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Incorporating nanoparticles into superconducting materials has emerged as an efficient route to enhance their
current-carrying capability. However, a thorough understanding of how these inclusions can be used in the most
efficient way is still lacking. We address this problem of optimizing the vortex pinning landscape for randomly
distributed metallic spherical inclusions using systematic large-scale numerical simulations of time-dependent
Ginzburg-Landau equations. This approach allows us to predict the size and density of particles for which
the highest critical current is realized. For a given particle size and magnetic field, the critical current reaches
a maximum value at a particle density, which typically corresponds to 15%–23% of the total volume being
replaced by the nonsuperconducting material. For a fixed diameter, this optimal particle density increases with
the magnetic field. Moreover, we found that, as the magnetic field increased, the optimal particle diameter slowly
decreases from 4.5 to 2.5 coherence lengths. This result shows that pinning landscapes have to be designed for
specific applications taking into account relevant magnetic field scales.
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Pinning of vortex lines by defects is essential for the
superconductor’s ability to carry electrical current without
dissipation. Thus, high-current applications of superconduc-
tivity require engineering defect microstructures to efficiently
suppress the mobility of vortices over a wide range of
magnetic fields. On the other hand, vortex matter in disordered
superconductors represents a complex system with extremely
rich and nontrivial dynamics that has challenged researchers
for more than five decades. As this field is of high fundamental
and practical importance, great efforts have been devoted in
the past to establishing basic laws of pinning [1–3]. The two
most studied cases are a very high density of weak centers
described by the collective-pinning theory [4], and a low
density of large-size pins, described by the strong-pinning
theory [5,6]. In addition to analytical theories, pinning has also
been extensively explored by Langevin-dynamics simulations
for both isolated elastic strings [7,8], and an array of interacting
strings [9–12].

Interest in the strong-pinning scenario has been renewed
recently due to its relevance for YBa2Cu3O7 (YBCO) films
with self-assembled inclusions which strongly enhance critical
currents in these films. Such inclusions may be prepared
in the form of almost spherical particles [13–19], nanorods
[20], or combinations of both [21]. This technology has been
implemented in second-generation superconducting cables
based on YBCO coated conductors [22] operating in a wide
range of magnetic fields. In addition to self-assembly, large-
size defects in the form of impurity clusters can also be
introduced by proton irradiation [23,24].

An increased ability to engineer pinning microstructures
raises the following question: At what sizes and densities of
inclusions does the critical current reach its maximum for
different magnetic fields and temperatures? This fundamental
problem of pinning optimization cannot be resolved by simple
approaches. Indeed, both analytical theory [5,6] and Langevin-
dynamics simulations [7–12] can evaluate the critical current

only in the case when particles occupy a small fraction of the
material. While the ultimate critical-current optimization can
be achieved by the constructive combination of different pin-
ning centers, a natural first step is to determine the best pinning
configuration for a relatively simple system with only one type
of defect. In this Rapid Communication, we explore the case
of monodisperse spherical defects with diameters of a few
coherence lengths using large-scale simulations of the time-
dependent Ginzburg-Landau (TDGL) model [25], allowing for
a systematic study of arbitrary defect concentrations, while at
the same time taking into account the collective behavior and
the intricate intrinsic interactions of the vortex matter.

The TDGL model describes the dynamics of the supercon-
ducting order parameter and vortex lines appear spontaneously
as its singularities. Even though the TDGL model does
not provide a fully realistic description of the dynamic
properties of superconductors, it does describe accurately
vortex-line flexibility, interactions between vortex lines, and
interactions of vortices with pinning sites. It also allows for
cuttings and reconnections of vortex lines. Therefore, this
model is perfectly suited for the problem of critical-current
optimization, for which a fully accurate description of the
dynamics is not essential. The TDGL model has been proven
to be very useful for exploring many properties of the vortex
state [26–34]. However, only recently has it become possible
to meaningfully explore the parameter space for sufficiently
large three-dimensional superconductors [35], allowing us to
address the problem of critical-current optimization.

