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Quasiparticles near domain walls in hexagonal superconductors
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We calculate the energy spectrum of quasiparticles trapped by a domain wall separating different time-reversal
symmetry-breaking ground states in a hexagonal superconductor, such as UPt3. The bound-state energy is
found to be strongly dependent on the gap symmetry, the domain-wall orientation, the quasiparticle’s direction
of semiclassical propagation, and the phase difference between the domains. We calculate the corresponding
density of states and show how one can use its prominent features, in particular, the zero-energy singularity, to
distinguish between different pairing symmetries.
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I. INTRODUCTION

The presence of domain walls (DWs) in a superconductor
is a direct evidence of an unconventional nature of the pairing,
because the DWs can only appear if there are two or more
distinct degenerate ground states, which transform one into
another by some discrete symmetry operations, e.g., by time
reversal. This is possible if the superconducting order param-
eter has more than one component, i.e., corresponds to either
a multidimensional irreducible representation (IREP) of the
crystal point group or to a mixture of different one-dimensional
(1D) representations. The chiral p-wave state, which is
realized, for example, in Sr2RuO4 [1], is a well-known example
of a system in which DWs are believed to play a prominent
role. Strong evidence of the superconducting states with
broken time-reversal symmetry (TRS) has also been reported
in URu2Si2 [2], UPt3 [3], SrPtAs [4,5], and PrOs4Sb12 [6,7].
Various TRS-breaking states have been proposed theoretically
in Ba1−xKxFe2As2 [8], doped graphene [9], undoped bilayer
silicene [10], NaxCoO2 · yH2O [11], and other materials.
Superconducting DWs can be created in these systems, e.g.,
due to the nucleation of the order parameters of opposite
chirality in different parts of an inhomogeneous sample.

It is well known that a superconducting DW can trap
quasiparticles in its vicinity, creating the Andreev bound states
(ABSs); see, e.g., [12]. The energy of these states is inside
the bulk gap and their very existence can be explained by
topological arguments; see [13,14]. The ABS contribution to
the tunneling density of states (DOS) can be easily separated
from that of the bulk quasiparticles and can, therefore, be used
to prove the DW presence. Moreover, the ABS spectrum is
sensitive to the gap structure in the bulk of the domains, which
allows one to confirm or rule out certain pairing symmetries.

We focus on the case of a three-dimensional (3D) hexagonal
superconductor with the crystallographic point group D6h,
which describes UPt3. The quasi-two-dimensional tetragonal
case, which is applicable to Sr2RuO4 and the iron-based super-
conductors, was previously studied in [15]. The heavy-fermion
superconductor UPt3 has a complicated phase diagram, with
two distinct phases (called A and B phases) even in the
absence of external magnetic field; see [3] for a review. A
variety of thermodynamic and transport measurements have
revealed an unconventional superconducting state with nodal
excitations. Although there is still no general consensus on
the pairing symmetry in UPt3, the most promising candidate

model, which has recently received further support from the
Josephson interferometry [16] and the polar Kerr effect [17]
experiments, is based on the two-dimensional (2D) IREP E2u

of the point group D6h. The corresponding order parameter is
real in the high-temperature A phase (at 0.45 < T < 0.5 K),
and complex, i.e., TRS breaking, in the low-temperature B

phase (at T < 0.45 K).
Our goal is to study the quasiparticle tunneling features

which are uniquely associated with the DWs and can be
used to probe the symmetry of the superconducting order
parameter, e.g., in the B phase of UPt3. We analyze the
TRS-breaking states corresponding to all IREPs of D6h that
support the formation of DWs. The paper is organized as
follows. In Sec. II, we derive a general expression for the
ABS energy in the semiclassical (Andreev) approximation. In
Sec. III, we calculate the ABS spectrum and the corresponding
contribution to the DOS separately for each of the four possible
TRS-breaking states. The summary of our results is presented
in Sec. IV. Throughout the paper we use the units in which
� = e = c = 1.

II. ANDREEV BOUND STATES

We consider a hexagonal superconductor described by the
point group D6h, in zero magnetic field. The z axis is along
the sixfold symmetry axis and the xy plane coincides with
the basal plane. The electron band dispersion is assumed to
be ξ (k) = (k2 − k2

F )/2m∗, where m∗ is the effective mass,
with generalization to a more general, e.g., ellipsoidal, case
being straightforward. The superconductor is divided into two
semi-infinite superconducting domains by a planar DW.

Since the scale ξd of the order parameter variation in
the DW is much greater than the inverse Fermi wave
vector, we can use the Andreev approximation [18], in
which the Bogoliubov quasiparticles propagate along the
semiclassical trajectories characterized by the Fermi-surface
wave vectors kF = kF (sin θ cos φ, sin θ sin φ, cos θ ) (θ and
φ are the spherical angles, with the polar axis directed
along the positive z axis). In the semiclassical approximation,
the gap function is given by a 2 × 2 spin matrix, which
depends on the position r and the wave vector kF : �̂(kF ,r) =
iσ̂2ψ(kF ,r) for singlet pairing, and �̂(kF ,r) = iσ̂ σ̂2d(kF ,r)
for triplet pairing. We consider only 2D IREPs of D6h,
therefore the gap functions can be written in the follow-
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ing form [19]: ψ(kF ,r) = η1(r)φ1(k̂F ) + η2(r)φ2(k̂F ) and
d(kF ,r) = η1(r)φ1(k̂F ) + η2(r)φ2(k̂F ), where k̂F = kF /kF ,
η1,2 are the order-parameter components, and the basis
functions satisfy φ1,2(k) = φ1,2(−k), φ1,2(k) = −φ1,2(−k).
The direction of the spin vector d is assumed to be fixed
along ẑ by the strong spin-orbit coupling of electrons with the
crystal lattice [20].

