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Extended slow dynamical regime close to the many-body localization transition

David J. Luitz,1,2,* Nicolas Laflorencie,2,† and Fabien Alet2,‡
1Department of Physics and Institute for Condensed Matter Theory, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801, USA
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Many-body localization is characterized by a slow logarithmic growth of the entanglement entropy after
a global quantum quench while the local memory of an initial density imbalance remains at infinite time.
We investigate how much the proximity of a many-body localized phase can influence the dynamics in the
delocalized ergodic regime where thermalization is expected. Using an exact Krylov space technique, the out-
of-equilibrium dynamics of the random-field Heisenberg chain is studied up to L = 28 sites, starting from an
initially unentangled high-energy product state. Within most of the delocalized phase, we find a sub-ballistic
entanglement growth S(t) ∝ t1/z with a disorder-dependent exponent z � 1, in contrast with the pure ballistic
growth z = 1 of clean systems. At the same time, anomalous relaxation is also observed for the spin imbalance
I(t) ∝ t−ζ with a continuously varying disorder-dependent exponent ζ , vanishing at the transition. This provides
a clear experimental signature for detecting this nonconventional regime.
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The many-body localization (MBL) phenomenon has at-
tracted enormous interest in the last few years (see Refs. [1,2]
for recent reviews). This is mainly due to the fundamental
issues that MBL raises regarding the foundations of quantum
statistical physics, e.g., the absence of thermalization and a vio-
lation of the eigenstate thermalization hypothesis (ETH) [3–5],
the persistence of local quantum information at very long
time [6], and the slow logarithmic growth of entanglement
entropy with time [7–12]. Furthermore, MBL behaves as an
emerging integrable system, with an extensive number of local
integrals of motion [11,13–15], and MBL states exhibit low
(area-law) entanglement even at high energy [16]. In this
context, one of the most studied theoretical models is the
spin- 1

2 random-field Heisenberg chain [6,8,9,17–19]

H =
L∑

i=1

(�Si · �Si+1 − hiS
z
i

)
, (1)

which lies in the same class as interacting fermionic rings in
a disordered potential [20–23]. Exact diagonalization (ED)
studies have clearly identified a MBL transition [6,18,24],
and a many-body mobility edge in one dimension [18,24], in
contrast with single particle Anderson localization. However,
the precise nature of the transition remains elusive despite
tentative finite size scaling analyses, practically limited to the
small range of available system sizes L � 22 [18].

Recently, two analytical phenomenological renormaliza-
tion approaches have been proposed by Vosk et al. [25] and
Potter et al. [26] for the dynamical transition from ETH to
MBL in one dimension. Building on different ingredients,
both studies nevertheless reached comparable conclusions
regarding the critical regime. One interesting common aspect
is that slow dynamics is predicted on the delocalized side of
the transition, interpreted as caused by Griffiths regions [27].
Signatures of such anomalously slow dynamics on the ergodic
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side of the transition were previously observed numerically
for one-dimensional (1D) models in Refs. [19,22,28] on small
systems L � 16. While Agarwal et al. [19] found a transition
diffusive–subdiffusive roughly in the middle of the ergodic
regime, Bar Lev et al. [22] concluded for a more extended
subdiffusive phase, although they did not precisely locate the
boundary.

In this Rapid Communication we address this crucial
issue of anomalous dynamics in the delocalized regime
when approaching the MBL transition for the random-field
Heisenberg chain model, Eq. (1). We study the time evolution
after a quantum quench for systems up to L = 28 sites using an
exact Krylov space method [29]. Reaching these large system
sizes turns out to be decisive for drawing firm conclusions
on the dynamical response after a global quench. We focus
on the out-of-equilibrium response for two key quantities: the
entanglement entropy and the spin density imbalance. While
the former is a central object for quantum quenches [30], the
latter addresses the prevailing question of how the memory
of an initial quantum state is lost with time, and allows
one to make a direct connection with recent experiments on
interacting fermions in a 1D quasirandom optical lattice [31].

