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Reinventing atomistic magnetic simulations with spin-orbit coupling
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We propose a powerful extension to combined molecular and spin dynamics that fully captures the coupling
between the atomic and spin subsystems via spin-orbit interactions. Its foundation is the inclusion of the local
magnetic anisotropies that arise as a consequence of the lattice symmetry breaking due to phonons or defects.
We demonstrate that our extension enables the exchange of angular momentum between the atomic and spin
subsystems, which is critical to the challenges arising in the study of fluctuations and nonequilibrium processes
in complex, natural, and engineered magnetic materials.
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With the prevailing computational cost of first-principles-
based methods, there is a continued demand for atomistic
simulations as a viable approach for predicting the finite-
temperature properties of materials. To this end, the molecular
dynamics (MD) method [1,2] has long been the de facto
standard for modeling the time evolution of material structures,
providing quantitative insight into a wide range of physi-
cal phenomena, including radiation damage cascades [3,4],
fracture behavior [5], dislocation dynamics [6], self-diffusion
[7], etc. The lesser-known counterpart for probing magnetic
properties is the spin dynamics (SD) method [8–11], in which
one models the magnetic crystal as a classical system of
interacting atomic magnetic moments on a rigid lattice. With
parametrized exchange coupling, SD renders a powerful means
of characterizing collective magnetic excitations with good
quantitative agreement with the experiments [12,13].

However, due to strong spin-lattice coupling observed in
transition magnetic metals and alloys [14,15], the validity
of MD and SD as stand-alone simulation methods is highly
debatable. For instance, in iron-based materials, phonon-
magnon coupling plays a pivotal role in maintaining the
structural stability [16,17], and significantly influences the
thermal transport properties [18], defect evolution [19], and
the equilibrium thermodynamic behavior [20]. Thus, for a
realistic depiction of a magnetic crystal, it is imperative that
the dynamics of translational and spin degrees of freedom are
treated on an equal footing. The recently introduced “spin-
lattice dynamics” or “combined molecular and spin dynamics
(MD-SD)” approach [21] establishes a robust computational
framework for the aforementioned unification of MD and SD.
The method has been successfully applied for bcc iron with
emphasis on phonon-magnon interactions [22,23], vacancy
formation and migration [24,25], and external magnetic field
effects [26]. Moreover, an adaptation of MD-SD has been
recently applied to cobalt nanosystems with large shape
anisotropies [27].

Despite wide applicability, the MD-SD formalism suffers
from a fundamental flaw that prohibits angular momentum ex-
change between the lattice and the spin subsystems [21]. This
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inhibits the modeling of the spin-lattice relaxation process,
with profound implications in nonequilibrium simulations. In
this Rapid Communication, we discuss this aspect in detail
and present an extension to MD-SD that eliminates this
problem. The proposed solution relies on a valuable concept
that is absent in the traditional approach: the introduction of
a local anisotropy term to capture the effect of the spin-orbit
interaction due to the symmetry breaking of the local atomic
environment.

In the conventional approach to MD-SD, the material is
modeled as a classical system of N magnetic atoms of mass
m, described by the Hamiltonian

H =
N∑

i=1

mv2
i

2
+ U ({ri}) −

∑
i<j

Jij ({rk})Si · Sj , (1)

where {ri}, {vi}, and {Si} are the positions, velocities, and clas-
sical spins, respectively. U ({ri}) is the nonmagnetic compo-
nent of the interatomic potential whereas the Heisenberg-like
interaction with the coordinate-dependent exchange parameter
Jij ({rk}) specifies the exchange coupling between the spins.

The time evolution of the phase variables is governed by
the coupled equations of motion

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

dri

dt
= vi ,

dvi

dt
= fi

m
,

dSi

dt
= 1

�
Heff

i × Si ,

(2a)

(2b)

