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Superconducting transition temperature: Interacting Fermi gas and phonon
mechanisms in the nonadiabatic regime
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We analyze the mathematical structure of equations for temperature TC of the superconductivity transition
in a gas of interacting Fermi particles or at the phonon-mediated pairing in a metal in the case of nonadiabatic
conditions ω0 � EF , i.e., when the characteristic phonon frequency ω0 is comparable or larger than the Fermi
energy EF . As the methods of calculating TC in common superconductors are not applicable in the nonadiabatic
regime, the integral equations for TC are derived in the logarithmic approximation. The new equations contain
no divergent terms in the antiadiabatic limit. The results can be immediately generalized to anisotropic band
superconductors.
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I. INTRODUCTION

The record TC ≈ 40 K for “ordinary” phonon-mediated
superconductivity in MgB2 [1] has recently been overrun by
the discovery of superconductivity with a critical temperature
as high as TC � 100 K in the single-layer FeSe deposited on
the SrTiO3 substrate [2,3]. The angle-resolved photoemission
spectroscopy [4] confirms that the band FeSe electrons interact
with a surface phonon mode with the frequency ω0 between
80 and 100 meV. The bottom of the electron pocket at the M
point lies only 60 meV below the chemical potential so that the
Fermi energy EF is smaller than the frequency ω0 of the active
phone. This is in sharp contrast to ordinary superconductors
in which θD the Debye temperature on the order 100–300 K is
small θD � EF .

In metals the extension of the weak-coupling BCS
model to the electron-phonon interactions of the arbi-
trary strength is provided by the set of Migdal-Eliashberg
equations [5,6]. However the applicability of the latter
is subject to the condition of small adiabatic parameter
ω0/EF � 1 [5]. In the single-layer FeSe on the strontium
titanate substrate ω0/EF ≈ 1.3–1.7, and this criterion is not
fulfilled.

Another case of the violated adiabatic Migdal provision
is superconductivity in bulk SrTiO3 in which at low dop-
ing the Fermi energy is surprisingly small (EF � 1 meV;
TC ≈ (0.07–0.2K) [7,8]). As to the phonon’s spectrum in
SrTiO3, the latter stretches from the acoustic branches to the
high-frequency optical mode with ω0 � 100 meV [9]. This
case, thereby presents the instance of the phonon-mediated
superconductivity in the extreme antiadiabatic limit ω0 � EF .

Note that by varying the ratio between ω0 and EF one also
somewhat changes the very concept of the phonon pairing.
From condition ω0/EF � 1 in the adiabatic regime follows
the celebrated retardation effect of the BCS theory. Indeed,
each of the two electrons comprising the Cooper pair for
the characteristic phonon time 1/ω0 shifts by d ≈ vF /ω0

on the order of (1/pF )(EF /ω0). Thereby the effect of the
Coulomb repulsion is reduced because the latter is screened
on the atomic scale; meanwhile the electrons of the pair stay
apart from each other on distances d larger than the typical
interatomic distance a ≈ 1/pF by the factor EF /ω0 � 1.

In the opposite limit ω0/EF � 1 electrons of the pair
sense instantaneously and at the same time both the direct
Coulomb repulsion and the potential created by the local
lattice distortion. Therefore, for the Cooper pairs to form the
strength of the phonon attraction must prevail over the direct
electron-electron Coulomb repulsive interaction. At ω0 on the
same order as EF the electron-electron potential interaction
must be treated on an equal basis with attraction via the virtual
exchange by a phonon. Therefore, in the nonadiabatic limit,
from a mathematical viewpoint, there is no difference between
the direct Coulomb potential and that of the instantaneous
electron-phonon attraction.

Changes in the underlying physical picture must find
reflection in the mathematical apparatus of the theory. In
conventional metals contributing to the superconducting gap
are only the electrons within a narrow vicinity of the Fermi
energy �ε ≈ ω0 � EF . Convergence of the logarithmic inte-
grals in the Cooper channel in this case is guaranteed by the
phonon Green’s function [6,10]. However, in the opposite limit
ω0 � EF the question arises as to what replaces the phonon
frequency as a cutoff parameter. For instance, it is common
in the literature at calculating TC using the bandwidth as such
a cutoff, although, as is shown below, such a choice is not
substantiated.