In general, the quasiparticle wave function has four com-
ponents, corresponding to the Nambu (electron-hole) and spin
degrees of freedom, but in the models considered in this paper
the spin channels are decoupled and the equations are reduced
to a two-component form. For each spin projection, the wave
function is a product of a rapidly oscillating plane wave eikF r

and a slowly varying Andreev envelope function 	(r), which
satisfies the equation(

−ivF ∇r �kF
(r)

�∗
kF

(r) ivF ∇r

)
	(r) = E	(r). (1)

Here vF = kF /m∗ is the Fermi velocity and �kF
(r) is the gap

function sensed by the quasiparticles as they propagate along
the semiclassical trajectory defined by kF : �kF

(r) = ψ(kF ,r)
for singlet pairing, and �kF

(r) = dz(kF ,r) for triplet pairing.
We use the sharp DW model, in which the gap function

is described by two different complex constants in the two
domains along each semiclassical trajectory:

�kF
(r) = �+(θ,φ), (r · n̂) > 0,

�kF
(r) = �−(θ,φ), (r · n̂) < 0,

(2)

where n̂ is normal to the DW plane. The angular dependence
of the gap function is different for different IREPs of the point
group; see Sec. III below. The solution of Eq. (2) which is
exponentially localized near the DW has the form 	±(r) ∼
e∓κ±(r·n̂), where

κ± =
√

|�±|2 − E2

|(vF · n̂)| > 0.

From the continuity of the wave function across the DW, we
obtain the following equation for the Andreev bound-state
energy:

E + i(vF · n̂)κ−
E − i(vF · n̂)κ+

= γ, (3)

where γ = �−/�+ = γR + iγI . The solution of Eq. (3) is
straightforward (see, e.g., [15]), and we find that for each
direction of semiclassical propagation satisfying the condition

sgn(|γ |2 − γR) sgn(1 − γR) = 1 (4)

there is exactly one ABS, the energy of which is given by

Eb(θ,φ) = |�+(θ,φ)| 1√
1 + β2(θ,φ)

sgn[β(θ,φ)(v̂F · n̂)],

(5)
where v̂F = vF /vF and

β(θ,φ) = 1 − γR

γI

. (6)

In all cases studied in this work, we have |�+(θ,φ)| =
|�−(θ,φ)|, therefore |γ |2 = 1 and the condition (4) is satisfied
for every direction. It is straightforward to show that the ABS

energy (5) is inside the bulk gap, i.e., |Eb(θ,φ)| � |�±(θ,φ)|.
The dependence of the ABS energy on the direction of
semiclassical propagation is not continuous, showing abrupt
changes when either β or the Fermi velocity projection on the
DW normal change their signs; see Appendix A.

The sharp DW model (2) can be justified by the following
argument. The ABS wave function is exponentially localized
on both sides of the DW, with the characteristic scales given
by κ−1

± . The sharp DW approximation is legitimate for those
directions of semiclassical propagation for which the DW
width ξd is smaller than κ−1

± . This condition is strongly
angle dependent and, in particular, fails for the trajectories
corresponding to (vF · n̂) → 0. However, for such trajectories
the Andreev approximation itself is not applicable. For most
directions of kF , one can use the following estimate: κ−1

± �
vF /�0 ∼ ξ ∼ ξd , where �0 is a characteristic value of the gap
and ξ is the superconducting correlation length.

The quantity of interest is the DOS of the ABSs, which
can be measured in tunneling experiments. We consider two
orientations of the DW, with the normal vector either parallel
or perpendicular to the basal plane. In the first case, assuming
n̂ ‖ x̂, the order parameter depends only on x, the momentum
components parallel to the DW are conserved, and the DOS
per unit DW area for both spin projections has the following
form:

Nb(E) = 1

LyLz

∑
kF,y

∑
kF,z

δ[E − Eb(kF )], (7)

where Ly and Lz are the system’s dimensions in the yz

plane. Derivation of this expression is outlined in Appendix B.
Taking the thermodynamic limit and changing the integration
variables to the spherical angles, we obtain

Nb(E) = 1

2
NF vF

∫ 2π

0
dφ | cos φ|

×
∫ π

0
dθ sin2 θ δ[E − Eb(θ,φ)], (8)

where NF = m∗kF /2π2 is the normal-state DOS in three
dimensions at the Fermi surface per one spin projection. The
ABS energy [see Eq. (5)] has the following form:

Eb(θ,φ) = |�+(θ,φ)| 1√
1 + β2(θ,φ)

sgn[β(θ,φ) sin θ cos φ].