(2c)

where fi = −∇ri
H and Heff

i = ∇Si
H are the interatomic force

and the effective field, respectively. In MD-SD, one seeks to
numerically solve these equations and obtain the trajectories
of the atomic and spin degrees of freedom. With U ({ri})
and Jij ({rk}) chosen appropriately, one can readily adopt this
model to any magnetic material in which the spin interactions
can be modeled classically. For demonstration purposes, we
will use the adaptation of Ma et al. [21] for bcc iron, in which
U ({ri}) is constructed as U ({ri}) = UDD − E

ground
spin , where UDD

is the Dudarev-Derlet embedded atom potential [28,29], and
E

ground
spin = −∑

i<j J ′
ij ({rk}) is the energy contribution from
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FIG. 1. Thermal relaxation in a conventional molecular and spin
dynamics simulation, with the lattice subsystem coupled to a heat
bath at the temperature T = 800 K. The instantaneous lattice and the
spin temperatures are plotted as functions of time. The inset shows
the time evolution of magnetization as a fraction of the saturation
magnetization.

a collinear spin state which avoids the double counting of
the spin-spin interaction, with J ′

ij ({rk}) = Jij ({rk})|Si ||Sj |
being the modified exchange interaction with the spin lengths
absorbed into its definition. For J ′

ij ({rk}), we use a pairwise
functional form J ′(rij ) parametrized by first-principles calcu-
lations [21]. For simplicity, we assume constant spin lengths
|S| = 2.2/g, where g is the electron g factor.

In MD-SD, the coupling between the lattice and the spin
subsystem is established via the coordinate dependence of the
exchange interaction, which allows the exchange of energy
between the two subsystems. However, this exchange coupling
alone does not facilitate the transfer of angular momentum.
Due to the rotational symmetry of the Hamiltonian, in the
absence of any external torques that explicitly perturb the
spin orientations, the total spin angular momentum remains a
constant of motion, irrespective of the dynamics of the lattice
subsystem. In nonequilibrium simulations, this unrealistic con-
straint may impose an entropic barrier between the two subsys-
tems and prevent them from achieving a mutual equilibrium.

To demonstrate this point, we investigate the thermalization
of a coupled spin-lattice system via an external heat bath that
interacts exclusively with the lattice subsystem. If spin-lattice
coupling is properly established, a heat bath connected to
either of the subsystems should allow them both to thermalize
towards the same equilibrium temperature. Dimensions of the
simulation cell were chosen to be 16 × 16 × 16, with periodic
boundary conditions along the x, y, and z directions. Initially,
all atoms were arranged on a perfect bcc lattice with spins
oriented along the z direction, and velocities set to zero.
The heat bath was modeled using the stochastic Langevin
dynamics equation for the translational degrees of freedom
[30]. Coupled equations of motion in Eq. (2) were integrated
by an algorithm based on the second-order Suzuki-Trotter (ST)
decomposition of the noncommuting operators [31–33], using
a time step of δt = 1 fs. Figure 1 shows the time evolution
of the instantaneous temperatures associated with the lattice

and the spin subsystems, with the target temperature of the
thermostat set to 800 K. Spin temperature was measured
using the formula developed by Nurdin et al. [34]. Due to
the direct contact with the heat bath, the lattice subsystem
thermalizes and reaches the equilibrium within a fraction
of a picosecond. However, the currently established form of
spin-lattice coupling fails to initiate the thermal excitation of
the spin orientations, constraining the spin temperature and
the magnetization (shown in the inset) to remain constant
throughout the simulation.

The above example highlights the need for exploring miss-
ing contributions to spin-lattice coupling that may potentially
capture the true dynamics of the relaxation process. An impor-
tant interaction currently excluded from MD-SD as presented
in Eq. (1) is spin-orbit (SO) coupling, which serves as a
direct channel for the flow of energy and angular momentum
between the spins and the lattice [35]. However, in the bulk
phase of 3d cubic transition metals and alloys, crystal-field
splitting largely suppresses SO interactions [36,37], leading to
coupling strengths that are several orders of magnitude smaller
than the exchange interaction [35]. Nevertheless, in low
symmetry environments such as surfaces and thin films, SO
coupling is considerably strengthened due to the the changes
in the periodic potential experienced by the electrons [38,39].
Following the same argument, we assert that the momentary
symmetry breaking of the crystal structure that occurs due
to phonons may substantially enhance SO interactions. This,
in turn, may significantly influence the spin-lattice relaxation
process at elevated temperatures.