The problem is pertinent, in particular, to the physics of
cold gases and for the first time was studied for the gas of the
neutral Fermi particles with weak attractive interaction [11].
In that follows, we extend the method [11] to the case of the
nonadiabatic phonon-mediated superconductivity pairing.

The validity of the Migdal-Eliashberg equations [5,6] has
been repeatedly questioned in the theoretical literature on
various mechanisms as an alternative to the phonon-mediated
pairing, such as the so-called plasmon and excitonic mecha-
nisms expected to provide higher TC or in discussions with
regard to the nature of high TC superconductivity in cuprates.
The inevitable methodic difficulty is that with ω0/EF � 1 the
key advantage of the Migdal theory, namely, the possibility
of neglecting all contributions from the so-called “crossing”
diagrams is lost. The authors of the theoretical publications on
the theme are often preoccupied analyzing contributions from
particular classes of crossing diagrams such as, for instance,
the so-called vertex corrections [12].
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In our opinion, in the absence of small parameters such
incremental improvements lead nowhere. Instead, we sug-
gest the analysis in the frameworks of the weak-coupling
approximation. We argue that such analysis allows studying
every qualitative feature pertinent to a particular nonadiabatic
mechanism. At the time, the weak-coupling BCS theory
turned out extremely successful at the interpretation of the
experimental data (see, e.g., the review in Ref. [13]).

We start with the isotropic parabolic model for the elec-
tronic spectrum.

II. THE WEAK-COUPLING LIMIT

The canonic BCS weak-coupling expression for the tem-
perature TC of the superconductivity transition has the form

TC = W exp(−1/λ). (1)

Here in (1) W is the order of magnitude cutoff parameter
in the Cooper channel. At ω0 � EF the phoning-mediated
attraction is effective in the narrow vicinity of the Fermi energy.
So, W ≈ ω0 where ω0 is on the order of the Debye temperature
or a typical phonon frequency. (The proportionality ω0 ∝
M−1/2 where M is an atomic mass lies at the core of the
isotope effect.) In Eq. (1) λ is proportional to the product of
the electron-phonon interaction constant and the density of
states at the Fermi level (λ � 1).

In the limit ω0 � EF the only cutoff in the Cooper channel
can be the Fermi energy itself. One of the consequences is that
such a discriminating signature of a phonon mechanism as the
isotope effect is absent in this limit.

Below the integral equations for the temperature of the
superconductivity transition are analyzed in the general case
of ω0 the same order of magnitude as EF .

III. PHONON-MEDIATED SUPERCONDUCTIVITY
AT ω0 ∼ EF IN GENERAL

As mentioned, the key element of the Migdal [5] theory
of the electron- phonon interaction in metals is the possibility
to discard in the diagrammatic expansion contributions
coming from the so-called crossing diagrams. This greatly
advantageous feature at ω0/EF � 1 is lost already in
the normal phase. Performing the analytical calculations
reduces itself to the analysis of the perturbation expansion.
Correspondingly, below all results related to the Cooper
instability in nonadiabatic conditions are obtained in the
so-called logarithmic approximation.

In particular, in the limit ω0 � EF the expression
TC = const × EF exp(−1/λ) contains a numerical factor
const on the order of unity. Formally, for the validity of
the result must be large ln(EF /TC) � 1. In practice, due
to the exponential dependence in the expression (1) for the
approach to work it is sufficient to have ln(EF /TC) > 1. In
each concrete case this can be verified if the Fermi energy EF

is also known experimentally.
The signature of the superconducting instability is the

pole appearing in the scattering amplitude for two electrons
�(p,q − p|p′,q − p′) at the transition temperature TC [10].
The amplitude is the sum of all diagrams in the Cooper channel.
Commonly one analyzes the diagrammatic series at zero sum-

mary momentum and frequency q = 0. The resulting equation
in the notations �(p,q − p|p′,q − p′) ≡ �(p|p′) reads

�(p|p′) = �̃(p|p′) − T

(2π )3

×
∑
n′

∫
d�k �̃(p|k)G(k)G(−k)�(k|p′). (2)