(9)

In the case of n̂ ‖ ẑ, the order parameter depends only on z,
and we obtain the following expressions for the DOS per unit
DW area for both spin projections:

Nb(E) = 1

4
NF vF

∫ 2π

0
dφ

∫ π

0
dθ | sin 2θ | δ[E − Eb(θ,φ)],

(10)

and for the ABS energy

Eb(θ,φ) = |�+(θ,φ)| 1√
1 + β2(θ,φ)

sgn[β(θ,φ) cos θ ].

(11)
Due to the electron-hole symmetry, Nb(E) = Nb(−E), so that
below we calculate the DOS only for E > 0.
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TABLE I. The momentum dependence of the singlet (ψ) and
triplet (dz) gap functions of the chiral states corresponding to the
2D IREPs of D6h, for a strong spin-orbit coupling. The singlet gap
functions correspond to the even IREPs E1g and E2g , while the triplet
gap functions correspond to the odd IREPs E1u and E2u.

IREP ψ(k), dz(k)

E1u kx ± iky

E1g kz(kx ± iky)

E2u kz(k2
x − k2

y ± 2ikxky)

E2g k2
x − k2

y ± 2ikxky

III. ANDREEV BOUND-STATE SPECTRA

The point group D6h has twelve IREPs, six even and six
odd, of which eight are 1D and four are 2D. The formation of
DWs is possible only for those superconducting classes which
are degenerate with respect to some discrete symmetry [19,21].
Since the 1D IREPs cannot support DWs, we focus on the 2D
IREPs. We consider only the TRS-breaking chiral states, with
the order parameters given by η = (η1,η2) ∝ �0(1, ± i). The
momentum dependence of the corresponding gap functions is
listed in Table I. Note that, due to the similarity of the basis
functions, our results for the IREPs E1u and E1g are also appli-
cable to a tetragonal superconductor with the point group D4h.

A. E1u representation

For the chiral p-wave state corresponding to the IREP E1u,
we find from Table I the following expressions for the gap
functions in the two domains: �+ = �0e

iχ (k̂F,x − ik̂F,y) and
�− = �0(k̂F,x + ik̂F,y). Here 0 � χ � π is the Josephson
phase difference between the domains, which has to be
included in order to satisfy the current conservation across
the DW; see [22] and also below. Its value depends on the
microscopic details of the system, but here we regard it just
as an additional phenomenological parameter. In terms of the
spherical angles the gap functions become

�+(θ,φ) = �0 sin θ ei(χ−φ),

�−(θ,φ) = �0 sin θ eiφ.
(12)

It follows from Eq. (6) that β = tan(φ − χ/2). Below we
calculate the ABS energies and the DOS for both orientations
of the DW.

1. n̂||x̂
We obtain from Eq. (9) the following expression for the

ABS energy:

Eb(θ,φ) = �0 sin θ cos

(
φ − χ

2

)
sgn

[
sin

(
φ − χ

2

)
cos φ

]
.

(13)

It is shown, for χ = 0 and π , in the upper panels of Fig. 1.
For general χ , the energy is discontinuous at φ − χ/2 = 0,π

and also at φ = π/2,3π/2; see Appendix A. The ABS energy
has two lines of zeros at φ = (χ ± π )/2, which correspond
to the quasiparticle trajectories with k̂F,x/k̂F,y = − tan(χ/2).
These zeros in the ABS dispersion have a topological origin;
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FIG. 1. The ABS energy as a function of the direction of
semiclassical propagation (upper panels) and the corresponding DOS
(lower panels), for χ = 0 and π , in the case of the chiral p-wave
state (E1u) and n̂||x̂. The grazing trajectories (for which vF,x = 0)
are shown at φ = π/2 and 3π/2 by horizontal dotted lines.

see Sec. III E below. There are also two point zeros in the ABS
energy at the poles of the Fermi surface, i.e., at θ = 0 and π .
However, for these directions (corresponding to the “grazing”
trajectories, parallel to the DW) one has v̂F · n̂ = 0, and the
Andreev calculation resulting in Eq. (5) is not applicable.

The quasiparticle DOS is given by Eq. (8) and can be found
analytically for χ = 0 and π . Since the calculation is similar
in both cases, here we outline it only for χ = 0, when we have

Nb(E) = NF vF

∫ π

0
dθ sin2 θ

×
∫ π/2

0
dφ cos φ[δ(E − �0 sin θ cos φ)

+ δ(E + �0 sin θ cos φ)].

Since we consider only positive energies, the second delta
function does not contribute to the integral and we obtain

Nb(E) = 2NF vF

∫ π/2

0
dθ sin2 θ

×
∫ π/2

0
dφ cos φ δ(E − �0 sin θ cos φ)

= 2NF vF E

�2
0

∫ 1

E/�0

xdx√
1 − x2

√
x2 − (E/�0)2

,

where x = sin θ . Evaluating the last integral [23], we finally
arrive at the following expression:

Nb(E) = πNF vF

�0

E

�0
. (14)
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In a similar fashion, we obtain

Nb(E) = 2NF vF

�0

√
1 − E2

�2
0

(15)

for χ = π . The DOS curves corresponding to Eqs. (14)
and (15), normalized by NF vF /2�0, are shown in the bottom
panels of Fig. 1. We can see that the overall magnitude of the
ABS contribution to the DOS (per unit area) is of the same
order as in the normal state, since NF vF /�0 ∼ NF ξ ∼ NF ξd .