Our exact numerical results for the time evolution of these
two quantities provide strong support for the absence of a
diffusive regime in most of the delocalized ETH phase. In-
stead, a sub-ballistic entanglement growth is clearly observed
for the von Neumann entropy S(t) ∝ t1/z, with a disorder-
dependent exponent z � 1. The relaxation of an initial spin
density imbalance also displays a power-law behavior, as
it decays in time I(t) ∝ t−ζ with a nonuniversal exponent
ζ , superposed by subdominant oscillatory terms. These two
exponents governing the entropy growth and the decay of the
imbalance are continuously varying with the disorder strength
and both vanish at the MBL transition. In the MBL regime, we
recover the slow logarithmic growth of entanglement, while
the memory of initial spin density imbalance remains even
after long times. Figure 1 shows an overview of both ETH
and MBL regimes for the time evolution of entanglement and
imbalance obtained using Krylov space time evolution with
L = 20 sites in the MBL regime and L = 28 in the ETH
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FIG. 1. Disorder averaged time evolution of the entanglement
entropy S(t) [panels (a) and (b)] for the half-system in an open chain
and spin density imbalance I(t) [panels (c) and (d)], all measured
after a quench from a random initial product (unentangled) state
having an average energy in the middle of the spectrum. Left panels
show the behavior in the ergodic ETH phase, where the entanglement
entropy grows as a power law ∝ t1/z until saturation and the imbalance
decays algebraically ∝ t−ζ at intermediate times (ED results for L =
28 sites). Right panels display the dynamical behavior in the MBL
phase, where the entanglement entropy grows logarithmically in time
and the imbalance saturates at a nonzero constant (ED results for L =
20 sites). Here, we have averaged over 103 disorder configurations.

phase where larger systems are required to capture the slow
dynamics. The power-law regimes with varying exponents can
be observed as straight lines in the log-log panels for the ETH
phase. These exact results (see below for more details) are
obtained for initially unentangled product states filtered such
that their energy is in the middle of the many-body spectrum
where the critical disorder strength is hc � 3.7 [18].

Time evolution after a quench. We consider a global quench
protocol, where we follow the time evolution of an initial
product state |ψ(0)〉 = |σ1, . . . ,σL〉 given by the z projections
σi under Hamiltonian dynamics

|ψ(t)〉 = e−iHt |ψ(0)〉. (2)

Studying the dynamics at any arbitrary time by fully
diagonalizing H is restricted to small system sizes, typi-
cally L = 16 for Eq. (1). Time evolution using variational
approaches based on matrix-product states formalism [32,33]
are particularly successful in cases where the entanglement
entropy remains small, e.g., in the MBL phase, but rapidly
break down in the ergodic phase due to the fast entanglement
growth (see below). In order to address the ETH regime, we
take advantage of the algorithm first proposed in Ref. [29]
which is based on a projection of the Hamiltonian to the Krylov
space K = span(|ψ0〉,H|ψ0〉, . . . ,Hn|ψ0〉) using the Lanczos
algorithm and calculation of the (small) matrix exponential
in the orthonormal Krylov space basis. Here, we use the
implementation of the SLEPC package [34] which calculates

the matrix exponential in the Krylov basis by a simple eigen-
decomposition. We are able to reach large system sizes for
any disorder strength (up to L = 28 sites) in the intermediate
time regime (up to t � 102 for the largest systems) before the
entanglement entropy saturates due to finite-system sizes. As
we previously showed [18] that the critical disorder strength
hc of the MBL transition depends on the energy of eigenstates,
it is crucial to specify the energy of the initial state. To this
end, we calculate for all disordered samples the average energy
density ε = (〈ψ(0) |H|ψ(0)〉 − E0)/(E1 − E0), with E0 (E1)
the ground-state (maximal) energy of the sample, for random
basis states |ψ(0)〉 until we find one whose energy density is
close enough to the desired target density. In the following,
we focus on initial states with total zero magnetization that are
located in the middle of the spectrum (ε = 0.5). We average
our results over at least 1000 disorder realizations, choosing a
different initial state for each sample.