In Eq. (2) �̃(p|p′) represents the block of the so-called
irreducible diagrams, i.e., the diagrams that cannot be cut
into the two parts by crossing only two parallel electronic
lines. From a mathematic viewpoint the very instability in the
Cooper channel owes its origin to the logarithmic singularity
and divergent contributions at the summation and integrations
inside the blocks represented in Eq. (2) by the product of two
Green’s functions G(k)G(−k). The electron Green’s function
in the thermodynamic technique has the form [10]

G(k) = [
iνn − (�k2 − p2

F

)/
2m

]−1
. (3)

Generally, the matrix element for the electron-electron
scattering has the following form:

M(p|p′) = V ( �p − �p′) − γ 2( �p − �p′) × D0(p − p′). (4)

Here D0(p − p′) is the phonon Green’s function,

D0(p − p′) = −ω2
0( �p − �p′)/[(εn − εm)2 + ω2

0( �p − �p′)],
(5)

V ( �p − �p′) is the direct Coulomb term; γ ( �p − �p′) is the
electron-phonon coupling constant. M(p|p′) is the first term
in the perturbation expansion for the block �̃(p|p′) in Eq. (2).
The Coulomb potential V ( �p − �p′) in Eq. (4) will be omitted.
Although formally V ( �p − �p′) could be treated below on equal
footing with the phonons, however, because of its singular role
of the Coulomb repulsion in the theory of superconductivity
it needs special consideration (see Ref. [14]). Below we
focus on the interaction mediated by phonons in nonadiabatic
conditions. From now on,

M(p|p′) = −γ 2( �p − �p′)D0(p − p′). (4a)

IV. POSING THE QUESTION

To make what follows below more transparent, the equa-
tions are simplified further by temporarily omitting dispersion
in the spectrum of phonons. In (4a) and (5) now ω0( �p − �p′) ≡
ω0,

M(p|p′) ⇒ M(εn|εm) = −γ 2ω2
0/

[
(εn − εm)2 + ω2

0

]
, (6)

and �(p|p′) depends only on the energy variables. Changing
the notations again into �(p|p′) ⇒ �(εn|εm) one writes

�(εn|εn′) = �̃(εn|εn′) − T
∑
m

�̃(εn|εm)�(d)(εm)�(εm|εn′).

(7)

The notation �(d)(εm) in Eq. (7) stands for the integral,

�(d)(εm) =
∫

d�k
(2π )d

G(k)G(−k)

=
∫

d�k
(2π )d

1

ν2
m + [(�k2 − p2

F )/2m]
2 . (8)
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[In (7) and (8) and in the equations below index d signifies
dimensionality of the problem: d = 2,3].M(εn|εm) (6) and,
hence, �(εn|εm) decrease at large εn > ω0; therefore formally,
in Eq. (7) the summation over εm at a given εn converges at
εm on the order of ω0, the phonon frequency. In reality, such a
cutoff makes sense only in a common metal where ω0 � EF

and both the integration and the summation in (2) and (7)
are limited to the narrow vicinity of the Fermi energy; in that
case one returns to the familiar BCS prefactor W ∼ ω0 in the
expression (1) for TC . In a general case when ω0 is on the
order of the Fermi energy EF the diagrammatic expansion in
Eq. (2) contains nonphysical terms that come about with the
use of the perturbation theory.

In fact, in the opposite limit of ω0 � EF , from Eqs. (6)
and (7) one concludes that at εn < ω0, �(εn|εn′) is a constant
�(εn|εn′) ≡ �̄. However, substituting a constant �(εn|εn′ ) into
the right-hand side of (7) one obtains the diverging expression.

The difficulty has the obvious origin. At high energies, that
is, at �k2 � p2

F , electrons in the Fermi gas are indistinguishable
from free electrons. Far from the Fermi surface the product
G(k)G(−k) goes over into the product G(0)(k)G(0)(−k) of the
two Green’s functions for the two free Fermi particles,

G(0)(k)G(0)(−k) = 1

ε2
m + [�k2/2m]

2 . (9)

That is, the contribution from �(d)(εm) (8) at large εm coincides
with the expression of the second-order Born correction
to the scattering amplitude for two free electrons, and the
divergence in (7) must be removed by properly renormalizing
the interaction [11].