2. n̂|| ẑ
Using Eq. (11) we obtain for the ABS energy

Eb(θ,φ) = �0| sin θ | cos

(
φ − χ

2

)
sgn

[
sin

(
φ − χ

2

)
cos θ

]
.

(16)

It is discontinuous at φ − χ/2 = 0,π and also at θ = π/2; see
Appendix A.

One can show that the current conservation requires that
χ = π/2 in the lowest order of the Ginzburg-Landau (GL)
gradient expansion. The superconducting current can be
obtained in the standard fashion from the gradient terms
in the GL free-energy density. Since the order parameter
components depend only on z, the gradient energy has the
form Fgrad = K4|∇zη|2, in the notations of [19]. Replacing
the gradients by the covariant derivatives, ∇ → ∇ + 2i A, and
varying with respect to the vector potential A, we obtain for
the superconducting current j = 2K4 Im (η∗∇zη) ẑ. We use the
constant-amplitude approximation for the order parameter:

η1(z) = �0e
iϕ(z), η2(z) = �0e

iϕ(z)−iγ (z),

where ϕ is the common (or Josephson) phase of the order-
parameter components and γ is the relative phase, satisfy-
ing γ (±∞) = ±π/2. Then the supercurrent becomes jz =
2K4�

2
0(2∇zϕ − ∇zγ ). It follows from the current conservation

that jz has a constant value, which is fixed by external sources.
Setting jz = 0, one obtains ∇zϕ = ∇zγ /2, and, therefore,

χ ≡ ϕ(+∞) − ϕ(−∞) = γ (+∞) − γ (−∞)

2
= π

2
. (17)

It is easy to see that this result holds for the chiral states
corresponding to all four 2D IREPs. In contrast to the case
of n̂||x̂ [15,22], the Josephson phase difference between the
domains for n̂|| ẑ takes a universal value π/2, i.e., does not
depend on the coefficients in the GL expansion. This last
conclusion can be invalidated by the inclusion of higher-order
gradient terms and going beyond the constant-amplitude
approximation. However, one can see from the way the angle
φ enters Eq. (16) that the ABS dispersion for different χ is
obtained from that for χ = π/2 by simply translating the latter
along the φ axis by χ/2. Therefore, the DOS [see Eq. (10)]
does not actually depend on χ . The calculation is similar to
the n̂||x̂ case and the final result has the following form:

Nb(E) = 2NF vF

�0

√
1 − E2

�2
0

. (18)

The ABS energy for χ = π/2 and the DOS for any χ are
shown in Fig. 2.
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FIG. 2. The ABS energy as a function of the direction of semiclas-
sical propagation for χ = π/2 (upper panel) and the corresponding
DOS (lower panel), in the case of the chiral p-wave state (E1u) and
n̂|| ẑ. The vertical dotted line at θ = π/2 corresponds to the grazing
trajectory (for which vF,z = 0).

B. E1g representation

For the chiral d-wave state corresponding to the IREP E1g ,
we obtain from Table I the following expressions for the gap
functions in the two domains: �+ = 2�0e

iχ k̂F,z(k̂F,x − ik̂F,y)
and �− = 2�0k̂F,z(k̂F,x + ik̂F,y). Therefore,

�+(θ,φ) = �0 sin 2θ ei(χ−φ),

�−(θ,φ) = �0 sin 2θ eiφ,
(19)

and β = tan(φ − χ/2).

1. n̂||x̂
In this case, Eq. (9) takes the following form:

Eb(θ,φ) = �0| sin 2θ | cos

(
φ − χ

2

)

× sgn

[
sin

(
φ − χ

2

)
cos φ

]
. (20)

The ABS energy is discontinuous at φ − χ/2 = 0,π and
also at φ = π/2,3π/2; see Appendix A. It has two lines of
zeros at φ = (χ ± π )/2 and another one in the basal plane,
i.e., at k̂F,z = 0. The point zeros at θ = 0 and π correspond
to the trajectories parallel to the DW, for which the Andreev
approximation is not applicable. In the upper panels of Fig. 3,
we show the ABS energy for χ = 0 and π .

The DOS is given by Eq. (8). Following the same steps as
in the previous subsection, we obtain a constant DOS:

Nb(E) = πNF vF

2�0
(21)

for χ = 0; see the bottom panel of Fig. 3. For χ = π , we have
from Eq. (20) Eb(θ,φ) = �0| sin 2θ | sin φ, and Eq. (8) can be
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FIG. 3. The ABS energy as a function of the direction of
semiclassical propagation (upper panels) and the corresponding DOS
(lower panels), for χ = 0 and π , in the case of the chiral d-wave
state (E1g) and n̂||x̂. The grazing trajectories (for which vF,x = 0)
are shown at φ = π/2 and 3π/2 by horizontal dotted lines.

reduced to the form

Nb(E) = 2NF vF

∫ π/2

0
dθ sin2 θ

×
∫ π/2

0
dφ cos φ δ(E − �0 sin 2θ sin φ)

= NF vF

�0

∫ π/2−α

α

dθ tan θ,

where α = (1/2) arcsin(E/�0). The last integral can be easily
evaluated and we arrive at the following final expression for
the DOS:

Nb(E) = NF vF

�0
ln cot

(
1

2
arcsin

E

�0

)
, (22)

which diverges logarithmically at E → 0, as shown Fig. 3.
This divergence is nothing but the van Hove singularity due
to the saddle points in the ABS dispersion at θ = π/2 and
φ = 0,π , i.e., for k̂F perpendicular to the DW.