Sub-ballistic entanglement growth. We first discuss the time
evolution of the entanglement entropy

S(t) = −Tr[ρA(t) ln ρA(t)], (3)

where ρA(t) = TrB |�(t)〉〈�(t)| is the (time-dependent) re-
duced density matrix obtained after cutting chains of lengths
L = 20,24,28 in two equal parts A and B of size L/2. For
clean systems, the growth of entanglement entropy after such
a global quench is known to be ballistic in time [7,35,36],
the information spreading being limited by a Lieb-Robinson
bound [37]. Then, after a finite time, the entropy will reach
its saturation value Ssat = �s∞ for a finite subsystem of length
� [38], with s∞ � ln 2 depending on the energy of the initial
state (here s∞ � ln 2 for our initial states with ε = 0.5).

In practice, the time lapse for observing an asymptotic
ballistic regime is restricted to t < tsat � s∞�, which may
prevent such an observation in particular for small system
sizes. Interestingly, using open chains the entanglement en-
tropy grows a factor of 2 slower as compared to the periodic
case, while saturating at the same value Ls∞/2, thus doubling
the time lapse for observing universal entanglement growth
before saturation. The combination of open boundaries and
large system sizes is crucial to capture the asymptotic regime
for the spreading of entanglement. In the ETH phase of
the random-field Heisenberg chain model, Eq. (1), at small
disorder strength h, we see in Fig. 2 a sub-ballistic growth in
time of the entanglement entropy, which follows

S(t) ∝ t1/z, (4)

with a disorder-dependent dynamical exponent z � 1. The
time window over which sub-ballistic entanglement spreading
is visible grows as (s∞L)z, which is clearly apparent in Fig. 2
as plateaus of the local (in time) exponent 1/z obtained from
sliding fits to the form Eq. (4) (see caption of Fig. 2). These
local power-law fits provide an estimate of how the exponent
changes if the fit window is displaced and a plateau indicates
a real power-law regime. As the observed domains of constant
local exponents grow with system size, we conclude that in the
thermodynamic limit the entanglement entropy grows indeed
as a power law. For the system sizes L � 16 accessible to full
diagonalization, we find that it is almost impossible to identify
such a power-law regime.
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FIG. 2. (b), (d), and (f) Disorder-averaged time evolution of the entanglement entropy S(t) in the open chain for different system sizes and
three values of disorder. (c), (e), and (g) Logarithmic derivative of the disorder-averaged time evolution of S(t), obtained by power-law fits over
eight points in time, starting from tmin. The formation of plateaus corresponds to the power-law regime, with growing extent in terms of system
size. The plateaus determine the range of the power-law regime, over which we extract the exponent 1/z, displayed as a function of disorder in
panel (a). Note that the range of the power-law regime grows with disorder strength as the exponent decreases, delaying the saturation of S(t).
Shaded regions correspond to fit uncertainties.

The algebraic growth of Eq. (4) has been predicted to
occur in the subdiffusive regime found in the renormalization
approaches of Refs. [25,26], with an exponent z which varies
continuously with disorder due to the proximity to the critical
point. Plotted in panel (a) of Fig. 2, one sees that 1/z � 1 and
decreases with h. Although it is difficult to make a definite
statement at small disorder strength, it is plausible that the
sub-ballistic entanglement spreading regime takes place as
soon as h �= 0. In any case this result contrasts with the clearly
smaller subdiffusive regime found for L � 16 in Ref. [19].

The exponent 1/z is expected to vanish at the ETH-MBL
critical point where instead a logarithmic growth should be
observed [18,24–26]. This should also be the case for system
sizes below the correlation length in a critical regime around
hc. Within the system sizes and time regimes that we can
access, we cannot discriminate between a logarithmic and a
very slow algebraic behavior. This critical logarithmic growth
likely implies that the power-law fits for h � 3 may be
spoiled by a logarithmic component (not present in our fitting
function), resulting in a slightly overestimated value of 1/z in
this regime.

Time evolution of a spin density imbalance. The hallmark
of MBL is the absence of thermalization, which can be
seen in quantum quench protocols as a violation of initial
state independence [1,39]: some memory of the local initial
conditions is preserved even at infinite time, in contrast with
the ETH phase where any particular local feature of the initial
state is lost along the unitary evolution. In a recent cold-atom
experiment with interacting fermions loaded in a quasiperiodic
optical lattice [31], this property has been used to define a
working “order parameter” to characterize the MBL phase for
the transition through the study of the relaxation of an initially
prepared charge density wave: a nonzero charge imbalance
persisting at long-time signals the MBL phase.