As shown below, integrations in (7) actually converge
at εm ≈ μ, and in the antiadiabatic regime the role of the
cutoff parameter in Eq. (1) belongs to the Fermi energy itself
W ⇒ EF .

V. LOGARITHMIC APPROXIMATION IN
THE GENERAL CASE

Let us focus on the treatment of the interactions mediated
by photons in nonadiabatic conditions.

In general terms, the “logarithmic accuracy” signifies
the approximation where the smallness of the product
ν(EF )M(p|p′) � 1 of the density of states and the ma-
trix element is compensated by a large logarithmic factor
ν(EF )M(p|p′) ln(W/T ) ≈ 1.

Return to the general case of ω0 on the same order
magnitude as EF and rewrite Eq. (2) in the form ready for
use both in the three dimensions (3D) and two dimensions
(2D) (d = 2,3):

�(p|p′) = �̃(p|p′) − T

(2π )d

×
∑
n′

∫
d�k �̃(p|k)G(k)G(−k)�(k|p′). (2a)

Restoring dispersion in the phonons spectrum in Eq. (4a),
for the bare vertex �(1)(p|p′) in all equations we substitute the
expression �(1)(p|p′) ≡ M(p|p′) from Eq. (4a). Define the
quantum-mechanical scattering amplitude �(0)(p|p′) for two

electrons or any two band Fermi excitations by the equation,

�(0)(p|p′) = �(1)(p|p′) − T

(2π )d
∑
n′

∫
d�k �(1)(p|k)G(0)(k)

×G(0)(−k)�(0)(k|p′). (10)

Inverting Eq. (10) introduces the operator L̂,

L̂�(0)(p|p′) ≡ �(0)(p|p′) + T

(2π )d
∑
n′

∫
d�k �(1)(p|k)G(0)(k)

×G(0)(−k)�(0)(k|p′). (11)

The operator L̂ in Eq. (11) provides the relation between the
scattering matrix element in the Born approximation �(1)(p|p′)
and the exact scattering amplitude �(0)(p|p′). The latter can be
defined independently by solving the Schrödinger equation. In
principle, the result would be equivalent to the exact sum of
all terms in the diagrammatic expansion. (The inverse operator
L̂−1 below deals with the well-known mathematical problem
of reconstructing the potential from the data on the angular
dependence of the scattering cross section.)

Rewrite Eq. (2a) in the form

�(p|p′) + T

(2π )d
∑
n′

∫
d�k �(1)(p|k)G(0)(k)G(0)(−k)�(0)(k|p′)

= �(1)(p|p′) + �(2)(p|p′) − T

(2π )d
∑
n′

∫
d�k �(1)(p|k)

× [G(k)G(−k) − G(0)(k)G(0)(−k)]�(k|p′)

− T

(2π )d
∑
n′

∫
d�k �(2)(p|k)G(k)G(−k)�(k|p′). (12)

In Eq. (12) �(1)(p|p′) ≡ M(p|p′) and �(2)(p|p′) are the
irreducible diagrams of the second and higher orders in the
value of M(p|p′).

From (10) and (11) follows:

L̂�(p|p′) = L̂�(0)(p|p′) + �(2)(p|p′) − T

(2π )d
∑
n′

∫
d�k

×L̂�(0)(p|k)[G(k)G(−k) − G(0)(k)G(0)(−k)]

− T

(2π )d
∑
n′

∫
d�k �(2)(p|k)G(k)G(−k)�(k|p′).

(13)

Applying the inverse operator L̂−1 to the both sides of Eq. (13)
one finally arrives at the following equation:

�(p|p′) = �(0)(p|p′) + �(2)(p|p′)

− T

(2π )d
∑
n′

∫
d�k �(0)(p|k)�̃(d)(k)�(k|p′)

− T

(2π )d
∑
n′

∫
d�k �(2)(p|k)G(k)G(−k)�(k|p′).