2. n̂|| ẑ
We obtain from Eq. (11)

Eb(θ,φ) = �0 sin 2θ cos

(
φ − χ

2

)
sgn

[
sin

(
φ − χ

2

)]
. (23)

The energy is discontinuous at φ − χ/2 = 0 and π ; see
Appendix A. As for the E1u IREP, the ABS dispersion as
a function of φ simply shifts upon changing χ , therefore the
DOS does not depend on χ . A straightforward calculation
yields the following result:

Nb(E) = πNF vF

2�0
. (24)
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FIG. 4. The ABS energy as a function of the direction of semiclas-
sical propagation for χ = π/2 (upper panel) and the corresponding
DOS (lower panel), in the case of the chiral d-wave state (E1g) and
n̂|| ẑ. The vertical dotted line at θ = π/2 corresponds to the grazing
trajectory (for which vF,z = 0).

The ABS energy for χ = π/2 and the DOS for any χ are
shown in Fig. 4.

C. E2u representation

For the chiral f -wave state corresponding to the IREP
E2u, we obtain from Table I the following expressions for
the gap functions in the two domains: �+ = �0e

iχ k̂F,z
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FIG. 5. The ABS energy as a function of the direction of
semiclassical propagation (upper panels) and the corresponding DOS
(lower panels), for χ = 0 and π , in the case of the chiral f -wave
state (E2u) and n̂||x̂. The grazing trajectories (for which vF,x = 0)
are shown at φ = π/2 and 3π/2 by horizontal dotted lines.
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(k̂2
F,x − k̂2

F,y − 2ik̂F,x k̂F,y) and �− = �0k̂F,z(k̂2
F,x − k̂2

F,y +
2ik̂F,x k̂F,y). Therefore,

�+(θ,φ) = �0 sin2 θ cos θ ei(χ−2φ),

�−(θ,φ) = �0 sin2 θ cos θ e2iφ,
(25)

and β = tan(2φ − χ/2).

1. n̂||x̂
In this case, Eq. (9) takes the following form:

Eb(θ,φ) = �0 sin2 θ | cos θ | cos

(
2φ − χ

2

)

× sgn

[
sin

(
2φ − χ

2

)
cos φ

]
. (26)

This expression has discontinuities at 2φ − χ/2 = 0,π and
also at φ = π/2,3π/2; see Appendix A. It has four lines of
zeros at φ = (χ ± π )/4 and (χ ± 3π )/4, and another one at
k̂F,z = 0. The isolated second-order point zeros at θ = 0 and
π correspond to the trajectories parallel to the DW, for which
the Andreev approximation is not applicable. The ABS energy
for χ = 0 and π is shown in the upper panels of Fig. 5.

The DOS for χ = 0 [see Eq. (8)] can be reduced to the
following form:

Nb(E) = NF vF√
2�0

∫ 1

0

dx√
x

[
1√

x(1 − x2) − (E/�0)

+ 1√
x(1 − x2) + (E/�0)

]

×�

[
x(1 − x2) − E

�0

]
, (27)

where �(x) is the Heaviside step function and x = cos θ . Since
the function x(1 − x2) attains its maximum at x = 1/

√
3, the

DOS vanishes at E > 2�0/3
√

3. The integral in Eq. (27) is
evaluated numerically. The logarithmic van Hove singularity
in the DOS at E → 0 is due to the saddle points in the ABS
dispersion in the basal plane, at θ = π/2 and cos(2φ) = 0.

One can easily show that the DOS has a zero-energy
singularity at all values of χ . Indeed, we have

|∇Eb| = �0 sin θ
√

(3 cos2 θ − 1)2 cos2(2φ − χ/2) + sin2(2θ ) sin2(2φ − χ/2),

away from the spectrum discontinuities. This last expression
has the following zeros: (i) θ = 0,π , whose contribution to the
DOS is nonsingular, due to the factor in front of the δ function
in Eq. (8); (ii) cos2 θ = 1/3 and sin(2φ − χ/2) = 0, which
corresponds to a maximum (minimum) of Eb; and (iii) θ =
π/2 and cos(2φ − χ/2) = 0, which corresponds to the saddle
points of Eb. It is the saddle points, which are located at the
four perpendicular directions in the basal plane where the lines
of zeros of Eb intersect, that produce the van Hove singularity
at E → 0. The DOS for χ = 0 and π are shown in Fig. 5.