Here, we show that the intermediate time dynamics of
the imbalance can display an anomalous power-law regime
characteristic of the subdiffusive regime. We generalize the
imbalance to any initial basis state of the form |ψ(0)〉 =

|σ1, . . . ,σL〉 (with zero magnetization) presenting a trivial
local spin imbalance, by computing

I(t) = 4

L

L∑

j=1

〈ψ(0) |Sz
j (0)Sz

j (t)|ψ(0)〉, (5)

for L (even) sites. Shown in panels (c) and (d) of Fig. 1 and
in Fig. 3, the disorder-averaged imbalance I(t) displays as
expected qualitatively different behaviors for ETH and MBL
regimes. Below we focus on the delocalized side where the
imbalance is vanishing at long time.

There, an anomalous power-law regime with varying expo-
nents is found at intermediate time (Fig. 3), even if hindered
by strong and fast oscillations at short time t � 10. This
transient behavior, particularly pronounced at small disorder,
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FIG. 3. Left: Time evolution of the disorder-averaged spin imbal-
ance for a chain of length L = 24. Lines are best fits to Eq. (6). Right:
Exponent ζ of the spin imbalance decay as a function of disorder
strength h, as extracted from fits for different system sizes. All systems
have periodic boundary conditions. The results for h > hc � 3.7 are
compatible with ζ = 0 up to systematic and statistical errors.
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is reminiscent of the clean case where these oscillations are
exponentially suppressed in time [40,41]. We find that the best
fitting function faithfully describing the entire relaxation at
intermediate times is given by

I(t) = ae−t/τ cos(ω1t + ϕ) + bt−ζ [1 + ct−η sin(ω2t + ϕ)].

(6)

The first term is identical to the clean case [40,41], while the
second contains the anomalous power law characterized by the
exponent ζ . The final oscillatory term with the subdominant
power law (η > 0) describes the characteristic oscillations that
are visible inside the power-law regime, and which is found to
be out of phase with the first term. The dashed lines in Fig. 3
represent fits to this form, and an excellent agreement with
the raw data (symbols) can be observed. Note that this fitting
form does not capture the finite-size saturation at longer times
in the ETH regime, which is visible at low disorder in our
time regime (fit windows are chosen accordingly to exclude
this finite-size effect in this region). The extracted exponent ζ

[Fig. 3(b)] vanishes at the MBL transition, and monotonously
increases when disorder is reduced. This is confirmed by the
good agreement obtained between exponents extracted for
systems of different sizes. For weak disorder strength, the
extraction of ζ is more difficult for two concomitant reasons:
(i) the short-time exponential oscillatory decay is very strong
and has already strongly depleted the imbalance, leaving only a
small time window to observe the power-law regime, which is
furthermore cut by (ii) a saturation to a nonzero long-time value
of the imbalance for a finite-size system, visible as strong size
dependence of the result for h � 0.5, limiting the reliability of
our result at very small disorder strength.

Finally in the localized phase, the fit to Eq. (6) is particularly
good up to very long times as ζ is found to vanish, leaving a
finite long-time saturation value for the imbalance (the exact
vanishing of ζ within error bars requires one to consider longer
times on smaller systems to observe saturation). In the MBL
regime, we observe that ω2 ≈ 1 and η decreases slowly with
disorder strength, starting from η ≈ 1 at the transition, fully

consistent with the expectation that the oscillations around the
saturation value decay as a power law [42].