(14)

[Restricting by the first Born approximation in Eq. (10)
one has �(0)(p|p′) � M(p|p′); L̂−1�(2)(p|p′) � �(2)(p|p′)].
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In the upper line of Eq. (14) �̃(d)(k) is the difference,

�̃(d)(k) = [G(k)G(−k) − G(0)(k)G(0)(−k)]. (15)

Convergence at the summation and integration over the
momentum in the upper line of Eq. (14) is now guaranteed
either by the presence of the phonon Green’s function in Eq. (4)
or by the fact that the block �̃(d)(k) in (15) decreases at large
k = (εm,�k). As to the second term in Eq. (14), recall that by the
very definition [see in Eq. (2)], �̃(p|p′) represents the block
of the so-called irreducible diagrams, i.e., the diagrams that
cannot be cut into the two parts by crossing only two parallel
electronic lines. Therefore the second term �(2)(p|p′) comes
from interactions between particles and is nonzero for (p,p′)
only in the vicinity of the Fermi surface. Correspondingly, the
summation and integration in the second term Eq. (11) take
place near the chemical potential.

To determine the temperature of the superconductivity onset
one must find the eigenvalue of the homogeneous equation
(14). Rewriting �(p|p′) ⇒ ψ(p) × ψ(p′) from (14) follows
the equation for the function ψ(p):

ψ(p) = − T

(2π )d
∑
m

∫
d�k M(p|p′)�̃(d)(k)ψ(k) − T

(2π )d

×
∑
n′

∫
d�k �(2)(p|k)G(k)G(−k)ψ(k). (14a)

VI. MATRIX EQUATION IN THE CASE OF
DISPERSIONLESS PHONONS

It is instructive to solve Eq. (14a) in the case of M(εn|εm) ≡
−γ 2ω2

0/[(εn − εm)2 + ω2
0] Eq. (6). In this example, most

calculations can be performed at the end.
Denote the solution of the homogeneous Eq. (14) for

dispersionless phonons as ψ(k) ⇒ ψ(εn). One has

ψ(εn) = −T
∑
m

M(εn|εm)�̃(d)(εm)ψ(εm) − T

(2π )d

×
∑
n′

∫
d�k �(2)(p|k)G(k)G(−k)ψ(εm). (16)

[Compare with Eq. (14a). For the derivation of the expressions
for the kernel �̃(d)(εm), see Appendix A]. In two dimensions,

�̃(2)(εn) =
( m

2π

)(
1

εn

arctan
μ

εn

)
. (17a)

For three dimensions,

�̃(3)(εn) = (2m)3/2

2π

(
1

2εn

)
[
√

μ + iεn

+
√

μ − iεn −
√

iεn −
√

−iεn] (17b)

(μ ≡ EF ). Without terms quadratic in M(εn|εm) Eq. (16)
acquires the transparent form of the matrix equation,

ψ(εn) = −T
∑
m

M(εn|εm)�̃(d)(εm)ψ(εn). (18)

To emphasize this once again, �̃(d)(εm) in the expressions
(17a) and (17b) decreases at εm > EF , thereby convergence of
the summation in (18) is guaranteed at any ratio between ω0

and EF . [At the arbitrary ω0 and EF , Eq. (18) will be solved
numerically elsewhere.]

In the limit ω0 � EF one is returned to the BCS result.
In the opposite limit ω0 � EF = μ the main contribution in
(18) comes from εm � ω0. At εn,εm � ω0, M(εn|εm) is a
constant [M(εn|εm) � −γ 2], and in the antiadiabatic limit the
temperature TC is defined by the algebraic equation,

1 = γ 2T
∑
m

�̃(εm). (19)

[The summation over εm in T
∑

m�̃(εm) is carried out in
Appendix B].

Before proceeding further, return however to the contribu-
tion from the last term in Eqs. (14), (14a), and (16) containing
�(2)(p|k). �(2)(p|k) is of the second order in M(p|p′). One can
verify that all second-order diagrams constituting �(2)(p|k)
belong to the class of crossing diagrams [11]. Therefore, in
the adiabatic limit ω0 � EF this term is negligibly small.

