energy, representing
the atomic 2s and 2p states. The peaks broaden and merge
at higher temperatures and densities as they become ionized.
For higher density, the total DOS resembles that of an ideal
plasma. For lower densities, a dip in the DOS indicates
beginning of the continuous spectrum of conducting states.
At the lowest temperature (~10* K) shown for each density,
the majority of occupied states lie below the Fermi energy.
At the higher temperature (~10° K), a significant fraction
of the occupied states now lie above the Fermi energy as
the second shell becomes ionized. Finally, we note that the
Fermi energy plays the role of the chemical potential in the
Fermi-Dirac distribution, which shifts towards more negative
values as the temperature is increased. Because we subtract
the Fermi energy from the eigenvalues, the peak shifts to
higher energies with increasing temperature. The fact that the
peaks are embedded into a dense, continuous spectrum of
eigenvalues indicates that they are conducting states.
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FIG. 10. Temperature dependence of the total (all) and occupied
(occ) electronic DOS of dense, fluid nitrogen at densities of 2.53 and
13.95 gcm™3. Each DOS curve has had the relevant Fermi energy for
each temperature subtracted from it.
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VI. SHOCK COMPRESSION

Dynamic shock compression experiments allow one to
measure the EOS and other physical properties of hot, dense
fluids. Such experiments are often used to determine the
principal Hugoniot curve, which is the locus of final states that
can be obtained from different shock velocities. A number
of Hugoniot measurements have been made for nitrogen
[7,41-43,45-47]. Density functional theory has been validated
by experiments as an accurate tool for predicting the shock
compression of a variety of different materials [104,105],
including nitrogen [58,59].

In the course of a shock wave experiment, a material whose
initial state is characterized by an internal energy, pressure,
and volume (Ey, Py, Vp) will change to a final state denoted
by (E, P,V) while conserving mass, momentum, and energy.
This leads to the Rankine-Hugoniot relation [106],

(E — Eo) + (P + Py)(V — V) = 0. 6))

Here, we compute the Hugoniots from the first-principles
EOS data reported in the Supplemental Material [83]. The
pressure and internal energy data points were interpolated with
bicubic spline functions in p-T space. For the initial state, we
used the energy of an isolated (Py = 0) nitrogen molecule,
Ep = —109.2299 Ha/N,. V, was determined by the density,
po = 1.035 gcm™3, of solid nitrogen in the Pa3 phase [107].
The resulting Hugoniot curve has been plotted in 7-P and
P-p spaces in Figs. 2 and 11, respectively.

Samples in shock wave experiments may be precom-
pressed inside of a diamond anvil cell in order to reach
much higher final densities than are possible with a sample
at ambient conditions. This technique allows shock wave
experiments to probe density-temperature consistent with
planetary and stellar interiors [108]. Therefore, we repeated
our Hugoniot calculation starting with initial densities ranging
from a 0.75- to a 2.5-fold of the density typically used in
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FIG. 11. Shock Hugoniot curves for different initial densities
ranging from 0.75- to 2.5-fold the density of solid Ny, 1.035 gcm ™3,
at ambient pressure.
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relativistic correction. The dark shaded marks the temperature range
of highest compression.

shock-compression experiments (0.808 gcm™>). Figure 11
shows the resulting family of Hugoniot curves. While starting
from an initial density of 0.808 gcm™ leads to a maximum
shock density of 5.15 gem™ (4.97-fold compression), a
2.5-fold precompression yields a much higher maximum shock
density of 12.13 gem™ (4.69-fold compression). Alterna-
tively, such extreme densities can be reached with double and
triple shock experiments.

Figure 12 shows the temperature dependence of the
shock-compression ratio for the four representative Hugoniot
curves from Fig. 11. In the high-temperature limit, all curves
converge to a compression ratio of 4, which is the value of a
nonrelativistic, ideal gas. We also show the magnitude of the
relativistic correction to the Hugoniot in the high-temperature
limit. The shock compression and structure along the Hugoniot
is determined by the excitation of internal degrees of freedom,
such as dissociation and ionization processes, which increases
the compression, and, in addition, the interaction effects, which
decrease the compression [69]. Consistent with our studies of
other elements, we find that an increase in the initial density
leads to a slight reduction in the shock compression ratio
(Fig. 12) because particles interact more strongly at higher
density.