Discussion. Our large-scale exact numerical results confirm
the existence of an anomalous dynamical regime for the
entanglement entropy inside the ETH phase, as predicted in
Refs. [25,26]. This slow dynamical behavior can be probed
in cold-atom systems [31] by measuring the power-law decay
of imbalance at intermediate time as we have clearly shown.
While it is hard to conclude on the behavior at very small
disorder, we strikingly find that this anomalous regime persists
in an extended parameter region for a large window of disorder.
At first sight, this may be hard to reconcile with the fact that
the subdiffusive regime is ascribed [19,25,26] to rare Griffiths
regions, only expected close to the MBL transition. One should
remember, however, that in the considered quench protocol,
inhomogeneity is also present in the initial random product
state |ψ(0)〉, where the energy density can fluctuate locally
leading to anomalously hot or cold regions. We believe that
the presence of a mobility edge [18] in the model, Eq. (1),
can therefore enhance the extent of the anomalous dynamical
regime when using such a global quench protocol. It would be
interesting in future work to consider the full range of energy
for the initial state to see whether dynamics can also detect
the presence of a mobility edge. Also, the subdiffusive regime
is expected to occur only in one dimension [19]: while it is a
challenging task to extend numerical simulations of MBL to
two-dimensional systems, it is possible with our numerical
technique to address the dynamical behavior of a ladder
geometry where a MBL phase has been recently found [43].
We leave these interesting questions to future studies.
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[24] M. Serbyn, Z. Papić, and D. A. Abanin, Phys. Rev. X 5, 041047

(2015).
[25] R. Vosk, D. A. Huse, and E. Altman, Phys. Rev. X 5, 031032

(2015).
[26] A. C. Potter, R. Vasseur, and S. A. Parameswaran, Phys. Rev. X

5, 031033 (2015).
[27] R. B. Griffiths, Phys. Rev. Lett. 23, 17 (1969).
[28] E. J. Torres-Herrera and L. F. Santos, Phys. Rev. B 92, 014208

(2015).
[29] A. Nauts and R. E. Wyatt, Phys. Rev. Lett. 51, 2238 (1983).
[30] V. Alba and F. Heidrich-Meisner, Phys. Rev. B 90, 075144

(2014).
[31] M. Schreiber, S. S. Hodgman, P. Bordia, H. P. Lüschen, M. H.
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1997), pp. 163.

[47] X. Yu, D. Pekker, and B. K. Clark, arXiv:1509.01244.
[48] V. Khemani, F. Pollmann, and S. L. Sondhi, arXiv:1509.00483.