We use the TDGL model to explore vortex pinning by
randomly placed metallic spherical inclusions. Our objective
is to find the optimal parameters for the pinning landscape
to maximize the critical current. Clearly, when the particles
occupy a small fraction of the total volume, the critical current
grows as the particle density increases. At some density,
however, a further increase of particle number will not improve
the current-carrying capacity [36] due to at least two factors:
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(i) the increasing mobility of the vortex lines due to jumping
between the particles and (ii) the reduction the effective cross
section for the supercurrent caused by inclusions. Therefore,
it is important to find the size and density of particles that
maximize the critical current. This problem cannot be accessed
by simple approaches. We find optimal parameters for different
magnetic fields by systematically exploring the dependence of
the critical current on the size and concentration of particles.

The dynamics of the order parameter ψ(r,t) is described
by the TDGL equation in the reduced form

(∂t + ıμ)ψ = ε(r)ψ − |ψ |2ψ
+

∑

j=x,y,z

η2
j (∇j − ıAj )2ψ + ζ (r,t). (1)

Here μ and A = (Ax,Ay,Az) are the scalar and vector poten-
tials. We used the in-plane coherence length ξ at the chosen
temperature as the unit of length, meaning that ηx = ηy = 1
and ηz = 1/γ , where γ is the anisotropy factor. We took
γ = 5 corresponding to YBCO. The function ε(r) models
pinning centers, ε(r) = 1 in the bulk [37] and ε(r) = −1
inside metallic inclusions. We used the approximation of large
London penetration depth λ in which the vector potential A
is fixed by the external magnetic field, Ay = Bx, and the
magnetic field is measured in units of the c-axis upper critical
field at a given temperature, HC2 = 
0/2πξ 2. The Langevin
term ζ (r,t) describing thermal noise has the correlation
function 〈ζ ∗(r,t)ζ (r′,t ′)〉 = T δ(r − r′)δ(t − t ′), where T is
the reduced temperature in units of H 2

Cξ 3/8π and HC is the
thermodynamic field. The total electric current density in units
of J0 = c
0/8π2ξλ2 (CGS) is given by

Jj = η2
j (Im[ψ∗(∇j −ıAj )ψ]−∇jμ), for j = x,y,z, (2)

where the first term is the supercurrent and the second term
gives the normal current. In these units the depairing current is
Jdp = 2/3

√
3J0 ≈ 0.385J0. We performed simulations with

fixed current applied in the x direction and computed the
average electric field E = −∇xμ in the dynamic steady state.
For the simulations, we developed a stable and efficient solver
implemented for graphics processing units [35]. The simulated
system size is 100ξ × 100ξ × 50ξ with 256 × 256 × 128
mesh points and we used periodic boundary conditions in all
directions [38]. The external current is applied along the x axis.
The procedure for fixing the current density flowing through
the system is described in Ref. [35]. We fixed the reduced
temperature at a very small value T = 4 × 10−5 corresponding
to real temperature �1 K, meaning that thermal noise is not
essential in these simulations. The time discretization step is
selected to be 0.1 in units of Ginzburg-Landau time.

We systematically computed the current-voltage depen-
dences (CVDs) for different particle sizes and densities.
Figure 1(a) shows a representative series of CVDs for different
numbers of particles Np with a diameter of a = 4ξ at a
magnetic field B = 0.1HC2 corresponding to 159 vortex lines
in the system. These CVDs are obtained by a stepwise decrease
of the applied current with a simulation time of about 105 units
of the Ginzburg-Landau time between current steps. Typically,
we did not observe significant history effects: CVDs computed
with different starting currents and current steps are found to
be very similar to each other. Only at small magnetic fields

FIG. 1. (a) Current-voltage dependences computed for different
numbers of particles Np with diameter a = 4ξ for magnetic field
0.1HC2. The numbers in parentheses represent the volume fractions
occupied by the particles f . The critical currents are determined by the
intersection of the CVD and 2% of the flux flow voltage (dashed line).
The optimal concentration of particles is at Np = 4000 corresponding
to f = 0.23. (b) The dependences of the critical current JC on the
particle volume fraction f for a = 4ξ and three magnetic fields. The
optimal f increases with the magnetic field. (c) The dependences
of JC on f for different particle diameters at B = 0.1HC2. The
optimal particle diameter is in between 3ξ and 4ξ . (d) Order parameter
isosurfaces for pinned vortex configurations with a = 4ξ , Np = 500,
and B = 0.016HC2. (e) The field-induced vortex lines extracted from
the same order parameter. The particles are shown as transparent
spheres. Vortex lines outside particles are red, and inside particles
are blue.