For the lowest two initial densities, the shock compression
ratio in Fig. 12 exhibits two maxima as a function of
temperature, which can be attributed to the ionization of
electrons in the K (1s) and L (25 + 2p) shells. On the principal
Hugoniot curve, the first maximum of p/py = 4.26 occurs
at temperature of 6.77 X 10° K (58.3 eV), which is well
above the first and second ionization energies of the nitrogen
atom, 14.53 and 29.60 eV. A second compression maximum
of p/py = 4.97 is found for a temperature of 2.55 x 10° K
(220 eV), which can be attributed to a substantial ionization
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FIG. 13. Comparison of our combined PIMC and DFT-MD
Hugoniot curve with predictions of ACTEX plasma model calcu-
lations by Ross and Rogers [8]. The dashed line portion of the plasma
model curve indicates where the ACTEX results were interpolated
to match experimental data below 100 GPa. The initial density was

po = 0.8076 gcm > (V, = 28.80 A’ /atom).

of the 1ls core states. For an isolated nitrogen atom, the Is
ionization energy is 667.05 eV. However, fractional ionization
is expected to occur at much lower temperature already. This
is consistent with the ionization process we observe in Fig. 7,
where the charge density around the nuclei is reduced over the
range of 2-8 x 10° K. Since DFT-MD simulations, which use
pseudopotentials to replace core electrons, cannot access the
regime of core ionization, both PIMC and DFT-MD are needed
to determine all features along the principal Hugoniot curve.
Figure 13 compares our combined PIMC and DFT-MD
Hugoniot curve with predictions from the ACTEX calculations
by Ross and Rogers [8]. We find very good agreement for
P > 20000 GPa, which includes a compression peak due
to the ionization of K shell and confirms the strengths of
the ACTEX method in highly ionized regimes with weak-to-
moderate Coulomb coupling. While the K shell peak pressures
agree almost perfectly in pressure, the ACTEX predicts a
maximum compression ratio that is 0.07 lower than predicted
by our PIMC simulations. In the pressure range from 2000 to
20 000 GPa, where ionization of the L shell occurs, we find
that the ACTEX model substantially overestimates the shock
compression. In the range of 100 to 2000 GPa (dashed line in
Fig. 13), Ross and Rogers interpolated their Hugoniot curve
based on a collection of previous ACTEX calculations for other
light elements [62] and available experimental data below
100 GPa [7]. Therefore, it is not too surprising that PIMC
and the analytic model disagree by up to 20% in the pressure.
The comparison shows the importance of using first-principles
methods such as PIMC and DFT-MD to correctly predict the
ionization compression peaks of the Hugoniot curve in more
strongly coupled regimes. With DFT-MD, we are also able to
capture the sharp change in slope in the Hugoniot curve, which
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FIG. 14. Comparison of the liquid DFT-MD Hugoniot with the
experiments of Nellis et al. [7] and Zubarev et al. [40] and the theory
of Ross et al. [49] (variational fluid theory) and Kress et al. [58] (DFT-
MD). The blue shaded region indicates the region of dissociation with
(@P/dT), < 0 in the phase diagram of Fig. 1. Our Hugoniot passes
through this region, but there is no evidence of cooling along the
principal Hugoniot curve. The green dashed lines show isotherms
from our DFT-MD simulations.

is associated with dissociation as internal energy is absorbed
to break the molecular bond.

Figure 14 shows a magnified view of the low-pressure
Hugoniot in the dissociation region. Our DFT-MD Hugoniot
generally agrees well with the experimental data of Nellis
et al. [7] and previous DFT-MD calculations [58]. DFT-MD
accurately captures the sharp increase in compressibility in
the dissociation transition region, while the Ross model
underestimates the compressibility more or less depending on
the parametrization [49]. Slight deviations with experiment
tend to lie near the region of (dP/0T)y < 0, marked by
the blue shaded region. The discrepancy could either be due
to impedance matching difficulties in experiment or short-
comings of DFT-MD approximations. A negative (d P/dT)y
region and molecular dissociation can, in principle, trigger
a shock wave to split into two separate waves [109]. This
occurs when the shock speed is not monotonously increasing
with particle speed. However, this is not predicted to occur
based on our DFT-MD EOS, and we find it unlikely that this
hypothesis can explain the discrepancy between the theoretical
and experimental results in Fig. 14. We also note that including
zero point motion has a negligible affect on the Hugoniot curve.