We infer that the critical “missing piece” in MD-SD
is in fact a classical model that encapsulates such local
fluctuations in the SO interactions. As the MD-SD formalism
does not contain the notion of orbital angular momentum
(L), one cannot introduce SO coupling directly in its natural
form, HSO ∼ L · S. Therefore, we model the effect of SO
coupling via one of its emergent properties, magnetocrystalline
anisotropy [40,41]. As the effective size and the orientational
preference of the SO interaction depends on the symmetry of
the surrounding atomic environment, the resultant anisotropies
will also vary across different atomic sites. Magnitudes and
the easy axes of these “induced” local anisotropies will change
dynamically as the local environment is continuously distorted
by the propagating phonons.

Henceforth, we will neglect any “background” anisotropy
that already resides in the perfect crystalline symmetry, and
only focus on the aforementioned induced anisotropies. Based
on the first- and second-order terms of the anisotropy energy
expansion for a single spin, we propose the following terms
for the anisotropic components of the Hamiltonian,

Hanis = −C1

N∑
i=1

Ki · Si − C2

N∑
i=1

Sᵀ
i · �i · Si , (3)

where C1 and C2 are constants, and vector Ki and tensor
�i are variable quantities that define the easy axes and the
coupling strengths of the on-site magnetic anisotropy at a given
time. Ki and �i are solely determined by the symmetry of the
local atomic environment. Since we have chosen to ignore the
cubic anisotropy present in the ground state, these quantities
will vanish for perfect cubic crystalline symmetry. In order to
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FIG. 2. Thermal relaxation in a combined molecular and spin dy-
namics simulation enhanced with SO coupling. The lattice subsystem
is coupled to a heat bath at the temperature T = 800 K. Anisotropy
coefficients C1 and C2 were set to 0.2 and 0.1 eV, respectively.

establish the connection to the local environment, we write the
vector Ki and tensor �i as

Ki = ∇ri
ρi , �i =

⎛
⎜⎜⎜⎝

∂2ρi

∂xi
2

∂2ρi

∂xi∂yi

∂2ρi

∂xi∂zi

∂2ρi

∂yi∂xi

∂2ρi

∂yi
2

∂2ρi

∂yi∂zi

∂2ρi

∂zi∂xi

∂2ρi

∂zi∂yi

∂2ρi

∂zi
2

⎞
⎟⎟⎟⎠, (4)

where ρi({rk}) is a scalar function that quantitatively reflects
the local symmetry surrounding the ith atom. The particular
functional form of ρi({rk}) will depend on the details of the
electronic structure of the material. Since the first-principles-
based formulation of ρi({rk}) is challenging the capabilities
of the current ab initio methods, we phenomenologically
construct ρi({rk}) as ρi = ∑

j (j �=i) φ(rij ), where φ(rij ) is
an arbitrary pairwise function. The chosen functional form
assures that in perfect cubic crystalline symmetry, ∇ri

ρi and
the off-diagonal elements of �i vanish. While the diagonal
elements of �i do not vanish, they become identical, which
only contributes to a constant shift in the ground state energy.
For φ(rij ), we choose a short-range function

φ(rij ) =
{

(1 − rij /rc)4 exp(1 − rij /rc), rij � rc,

0, rij > rc,
(5)

with the cutoff distance rc = 3.5 Å between the second-
and third-nearest-neighbor distances of the bcc iron lattice.
The fourth-order polynomial component ensures that all
interatomic forces due to the coordinate dependence of Hanis

smoothly approach zero at rc.
First-principles methods such as locally self-consistent

multiple scattering (LSMS) [42] can routinely provide SO
energies associated with the vibrational breaking of local
symmetry, and hence, in principle, estimates for the coef-
ficients C1 and C2. An attempt at parametrizing C1 based
on LSMS calculations [43] of a 128 atom configuration with
thermal displacements yielded an average value in the order
of 10−1 eV, with a site-to-site root-mean-square deviation of
the same order. Such variation from site to site demonstrates
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FIG. 3. Thermalization of the spin subsystem under varying
anisotropy strengths: (a) varying the first-order anisotropy coefficient
C1 while the second-order coefficient C2 is set to zero, and (b) varying
C2 while C1 is held constant at 0.2 eV. The lattice subsystem is
coupled to a heat bath at the temperature T = 800 K.

the difficulty in extracting models for SO energies from the
overall energy shifts associated with the local displacements
as predicted by LSMS. Therefore, in what follows, we
choose values for C1 and C2 of the order of 10−1 eV,
and further explore the sensitivity of the results to their
variations.