At ω0 � EF , the logarithmic contribution that comes about
from the summation and the integrations of the product of the
two Green’s functions G(k)G(−k) in (16) is multiplied by
a factor that must be calculated by performing the internal
integrations in the diagrammatic expression for �(2)(p|k).
Since �(2)(p|k) is quadratic in M(p|p′), the result contributes
only into the numeric coefficient in front of the expression
for TC . After simple, but somewhat tedious calculations, one
obtains

1 = γ 2 m

π�2
ln

(
2μγ

πe2T

)
, (20a)

in 2D; in the 3D case [11],

1 = γ 2 mpF

2π2�3
ln

[(
2

e

)7/3
μγ

πT

]
. (20b)

Substituting μ ≡ EF for the temperature of transition
follows:

T
(2D)
C =

(
2γμ

πe2

)
exp

(
− π�

2

mγ 2

)
� 0.15EF exp

(
− π�

2

mγ 2

)
,

(21a)
and

T (3D)
C

= γ

π

(
2

e

)7/3

EF exp

[
− 2π2

�
3

mpF γ 2

]

≈ 0.27EF exp

[
− 2π2

�
3

mpF γ 2

]
. (21b)

Depending on the value of the parameters in the exponent
and the value of EF itself, TC may be higher than one may
expect in the adiabatic limit at the same value of γ .

At constant M(εn|εm) the equations, as was just shown,
could be solved to the very end. If the momentum dependence
were included in M(εn|εm), instead of the algebraic Eq. (19),
one is to solve the integral equation (14). The details will
vary depending on the problem at hand. Thus, for instance,
the account of the Coulomb potential makes it necessary to
consider the screening, etc. Solving Eq. (14) is beyond the
scope of this paper.
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VII. TEMPERATURE OF TRANSITION WITH
LOGARITHMIC ACCURACY

In its new form the integral equation (14) is encumbered
by the presence of the additional contribution with
�(2)(p|k). Singling out the logarithmic factor of the
block of G(k)G(−k), this contribution is proportional to
∝ �(2)(p|0)ν(EF ) ln(W/T )�(0|p′) [here (· · · |0) signifies the
choice of p or k at the Fermi level]. Equation (14a) acquires
the form

ψ(p) = − T

(2π )d
∑
m

∫
d�k �(0)(p|k)�̃(d)(k)ψ(k)

+F (p)ψ(0). (14b)

In principle, both �(2)(p|0) ∝ M2 [and F (p)] can be
calculated for the arbitrary form of the interaction in (4) and
(5), but calculations are tedious, and the resulting expressions
are not useful.

Meanwhile, in the limiting case of a constant �(1)(εn|εn′) ≈
−γ 2the exact solution was obtained in Sec. VI, and it was
shown that taking the �(2)(p|k) terms into account changes
only the numeric factor of the order of unity in the expression
(1) for TC . With such accuracy the homogeneous weak-
coupling Eq. (14) can be solved directly.

In fact, in Eq. (2) write

− T

(2π )3

∑
n′

∫
d�k �̃(p|k)�̃(d)(k)�(k|p′)

⇒ −T
∑
n′

∫
�̃(p|k)[mpF sin θ dθ )/(2π )2]

×dς �̃(d)(k)�(k|p′). (22)

[In (22) ς = (�k2 − p2
F )/2m ≈ vF (p − pF ); θ is the angle

between two vectors �p and �k. �̃(d)(k) is from Eq. (15)].
Let εn = εm and the vectors �p and �k be on the Fermi surface.

The expression for �̃(p|k) ≡ �̃(θ )|FS defines the factor in front
of the logarithmic singularity in Eq. (22),

[∫ π

0
sin θ dθ �̃(θ )

∣∣
FS

]
mpF

(2π )2

∫ W

0

dς

ς
th

ς

2T

⇒ λ ln

(
2Wγ

πT

)
. (23)

Equation (23) provides a definition of λ in TC =
const W exp(−1/λ).

For the problem at hand, �̃(p|k)|FS =
−γ 2[2pF (1 − cos θ )]. As to the prefactor, W ≈ ω0 in
the adiabatic limit, and W ≈ EF in the extreme case of
ω0 � EF .

In detail the variation of the cutoff parameter W from W ≈
ω0 to W ≈ EF can be explored [omitting for simplicity the last
term with �(2)(p|k)] from the homogeneous integral equation
(14),

ψ(p) = − T

(2π )d
∑
m

∫
d�k �(0)(p|k)�̃(d)(k)ψ(k), (24)

where �(0)(p|k) = M(p|k) from Eq. (4a).