VII. EOS COMPARISON OF FIRST- AND
SECOND-ROW PLASMAS

Using PIMC and DFT-MD, we have computed the first
principles EOS and shock Hugoniot curves for several materi-
als in the the WDM and dense plasma regime. In this section,
we compare our collective sets of data and discuss some of the
trends we have observed.
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Figure 15 compares our computed shock Hugoniot curves
from simulations of He [70], C [72], O [74], Ne [75], and
Si [76] in the WDM and plasma regimes. The Hugoniot
curve comparison shows distinct compression maxima for all
materials, but the maxima and structure along the Hugoniot

0.0
-0.2-
o i
= |
T o4
&0
o |
3
3 |
@ —0.6
j .
& i
-0.8- 7/
0.8 DA — — Ne (z=10)
PR .
S 2 Si (z=14) i
St Si (Z=14) Debye |
_1. L \\\\\H‘ \\\\\H‘ \\\\H\‘ L \\\\H\‘
10* 10° 10° 10’ 108

Temperature (K)

FIG. 16. Pressure vs temperature is shown for isochores of
different materials. The pressure of a fully-ionized, noninteracting
plasma P, has been removed in order to compare the excess
pressure due to interactions. The densities have been chosen such that
electronic density is the same for all materials (V /N, = 0.8966 Ag)
This electronic density corresponds to the high-temperature limit of
fourfold compression of the shock Hugoniot curves in Fig. 15. The
Debye model has been included for helium and silicon.
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FIG. 17. Internal energy vs temperature is shown for the isochores
in Fig. 16. The energy contribution from a fully-ionized, noninter-
acting plasma E, has been removed in order to compare only the
interaction effects.

depend strongly on the atomic number Z, which is directly
connected to internal degrees of freedom and interaction
effects [69]. We find the shock Hugoniot compression maxima,
corresponding to K and L shell ionization, increase in both
compression and temperature with the atomic number Z. This
is not unexpected because the binding energy scales as Z2,
which means a higher temperature is needed to reach the
regime of ionization. When this happens, a larger energy
difference, E — E,, must be compensated by the P(V — Vp)
term in Eq. (1). Even though the pressure increases with
ionization also, we still see a higher shock compression for
higher Z materials in Fig. 15.

Figures 16 and 17 compare the pressure and internal
energies of the same set of materials in the Hugoniot curve
comparison. The plots compare the excess pressure and energy,
where the ideal Fermi gas contributions have been removed
in order to compare only interaction effects, which become
important for T < 10% K when electrons start to occupy the K
shell. For higher Z, this occurs at higher temperature, which
explains the trends seen in Figs. 15—17. The Debye model
can capture only the high temperature limit of this trend since
it cannot describe the occupation of the K shell. There is a
visible softening of the slope in the pressure and internal energy
curves for temperatures around 10° K, which corresponds to
the intermediate regime between K and L shell ionization. As

PHYSICAL REVIEW B 93, 064101 (2016)

expected, the onset of the slope softening occurs at higher
temperatures for higher Z elements.

We note that, for each material, we have computed
consistent, overlapping results with both DFT-MD and PIMC
at temperatures near 10° K. The agreement implies that our
zero-temperature, DFT exchange-correlation potential (PBE)
remains valid for a large set of materials at high temperatures
and that the free-particle nodal approximation is accurate in
PIMC when the K shell electrons are bound and L shell is
partially ionized.

VIII. CONCLUSIONS

In this paper, we have used DFT-MD and PIMC to compute
liquid and WDM states of nitrogen to provide an EOS which
bridges the condensed matter and warm dense matter regimes.
In the liquid regime, we have extended the phase diagram
beyond previous studies by computing the dissociation curve
for a broader region of conditions and extending the Hugoniot
to the WDM regime. In the WDM regime, we have combined
PIMC with DFT-MD to construct a coherent EOS for nitrogen
over a wide range of densities and temperatures. The two
methods produce consistent pressures and energies in a
temperature range of 5.0 x 10°—1 x 10° K. At high tem-
peratures, our EOS converges to the analytic Debye-Hiickel
result for weakly interacting plasmas. Nuclear and electronic
pair correlations reveal a temperature- and pressure-driven
ionization process, where temperature ionization of the 1s
state is suppressed, while other states are efficiently ionized
as temperature and density increases. Temperature-density
dependence of the electronic density of states confirms the
temperature- and pressure-ionization behavior observed in the
pair-correlation data. Lastly, we find the ionization imprints
a signature on the shock Hugoniot curves and that PIMC
simulations are necessary to determine the state of the highest
shock compression. By combining our liquid DFT-MD data
with our WDM data, we provide a first-principles Hugoniot
that matches experiment at low pressures and extends to the
classical plasma regime. Our Hugoniot and equation of state
will help to build more accurate models for astrophysical
applications and energy applications.
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