2. n̂|| ẑ
It follows from Eq. (11) that

Eb(θ,φ) = �0 sin2 θ cos θ cos

(
2φ − χ

2

)

× sgn

[
sin

(
2φ − χ

2

)]
, (28)

which is discontinuous at 2φ − χ/2 = 0 and π ; see Ap-
pendix A. The ABS dispersion as a function of φ shifts upon
changing χ , therefore the DOS does not depend on χ and we
obtain from Eq. (10)

Nb(E) = 2NF vF

�0

∫ 1

0

x dx√
x2(1 − x2)2 − (E/�0)2

�

[
x(1 − x2) − E

�0

]
, (29)

where x = cos θ . The integral here is calculated numerically.
The ABS energy for χ = π/2 and the DOS for any χ are
shown in Fig. 6. The logarithmic singularity in the DOS at

E → 0 comes from the saddle points in the ABS dispersion at
θ = 0,π , i.e., for k̂F perpendicular to the DW.

D. E2g representation

Finally, we consider the chiral d-wave state correspond-
ing to the IREP E2g , in which case �+ = �0e

iχ (k̂2
F,x −
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FIG. 6. The ABS energy as a function of the direction of semiclas-
sical propagation for χ = π/2 (upper panel) and the corresponding
DOS (lower panel), in the case of the chiral f -wave state (E2u) and
n̂|| ẑ. The vertical dotted line at θ = π/2 corresponds to the grazing
trajectory (for which vF,z = 0).
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FIG. 7. The ABS energy as a function of the direction of
semiclassical propagation (upper panels) and the corresponding DOS
(lower panels), for χ = 0 and π , in the case of the chiral d-wave
state (E2g) and n̂||x̂. The grazing trajectories (for which vF,x = 0)
are shown at φ = π/2 and 3π/2 by horizontal dotted lines.

k̂2
F,y − 2ik̂F,x k̂F,y) and �− = �0(k̂2

F,x − k̂2
F,y + 2ik̂F,x k̂F,y).

Therefore,

�+(θ,φ) = �0 sin2 θ ei(χ−2φ),

�−(θ,φ) = �0 sin2 θ e2iφ,
(30)

and β = tan(2φ − χ/2).

1. n̂||x̂
In this case, Eq. (9) takes the following form:

Eb(θ,φ) = �0 sin2 θ cos

(
2φ − χ

2

)

× sgn

[
sin

(
2φ − χ

2

)
cos φ

]
, (31)

which is discontinuous at 2φ − χ/2 = 0,π and also at φ =
π/2,3π/2; see Appendix A. It has four lines of zeros at
φ = (χ ± π )/4 and (χ ± 3π )/4. The isolated second-order
point zeros at θ = 0 and π correspond to the trajectories
parallel to the DW, for which the Andreev approximation is
not applicable. The ABS energy for χ = 0 and π is shown in
the upper panels of Fig. 7.

The DOS [see Eq. (8)] can be calculated analytically for
χ = 0 and π . Following the same steps as in the previous
subsections, we obtain

Nb(E) = NF vF√
2�0

(
π

2
+ arcsin

√
1 − E/�0√
1 + E/�0

)
(32)

for χ = 0, and

Nb(E) = πNF vF

2�0
(33)

for χ = π ; see Fig. 7.
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FIG. 8. The ABS energy as a function of the direction of semiclas-
sical propagation for χ = π/2 (upper panel) and the corresponding
DOS (lower panel), in the case of the chiral d-wave state (E2g) and
n̂|| ẑ. The vertical dotted line at θ = π/2 corresponds to the grazing
trajectory (for which vF,z = 0).

2. n̂|| ẑ
We obtain from Eq. (11)

Eb(θ,φ) = �0 sin2 θ cos

(
2φ − χ

2

)

× sgn

[
sin

(
2φ − χ

2

)
cos θ

]
. (34)

The discontinuities of the ABS energy are located at 2φ −
χ/2 = 0,π and also at θ = π/2; see Appendix A. As in the
previous subsections, the ABS dispersion as a function of φ

merely shifts upon changing χ , the DOS does not depend on
χ , and we obtain

Nb(E) = NF vF

�0

∫ 1

E/�0

dx√
x2 − (E/�0)2

= NF vF

�0
ln

√
1 − (E/�0)2 + 1

E/�0
, (35)

where x = sin2 θ . The ABS energy for χ = π/2 and the DOS
for any χ are shown in Fig. 8. The logarithmic singularity in
the DOS at E → 0 comes from the saddle points in the ABS
dispersion at θ = 0,π , i.e., for k̂F perpendicular to the DW.

E. Topological origin of the ABS zero modes

The number of zero-energy ABSs localized at the DW
separating degenerate chiral states is determined by the
difference between topological invariants characterizing the
superconducting states in the bulk of the domains, which
is known as the bulk-boundary correspondence [13]. As an
illustration of this statement, we focus on the case of n̂||x̂. To
define the appropriate topological invariant, we introduce the
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Matsubara-like Green’s function of the Bogoliubov quasipar-
ticles in the bulk:

Ĝ−1(k0,k) = ik0 − Ĥ (k), (36)

where ik0 is imaginary “frequency,” k = (kx,ky,kz) takes
values in the 3D Brillouin zone, and

Ĥ (k) =
(

ξ (k) �(k)

�∗(k) −ξ (k)

)

is the Bogoliubov-de Gennes (BdG) Hamiltonian, with the gap
function �(k). Since we consider only the singlet pairing and
the triplet pairing with d ‖ ẑ (see Sec. II), the spin channels are
decoupled and the 4 × 4 BdG equations are reduced to a two-
component (electron-hole, or Nambu) form for each spin. The
BdG Hamiltonian can be written in the form Ĥ (k) = ν(k)τ̂ ,
where τ̂ are the Pauli matrices in the Nambu space and

ν(k) =

⎛
⎜⎝

Re �(k)

−Im �(k)

ξ (k)

⎞
⎟⎠.