060201-5

http://dx.doi.org/10.1103/PhysRevLett.114.160401
http://dx.doi.org/10.1103/PhysRevLett.114.160401
http://dx.doi.org/10.1103/PhysRevLett.114.160401
http://dx.doi.org/10.1103/PhysRevLett.114.160401
http://dx.doi.org/10.1103/PhysRevB.75.155111
http://dx.doi.org/10.1103/PhysRevB.75.155111
http://dx.doi.org/10.1103/PhysRevB.75.155111
http://dx.doi.org/10.1103/PhysRevB.75.155111
http://dx.doi.org/10.1088/1742-5468/2013/09/P09005
http://dx.doi.org/10.1088/1742-5468/2013/09/P09005
http://dx.doi.org/10.1088/1742-5468/2013/09/P09005
http://dx.doi.org/10.1103/PhysRevLett.114.100601
http://dx.doi.org/10.1103/PhysRevLett.114.100601
http://dx.doi.org/10.1103/PhysRevLett.114.100601
http://dx.doi.org/10.1103/PhysRevLett.114.100601
http://dx.doi.org/10.1103/PhysRevA.92.041601
http://dx.doi.org/10.1103/PhysRevA.92.041601
http://dx.doi.org/10.1103/PhysRevA.92.041601
http://dx.doi.org/10.1103/PhysRevA.92.041601
http://dx.doi.org/10.1103/PhysRevX.5.041047
http://dx.doi.org/10.1103/PhysRevX.5.041047
http://dx.doi.org/10.1103/PhysRevX.5.041047
http://dx.doi.org/10.1103/PhysRevX.5.041047
http://dx.doi.org/10.1103/PhysRevX.5.031032
http://dx.doi.org/10.1103/PhysRevX.5.031032
http://dx.doi.org/10.1103/PhysRevX.5.031032
http://dx.doi.org/10.1103/PhysRevX.5.031032
http://dx.doi.org/10.1103/PhysRevX.5.031033
http://dx.doi.org/10.1103/PhysRevX.5.031033
http://dx.doi.org/10.1103/PhysRevX.5.031033
http://dx.doi.org/10.1103/PhysRevX.5.031033
http://dx.doi.org/10.1103/PhysRevLett.23.17
http://dx.doi.org/10.1103/PhysRevLett.23.17
http://dx.doi.org/10.1103/PhysRevLett.23.17
http://dx.doi.org/10.1103/PhysRevLett.23.17
http://dx.doi.org/10.1103/PhysRevB.92.014208
http://dx.doi.org/10.1103/PhysRevB.92.014208
http://dx.doi.org/10.1103/PhysRevB.92.014208
http://dx.doi.org/10.1103/PhysRevB.92.014208
http://dx.doi.org/10.1103/PhysRevLett.51.2238
http://dx.doi.org/10.1103/PhysRevLett.51.2238
http://dx.doi.org/10.1103/PhysRevLett.51.2238
http://dx.doi.org/10.1103/PhysRevLett.51.2238
http://dx.doi.org/10.1103/PhysRevB.90.075144
http://dx.doi.org/10.1103/PhysRevB.90.075144
http://dx.doi.org/10.1103/PhysRevB.90.075144
http://dx.doi.org/10.1103/PhysRevB.90.075144
http://dx.doi.org/10.1126/science.aaa7432
http://dx.doi.org/10.1126/science.aaa7432
http://dx.doi.org/10.1126/science.aaa7432
http://dx.doi.org/10.1126/science.aaa7432
http://dx.doi.org/10.1103/PhysRevLett.91.147902
http://dx.doi.org/10.1103/PhysRevLett.91.147902
http://dx.doi.org/10.1103/PhysRevLett.91.147902
http://dx.doi.org/10.1103/PhysRevLett.91.147902
http://dx.doi.org/10.1103/PhysRevLett.93.076401
http://dx.doi.org/10.1103/PhysRevLett.93.076401
http://dx.doi.org/10.1103/PhysRevLett.93.076401
http://dx.doi.org/10.1103/PhysRevLett.93.076401
http://dx.doi.org/10.1145/1089014.1089019
http://dx.doi.org/10.1145/1089014.1089019
http://dx.doi.org/10.1145/1089014.1089019
http://dx.doi.org/10.1145/1089014.1089019
http://dx.doi.org/10.1088/1742-5468/2005/04/P04010
http://dx.doi.org/10.1088/1742-5468/2005/04/P04010
http://dx.doi.org/10.1088/1742-5468/2005/04/P04010
http://dx.doi.org/10.1103/PhysRevLett.111.127205
http://dx.doi.org/10.1103/PhysRevLett.111.127205
http://dx.doi.org/10.1103/PhysRevLett.111.127205
http://dx.doi.org/10.1103/PhysRevLett.111.127205
http://dx.doi.org/10.1007/BF01645779
http://dx.doi.org/10.1007/BF01645779
http://dx.doi.org/10.1007/BF01645779
http://dx.doi.org/10.1007/BF01645779
http://arxiv.org/abs/arXiv:1508.05045
http://dx.doi.org/10.1103/PhysRevLett.106.040401
http://dx.doi.org/10.1103/PhysRevLett.106.040401
http://dx.doi.org/10.1103/PhysRevLett.106.040401
http://dx.doi.org/10.1103/PhysRevLett.106.040401
http://dx.doi.org/10.1103/PhysRevLett.102.130603
http://dx.doi.org/10.1103/PhysRevLett.102.130603
http://dx.doi.org/10.1103/PhysRevLett.102.130603
http://dx.doi.org/10.1103/PhysRevLett.102.130603
http://dx.doi.org/10.1088/1367-2630/12/5/055017
http://dx.doi.org/10.1088/1367-2630/12/5/055017
http://dx.doi.org/10.1088/1367-2630/12/5/055017
http://dx.doi.org/10.1088/1367-2630/12/5/055017
http://dx.doi.org/10.1103/PhysRevB.90.174302
http://dx.doi.org/10.1103/PhysRevB.90.174302
http://dx.doi.org/10.1103/PhysRevB.90.174302
http://dx.doi.org/10.1103/PhysRevB.90.174302
http://dx.doi.org/10.1103/PhysRevB.92.195153
http://dx.doi.org/10.1103/PhysRevB.92.195153
http://dx.doi.org/10.1103/PhysRevB.92.195153
http://dx.doi.org/10.1103/PhysRevB.92.195153
http://www.mcs.anl.gov/petsc
http://arxiv.org/abs/arXiv:1509.01244
http://arxiv.org/abs/arXiv:1509.00483