VIII. CONCLUSION AND SUMMARY

The Migdal theory of the electron-phonon interaction in
metals is not applicable in the nonadiabatic regime, and the
consistent analysis of equations for the temperature of the
superconductivity transition is possible only in the weak-
coupling approximation. We concentrated on studying the
Cooper instability for the phonon-mediated attraction in the
general case.

It was shown that in Eqs. (2) and (2a) in case of a
nonadiabatic regime there appear nonphysical contributions
that must be removed. In the diagrammatic Eqs. (2) and
(2a) expansion is in powers of the bare matrix elements
for scattering between excitations �(1)(p|p′), not in terms
of their exact quantum mechanical expressions of the latter
�(0)(p|p′). In the exact form the relation between the two is
given by Eq. (10). In the framework of the weak-coupling
BCS-like approximation this can be realized by subtracting
the second-order Born corrections to the scattering amplitudes
of the free Fermi particles.

The equations for temperature TC of the superconductivity
transition are given in the new form by the integral equations
(14a) and (14b).

Several exact results could be obtained in the antiadiabatic
limit for dispersionless phonons. The method can be applied to
the arbitrary short-range interactions between Fermi particles
[11]. In the general case and at an arbitrary value of the Migdal
parameter ω0/EF the transition temperature TC is found with
logarithmic accuracy.

Most of the methods and the results discussed in the
above can be extended to anisotropic superconductivity as
well. The perturbation expansion can be developed on the
arbitrary basis, and therefore the basic structure of Eq. (2)
remains the same. In the limit ω0 � EF ,W̄ , where W̄ is the
bandwidth, one returns to a commonplace anisotropic BCS
superconductivity in which case the interactions only in a
vicinity of the Fermi surface are important. One must be
more cautious at the so-called “realistic” calculations of the
transition temperature assuming a specific band structure for
the electronic spectrum in the case of a nonadiabatic regime.
When the phonon frequency ω0 is on the order or larger EF ,W̄ ,
one comes across the same divergences emerging as above via
the (Born) perturbation corrections to the expressions of the
matrix elements for noninteracting band excitations. One can
easily verify, however, that the necessary procedure subtracting
in Eq. (14) the product of the free (band) Green’s functions
G(0)(k)G(0)(−k) in Eq. (15) remains exactly the same in its
main features.

Note in conclusion that Eq. (2) for a multiband supercon-
ductor can obviously be rewritten in the matrix form.
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APPENDIX A

For the isotropic spectrum the integration over momentum
�k in

�̃(d)(εm) =
∫

d�k(2π )−d [G(k)G(−k) − G(0)(k)G(0)(−k)]

is performed analytically by integrating over the variable u =
2mk2. In the 2D calculation of �̃(2)(εn) in Eq. (15) reduces to
the standard integrals.

In 3D the expression (17b) for �̃(3)(εn) is presented in the
form

�̃(3)(εn) = (2m)3/2

(2π )2

∫ ∞

o

u1/2du

{
1

ε2
n + (u − μ)2 − 1

ε2
n + u2

}
.

Rotating the contour{0; ∞} in the complex plane by 2π and
calculating the residues one arrives at the expression Eq. (17b).

APPENDIX B

Transform the sum over εm in T
∑

m�̃(εm) into the
integrals; in 2D,

T
∑
m

�̃(2)(εm) = 1

2

∫ ∞

0
du

{
th(u − μ)/2T

u − μ
− th(u/2T

u

}
,

and in 3D,

T
∑
m

�̃(3)(εm)=1

2

∫ ∞

0
u1/2du

{
th(u−μ)/2T

u − μ
− th(u/2T

u

}
.

After integrating by parts and making use of the relation
TC � μ one arrives at the results in Eqs. (20) and (21) of the
main text.
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Nardone, B. Fauqué, and K. Behnia, Phys. Rev. Lett. 112,
207002 (2014).

[9] N. Choudhury, E. J. Walter, A. I. Kolesnikov, and C.-K. Loong,
Phys. Rev. B 77, 134111 (2008).

[10] A. A. Abrikosov, L. P. Gor’kov, and I. E. Dzyaloshinskii,
Methods of Quantum Field Theory in Statistical Physics
(Prentice-Hall, Englewood Cliffs, NJ, 1963).