The eigenvalues of Ĥ (k) are given by ±E(k), where E(k) =√
ξ 2(k) + |�(k)|2 is the energy of the Bogoliubov fermionic

excitations.
At given kz, regarded as a parameter, one can define the

following topological invariant [13]:

N (kz) = − 1

24π2

∫
tr(ĜdĜ−1)3. (37)

Here “tr” stands for the Nambu matrix trace, the powers
of the one-form ĜdĜ−1 should be understood in the sense
of combined exterior and matrix multiplication, and the
integration is performed over k0 and k⊥ = (kx,ky), with k⊥
taking values in the 2D cross section of the Brillouin zone by
the constant kz plane. After some algebra, we obtain

N (kz) = 1

4π2

∫
ν(dν × dν)dk0(

k2
0 + E2

)2 = 1

8π

∫
kz=const

ν̂(d ν̂ × d ν̂),

(38)

where ν̂ = ν/|ν|. We assume that the superconducting pairing
is BCS-like and effective only near the Fermi surface. At given
kz, this results in the gap function being nonzero only near
the Fermi line FL(kz), which is the intersection of the Fermi
surface and the constant kz plane. We represent the gap function
in the form �(k) = |�(k)|eiϕ(k), and assume that there are no
gap nodes, i.e., the gap magnitude does not vanish anywhere
on the Fermi line. Then it follows from Eq. (38) that

N (kz) = 1

2π

∮
FL(kz)

dϕ = �ϕ

2π

∣∣∣∣
FL(kz)

, (39)

therefore the topological invariant (37) is nothing but the
phase winding number of the gap function around the cross
section of the Fermi surface at given kz. Assuming a spherical
Fermi surface, the cross section is a circle of radius kF,⊥ =√

k2
F − k2

z . For the superconducting states considered above,
the topological invariant (39) takes opposite nonzero values for
the states of opposite chirality; see Table II. The topological
invariants are not defined at the bulk gap nodes, i.e., at

TABLE II. Topological invariant, Eq. (39), for the chiral states
corresponding to the 2D IREPs of D6h.

IREP Gap function N (kz)

E1u kx ± iky ±1

E1g kz(kx ± iky) ±1

E2u kz(k2
x − k2

y ± 2ikxky) ±2

E2g k2
x − k2

y ± 2ikxky ±2

kz = ±kF for all four IREPs and additionally at kz = 0 for
the IREPs E1g and E2u.

According to Eqs. (13), (20), (26), and (31), the ABS
energy for all four IREPs can be written in the following
form:

Eb(θ,φ) = �0f�(θ ) cos

(
nφ − χ

2

)

× sgn

[
sin

(
nφ − χ

2

)
cos φ

]
, (40)

where n = 1 for � = E1u,E1g and n = 2 for � = E2u,E2g ,
and the function f�(θ ) depends on the IREP. At fixed kz =
kF cos θ , the last expression vanishes at some values of φ,
corresponding to the ABS zero modes. It is easy to see that
there are 2n zero modes: for � = E1u,E1g they correspond
to φ = (χ ± π )/2, while for � = E2u,E2g they correspond to
φ = (χ ± π )/4 and (χ ± 3π )/4.

One can define the algebraic number ν(kz) of the ABS zero
modes as the number of positive-velocity modes minus the
number of negative-velocity modes. According to the bulk-
boundary correspondence [13], ν is equal to the difference
between the topological invariants in the bulk of the two
domains:

ν(kz) = N (kz)|x>0 − N (kz)|x<0. (41)

Expressing the ABS energy [see Eq. (40)] in terms of ky =
kF,⊥ sin φ, one can show that the ABS zero modes propa-
gate along the DW in the same direction: sgn(∂Eb/∂ky) =
sgn(∂Eb/∂φ) sgn(cos φ) = −1, therefore ν = −2n. On the
other hand, it follows from Table II that N (kz)|x>0 = −n and
N (kz)|x<0 = n, which means that Eq. (41) is indeed satisfied.
Taking into account the doubling of the degrees of freedom
due to spin, the total number of the ABS zero modes localized
near the DW is equal to 4n, at given kz. Note that the same
topological argument can be used to prove the existence
of zero-energy ABSs near the surface of an unconventional
superconductor; see [24]. For UPt3, it was done recently
in [25].