∼0.01HC2 do the CVDs become more noisy and slightly
history dependent.

The pinning effectiveness of the particles is primarily
determined by the volume fraction f occupied by them. For
spatially separated particles, the “nominal” volume fraction is
fn = πNpa

3/6LxLyLz. Since randomly placed particles may
overlap in our case, the real volume fraction is somewhat
smaller, f ≈ fn − f 2

n /2, where the correction term accounts
for possible overlaps between pairs of neighboring spheres.
For each number of particles, the value of f is specified in
parentheses in Fig. 1(a). For low f the CVDs systematically
shift to the right as the particle density increases, indicating an
increase of the critical current. Above a certain density, adding
more particles starts to degrade the critical current. The optimal
density corresponds to the volume fraction f = 0.23.

The computed CVDs are used to evaluate the crit-
ical currents JC, which we define using the criterion
E(JC) = 0.02ρffJC [dashed line in Fig. 1(a)]. The free flux-
flow resistivity ρff in our reduced units is ρff = 1.689B.
Figure 1(b) shows the dependences of the critical current on the
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nonsuperconducting volume fraction f for a = 4ξ and three
magnetic fields. The optimal volume fraction slowly increases
with the magnetic field, from ∼0.15 at B = 0.016HC2 to
∼0.23 at B = 0.1HC2. At the lowest field, B = 0.016HC2,
the maximum current is JC ≈ 0.0383J0 corresponding to 10%
of the depairing current. The movie in the Supplemental
Material [39] demonstrates the evolution of vortex dynamics
with increasing particle density for this magnetic field.

Figure 1(c) presents the dependences of the critical currents
JC on the nonsuperconducting volume fraction f for different
particle diameters at B = 0.1HC2. The highest critical current
is realized at a = 3ξ , indicating the existence of an optimal
particle size. By applying parabolic fits to the numerical
data for the geometry-dependent JC(a,f ), we found the
optimal particle size and volume fraction at several fields.
Figure 2(a) shows the magnetic field dependences of the
optimal particle size aopt and volume fraction fopt in the
range 0.016HC2 < B < 0.2HC2. Within this range the optimal
size monotonically decreases with increasing magnetic field
from ∼4.5ξ to ∼2.5ξ . This indicates that the typical scale of
disorder has to be comparable to the intervortex spacing which
decreases as 1/

√
B. The optimal volume fraction has a weak,

nonmonotonic dependence on the field strength, but stays
within the range of 17%–22%. The magnetic field dependence
of the maximum critical current achieved for the optimal
parameters is shown in Fig. 2(b).

To characterize the structure of the pinned vortex states,
we extracted the field-induced vortex lines from the order
parameter [40] and performed a detailed analysis of these
configurations. We analyzed trapped vortex configurations
at the final currents of the simulation sequences which are
below the corresponding critical currents. Figure 1(d) shows
a representative configuration for B = 0.016HC2 imaged by
the order-parameter isosurfaces |ψ(r)| = 0.1. Both particles
and vortex lines can be seen as regions of suppressed order
parameter. We found that the vortex arrangements typically
are quite disordered, which is partly caused by the interaction

FIG. 2. (a) The magnetic field dependence of the optimal diam-
eter (left axis) and volume fraction (right axis). (b) The maximum
critical current for optimal parameters for different magnetic fields
in reduced units. The right axis shows this current normalized to the
depairing current.

of the vortices with randomly arranged particles and partly
by incomplete equilibration. Vortex lines traced from this
order-parameter distribution are shown in Fig. 1(e). They are
split into line segments located inside the particles and in
superconducting material, as illustrated by blue and red lines,
respectively.