[11] L. P. Gor’kov and T. K. Melik-Barkhudarov, Sov. Phys. JETP
13, 1018 (1961).

[12] M. Grabowski and L. J. Sham, Phys. Rev. B 29, 6132 (1984);
V. N. Kostur and B. Mitrovic, ibid. 48, 16388 (1993); 50, 12774
(1994); P. Miller, J. K. Freericks, and E. J. Nicol, ibid. 58, 14498
(1998); H. R. Krishnamurthy, D. M. Newns, P. C. Pattnaik, C.
C. Tsuei, and C. C. Chi, ibid. 49, 3520 (1994).

[13] D. M. Ginzberg and L. C. Hebel, in Superconductivity, edited
by R. D. Parks (Dekker, New York, 1969), Vol. I, p. 193.

[14] W. L. McMillan, Phys. Rev. 167, 331 (1968).

054517-6

http://dx.doi.org/10.1038/35065039
http://dx.doi.org/10.1038/35065039
http://dx.doi.org/10.1038/35065039
http://dx.doi.org/10.1038/35065039
http://dx.doi.org/10.1088/0256-307X/29/3/037402
http://dx.doi.org/10.1088/0256-307X/29/3/037402
http://dx.doi.org/10.1088/0256-307X/29/3/037402
http://dx.doi.org/10.1088/0256-307X/29/3/037402
http://dx.doi.org/10.1038/nmat4153
http://dx.doi.org/10.1038/nmat4153
http://dx.doi.org/10.1038/nmat4153
http://dx.doi.org/10.1038/nmat4153
http://dx.doi.org/10.1038/nature13894
http://dx.doi.org/10.1038/nature13894
http://dx.doi.org/10.1038/nature13894
http://dx.doi.org/10.1038/nature13894
http://dx.doi.org/10.1103/PhysRevX.3.021002
http://dx.doi.org/10.1103/PhysRevX.3.021002
http://dx.doi.org/10.1103/PhysRevX.3.021002
http://dx.doi.org/10.1103/PhysRevX.3.021002
http://dx.doi.org/10.1103/PhysRevLett.112.207002
http://dx.doi.org/10.1103/PhysRevLett.112.207002
http://dx.doi.org/10.1103/PhysRevLett.112.207002
http://dx.doi.org/10.1103/PhysRevLett.112.207002
http://dx.doi.org/10.1103/PhysRevB.77.134111
http://dx.doi.org/10.1103/PhysRevB.77.134111
http://dx.doi.org/10.1103/PhysRevB.77.134111
http://dx.doi.org/10.1103/PhysRevB.77.134111
http://dx.doi.org/10.1103/PhysRevB.29.6132
http://dx.doi.org/10.1103/PhysRevB.29.6132
http://dx.doi.org/10.1103/PhysRevB.29.6132
http://dx.doi.org/10.1103/PhysRevB.29.6132
http://dx.doi.org/10.1103/PhysRevB.48.16388
http://dx.doi.org/10.1103/PhysRevB.48.16388
http://dx.doi.org/10.1103/PhysRevB.48.16388
http://dx.doi.org/10.1103/PhysRevB.48.16388
http://dx.doi.org/10.1103/PhysRevB.50.12774
http://dx.doi.org/10.1103/PhysRevB.50.12774
http://dx.doi.org/10.1103/PhysRevB.50.12774
http://dx.doi.org/10.1103/PhysRevB.58.14498
http://dx.doi.org/10.1103/PhysRevB.58.14498
http://dx.doi.org/10.1103/PhysRevB.58.14498
http://dx.doi.org/10.1103/PhysRevB.58.14498
http://dx.doi.org/10.1103/PhysRevB.49.3520
http://dx.doi.org/10.1103/PhysRevB.49.3520
http://dx.doi.org/10.1103/PhysRevB.49.3520
http://dx.doi.org/10.1103/PhysRevB.49.3520
http://dx.doi.org/10.1103/PhysRev.167.331
http://dx.doi.org/10.1103/PhysRev.167.331
http://dx.doi.org/10.1103/PhysRev.167.331
http://dx.doi.org/10.1103/PhysRev.167.331