IV. CONCLUSION

We have found that the DWs separating degenerate TRS-
breaking superconducting states in a 3D hexagonal crystal
always create the quasiparticle ABS, for all directions of the
semiclassical propagation. We have considered all four 2D
IREPs of the point group D6h (two singlet and two triplet cases)
and two orientations of the DW, parallel and perpendicular
to the z axis. The ABS spectrum strongly depends on the
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order-parameter symmetry and the DW orientation. Addi-
tionally, it is affected by the Josephson phase difference χ

between the domains, which is determined by the microscopic
parameters. If the DW is parallel to the z axis, then there
is a significant difference between the chiral states (1, ± i)
(corresponding to χ = 0) and (±1,i) (corresponding to χ =
π ), which can be treated analytically. The spectrum of the DW
ABSs can be probed in tunneling experiments by measuring
their DOS, which has very different energy dependence from
that of the bulk quasiparticles. We have calculated the DOS
per unit area of the DW and found a widely varying behavior,
the most prominent feature being the logarithmic van Hove
singularity at zero energy, which is present in several cases.

Despite the qualitative sensitivity of the DOS to the
microscopic parameters that cannot be easily controlled in
experiment, we can still make some firm predictions for the
DW effects on the tunneling measurements in UPt3. First, there
is strong evidence that the gap symmetry in the B phase of UPt3
is described by the chiral f -wave state corresponding to the
IREP E2u. If this is the case, then our results in Sec. III C
indicate that the zero-energy singularity in the DOS is a
universal feature, which, in contrast to the other three IREPs, is
present for both orientations of the DW and for all values of χ .
Second, if the DW is perpendicular to the z axis, then the DOS
does not actually depend on χ , showing different behavior for
the four IREPs: a broad domelike maximum for E1u, a constant
for E1g , the zero-energy singularity with two sharp edges for
E2u, and the zero-energy singularity without sharp edges for
E2g . We hope that these features can be directly probed in
tunneling experiments, thus shedding light on the presence of
the DWs as well as the underlying pairing symmetry in UPt3
and other hexagonal superconductors.
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APPENDIX A: DISCONTINUITIES OF
THE ABS SPECTRUM

In all cases studied in this paper the gap function has
the same magnitude on both sides of the DW: �± = �eiϕ± .
Therefore, γ = �−/�+ = ei�, where � = ϕ− − ϕ+. We
obtain from Eqs. (6) and (5)

β = tan

(
�

2

)
and

Eb(k̂F ) = � cos

(
�

2

)
sgn

[
sin

(
�

2

)
(v̂F · n̂)

]
. (A1)

Both � and � depend on the direction of semiclassical
propagation, characterized by the Fermi-surface wave vector
kF . At each kF , we have |Eb| � �, therefore the ABS are
disconnected from the bulk states.

It follows from Eq. (A1) that the ABS energy is not defined
for some k̂F . It is discontinuous at � = 0 mod 2π , which
corresponds to �+ = �−. For such semiclassical trajectories,
the DW is “invisible” to the quasiparticles. The ABS energy

is also discontinuous at v̂F ⊥ n̂, i.e., when the quasiparticles
move parallel to the DW. For such trajectories, the Andreev
approximation itself is not applicable.

APPENDIX B: QUASIPARTICLE DOS NEAR
A DOMAIN WALL

The local quasiparticle DOS for both spin projections is
given by the following expression:

N (r,E) = − 1

π

∑
α=↑,↓

Im GR
αα(r,r; E).

Here GR is the retarded Green’s function, which is obtained
in the standard fashion, by analytically continuing the Fourier
transform of the Matsubara Green’s function Gα(r1,r2; τ ) =
−〈Tτψα(r1,τ )ψ†

β(r2,0)〉 to real frequencies [26]. Next, we
represent the field operators as

ψα(r) =
∑

a

[ua(r,α)γa + v∗
a (r,α)γ †

a ],

ψ†
α(r) =

∑
a

[va(r,α)γa + u∗
a(r,α)γ †

a ],

where γ
†
a ,γa are the creation and annihilation operators of

the Bogoliubov quasiparticles and the quantum numbers a

label the upper half of the spectrum (Ea � 0) of the 4 × 4
Bogoliubov-de Gennes Hamiltonian.

Both in the singlet case and in the triplet case with d ‖ ẑ,
the spin channels decouple and the local DOS becomes

N (r,E) = 2
∑

a

[|ua(r)|2δ(E − Ea) + |va(r)|2δ(E + Ea)],

(B1)
where the two-component Nambu spinor satisfies the follow-
ing equation: (

ξ̂ �̂

�̂† −ξ̂

)(
ua

va

)
= Ea

(
ua

va

)
. (B2)

Due to the electron-hole symmetry of the BdG spectrum, one
can focus only on the electronlike branch with E � 0.

If the order parameter depends only on x, then the
normalized solutions of Eq. (B2) have the form(

u(r)

v(r)

)
= 1√

LyLz

(
u(x)

v(x)

)
eikyyeikzz,

∫ ∞

−∞
dx (|u|2 + |v|2) = 1.

One can define the quasiparticle DOS per unit area in the yz

plane as follows:

N (E) =
∫ ∞

−∞
dx N (r,E). (B3)

For the ABS, we have |u|2 = |v|2, therefore
∫ ∞
−∞ |u|2dx =

1/2. Inserting this last expression in Eqs. (B3) and (B1), we
arrive at Eq. (7).
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