We extracted several parameters characterizing trapped
configurations: (i) the fraction of particles occupied by
vortices, ffill, (ii) the fraction of particles double-occupied by
vortices, f2, (iii) the fraction of the total line length located
outside particles, ffree = �outside/�total, (iv) the average length
of line segments trapped between neighboring particles, Lt [see
the inset in Fig. 3(c)], and (v) the average particle-to-particle
displacement in the direction of motion, ul = uy , and in
the transverse direction, ut = ux . These parameters are not
independent. Indeed, the number of particles holding a given
vortex line can be estimated as ffreeLz/Lt, meaning that the
total number of occupied pins is NvffreeLz/Lt, where Nv is
the total number of vortex lines. As a fraction of pins f2

is holding two vortex lines, we can estimate the occupied

FIG. 3. Evolution of parameters characterizing pinned vortex-
line configurations with increasing nonsuperconducting volume
fraction f for a = 4ξ and three magnetic fields. (a) shows the fraction
of particles occupied by vortex lines, ffill. (b) presents the length
fraction of vortex segments outside the particles, ffree. The dashed
line shows the volume fraction occupied by superconducting material,
1 − f . (c) shows the average geometrical parameters characterizing
pinned line segments as illustrated in the inset, the segment length Lt

(left axis), and typical pin-to-pin line displacements in the direction
of motion, ul, and in the transverse direction, ut (right axis). The
parameters Lt and ul are defined in the inset. In all plots, arrows mark
the locations of the maximum critical current.

060508-3



RAPID COMMUNICATIONS

KOSHELEV, SADOVSKYY, PHILLIPS, AND GLATZ PHYSICAL REVIEW B 93, 060508(R) (2016)

fraction as ffill ≈ NvffreeLz/[Np(1 + f2)Lt]. We checked that
the extracted parameters satisfy this consistency condition.

Particle fraction occupied by the vortex lines, ffill, naturally
characterizes the efficiency of pin utilization. Figure 3(a)
shows the dependence of this parameter on the nonsuper-
conducting volume fraction f for a = 4ξ and three magnetic
fields. As expected, this parameter increases with the magnetic
field and decreases with the number of particles. For B =
0.1HC2 almost all particles are occupied. We also found that
for this field typically 3%–5% of particles hold two vortex lines
without any systematic dependence on the particle density.
For smaller fields the number of double-occupied particles
is negligible. A noteworthy feature is that for small fields a
significant fraction of particles remains unoccupied even for
very low particle densities.

The efficiency of vortex trapping by the particles can be
characterized by the free-segment length fraction of the vortex
lines, ffree, plotted in Fig. 3(b). A natural upper limit for
ffree is the volume fraction occupied by the superconducting
material, 1 − f , shown by the dashed line. This limit would
be realized if there were no correlations between particles
and vortices. We can see that for pinned configurations, ffree

is significantly below this limit since particles trap vortices.
Notably, ffree drops below 50% when particles occupy only 5%
of the volume for B = 0.016HC2. The free-segment fraction
monotonically increases with the magnetic field, because the
vortex lines compete for the particles. We observe that the
maximum critical current is realized for ffree = 21%–25%,
which only weakly depends on the magnetic field.

For strong pinning sites the vortex lines split into finite-size
segments hanging in between neighboring sites [5,6,8]. Fig-
ure 3(c) shows the behavior of the average length parameters
in units of ξ characterizing these free-line segments, the
segment length Lt, and pin-to-pin line displacements in the
direction of motion, ul, and in the transverse direction, ut. The

length Lt rapidly increases with decreasing particle density
and with increasing magnetic field. While the displacements
ul,t also increase with decreasing f , they only weakly depend
on the magnetic field. As expected, for small particle densi-
ties the vortices stretch between pinning sites preferentially
in the direction of motion [5,6,8], meaning that ul is larger
than ut . These parameters, however, become almost identical
for f � 0.15. At the particle density corresponding to the
maximum of the critical current, all three parameters, Lt, ul,
and ut, are close to ξ for both magnetic fields.

In summary, we conducted a systematic study of vortex
pinning by randomly distributed metallic inclusions within
the superconductor using large-scale numerical simulations.
Using this approach enables us now to predict optimal
parameters for highest critical currents. We also analyzed
the statistical properties of pinned vortex arrays and revealed
several nontrivial structural properties of the optimally pinned
states. Our general observation is that there is no universal
optimal pinning configuration for all magnetic fields. Thus, for
best performance in a given application, pinning landscapes
should be designed by taking into account the relevant
magnetic fields.
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[7] D. Ertaş and M. Kardar, Phys. Rev. B 53, 3520 (1996).
[8] A. E. Koshelev and A. B. Kolton, Phys. Rev. B 84, 104528

(2011).
[9] A. van Otterlo, R. T. Scalettar, G. T. Zimányi, R. Olsson, A.
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