Equation (1), combined with the anisotropy terms in Eq. (3),
establishes a complete MD-SD model that fully couples the
atomic and spin degrees of freedom. The proposed extension
preserves the conservation laws of the original model, includ-
ing the conservation of energy, linear momentum, and total
angular momentum. With the inclusion of the second-order
anisotropy term, Eq. (2c) becomes nonlinear, rendering the
conventional ST algorithm inapplicable. To circumvent this
issue, we use a hybrid integration method that combines the ST
decomposition with the iterative scheme proposed by Krech
et al. [33]. To obtain the same level of accuracy as reflected
by the energy conservation in microcanonical simulations, we
reduce the integration time step to δt = 0.1 fs.

To show that our extension eradicates the barrier for the
angular momentum exchange, we perform the previously
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FIG. 4. Thermalization of the spin subsystem under varying
vacancy concentrations, with the lattice subsystem coupled to a heat
bath at the temperature T = 800 K. Anisotropy coefficients C1 and
C2 were set to 0.2 and 0.1 eV, respectively.

described thermalization procedure, with the anisotropy co-
efficients C1 and C2 set to 0.2 and 0.1 eV, respectively. The
corresponding results are shown in Fig. 2. As anticipated,
the spin subsystem gradually loses angular momentum to the
lattice through the anisotropy terms, allowing the spin tem-
perature/magnetization to increase/decrease with time. The
precessional damping of the spins continues until the coupled
spin-lattice system, as a whole, approaches equilibrium with
the phonon heat bath.

With the pairwise function φ(rij ) fixed, the anisotropy
coefficients C1 and C2 fully determine the strength of
the induced local anisotropies. Changing these coefficients
consequently broadens or narrows the SO channel, thereby
controlling the rate of the flow of angular momentum in and
out of the spin subsystem. To study this effect, we repeat our
familiar thermalization procedure under varying anisotropy
coefficients. Figure 3(a) shows the results for varying C1 while
C2 is set to zero, whereas in Fig. 3(b), C2 is varied while
C1 is held constant at 0.2 eV. As either of the coefficients
is increased, we observe a systematic increase in the spin
relaxation rate, which subsequently allows the spin subsystem
to reach equilibrium faster. The stability of our model over such
a range of coefficients promotes its applicability to a wide class
of systems with varying SO coupling strengths. If the interest
lies in obtaining realistic relaxation times for the material
under investigation, one can tune C1 and C2 appropriately

in accordance with the spin relaxation data obtained through
pump-probe experiments [44].

So far, our discussion on induced anisotropies was centered
on lattice vibrations as the primary source of symmetry break-
ing in the local environment. Another source of symmetry
breaking that commonly occurs in real crystals is the presence
of crystallographic defects. Due to the distortions in the crystal
structure surrounding the defect, SO interactions associated
with the nearby atoms will be enhanced significantly [45,46].
As a result, the occurrences of defects in the crystal may have
a noticeable impact on the overall spin-lattice relaxation. To
investigate this phenomenon, we introduce vacancies into the
bcc lattice and observe the relaxation of the spins as the system
is thermalized via a phonon heat bath. Figure 4 shows the
time evolution of the spin temperature under varying vacancy
concentrations. As expected, the relaxation rate of the spin
subsystem increases as the vacancy concentration is increased.
Site defects could be significantly affected by anisotropic
exchange [47,48]; this will be studied in future work.

In conclusion, we have developed a generic, phenomeno-
logical model for incorporating spin-orbit interactions into the
simulations of coupled spin-lattice systems. These interactions
are modeled in terms of the local magnetic anisotropies
that arise as the symmetry of the local crystal structure
is broken due to phonons or crystallographic defects. Our
improved approach overcomes the major shortcoming of
the original method, namely, the inability to capture the
angular momentum exchange between the lattice and the spin
subsystems. This extends the applicability of the MD-SD
approach to the realistic modeling of nonequilibrium processes
in magnetic metals and alloys, which will, in turn, further
our understanding of the microscopic mechanisms of defect
evolution, energy dissipation, magnetization dynamics, etc.
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