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Absence of superfluidity in a parahydrogen film intercalated within a crystal of Na atoms
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A recent claim of possible superfluid behavior of parahydrogen films intercalated within a crystalline matrix of
Na atoms is examined. Quantum Monte Carlo simulations at finite temperature yield strong numerical evidence
that the system forms at low temperature a nonsuperfluid crystalline phase, commensurate with the underlying
impurity lattice. The physics of this system is therefore qualitatively identical to that observed in similar settings,
extensively studied in precedence. Comparison of numerical results obtained here, with those of the reference
in which the prediction of superfluidity (disproven here) was made, points to likely bias in the computational
methodology adopted therein.
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I. INTRODUCTION

Condensed parahydrogen (p-H2) was predicted over 40
years ago to undergo a superfluid (SF) transition at low tem-
perature (T � 6 K). The physical argument is very simple and
consists of treating the system as a noninteracting ensemble
of p-H2 molecules, regarded as pointlike Bose particles of
spin zero [1]. Such a relatively crude approach provides
a reasonably accurate estimate of the superfluid transition
temperature Tc of liquid 4He at saturated vapor pressure; the
reason is that the equilibrium phase of 4He is a liquid in the
T → 0 limit and retains the most important qualities of a
noninteracting Bose gas, notably, it undergoes Bose-Einstein
condensation [2].

However, bulk p-H2 crystallizes at low T , in spite of
the low mass of the molecules, due to the depth of the
attractive well of the intermolecular potential, roughly 3 times
that between two helium atoms. Indeed, the low-temperature
equilibrium phase of p-H2 is theoretically predicted to be a
(nonsuperfluid) crystal in reduced dimensions as well, with
not even a metastable fluid phase [3,4]. There is fairly robust
numerical evidence [5–7] of superfluidity in small p-H2

clusters (thirty molecules or less), which remain “liquidlike”
at low T , leading to the belief that a bulk superfluid phase
should be observable, if crystallization of the fluid phase could
be suppressed. However, this goal has been so far achieved
only for droplets of up to approximately 104 molecules [8];
none of many experimental attempts to stabilize a bulk liquid
phase [9–12] has so far met with success.

The suggestion was made, almost two decades ago [13],
that SF might occur in a (quasi) two-dimensional (2D) p-H2

fluid embedded in a crystalline matrix of alkali atoms. The
contention is that the presence of the underlying lattice of
foreign atoms, incommensurate with the equilibrium crystal
structure of pure p-H2, could possibly cause a substantial
reduction of the equilibrium density of the 2D fluid of p-H2

molecules, stabilizing a liquid phase.
Path integral Monte Carlo (PIMC) simulations appeared to

support such a scenario, providing evidence of a superfluid
transition at T ∼ 1 K. Subsequent studies [14,15], however,
disproved such a conclusion, showing it to be merely an artifact
of simulations carried out on systems of extremely small size
(∼10 particles). In actuality, the equilibrium phase is a non-
superfluid crystal, commensurate with the underlying impurity

lattice, with a 10/3 density ratio; its unambiguous observation
by computer simulation requires that the simulated system
comprise a sufficient (∼120) number of p-H2 molecules [15].
A broader conclusion of those studies was that, although it is
true that confinement and disorder can indeed lead to novel
phases of matter [16] (and indeed the superfluid response
of p-H2 clusters can be enhanced in confinement[17]), the
strong propensity of p-H2 to solidify renders it exceedingly
unlikely that one may arrive at a SF phase in this way, as
a commensurate crystal is the only additional phase that can
result from the presence of an external periodic potential.

Recently, however, the claim of a possible superfluid phase
of p-H2 in the same physical setting was reiterated [18].
Specifically, it was contended that “fine tuning” the potential
describing the interaction of p-H2 molecules with the im-
purities (specifically, choosing its parameters to correspond
roughly to the interaction of a p-H2 molecule with a Na atom)
has the effect of enhancing the “fluidlike” behavior of the
system, leading to a nonzero superfluid response at T = 0.
This conclusion is based on (ground-state) diffusion Monte
Carlo (DMC) simulations of the same model system studied
in Refs. [13–15], only with a different choice of potential
parameters.

In order to provide an independent check of this surprising
and counterintuitive prediction, we have carried out quantum
Monte Carlo simulations of the same system studied in
Ref. [18], using the same potentials utilized therein. We made
use of a different computational methodology, namely, we used
the continuous-space worm algorithm. This (Monte Carlo)
technique provides accurate estimates of thermodynamic
properties of Bose systems at finite temperature, and has the
distinct advantage of not relying on any a priori input, such
as a trial wave function in the case of DMC. We carried out
simulations down to a temperature T = 0.125 K, which, as we
argue below, is low enough to regard results as representative
of ground-state physics.

Our results are in disagreement with the predictions of
Ref. [18]. We show that the physical behavior of this system is
qualitatively identical with that observed in all previous studies
with different potentials [14,15], i.e., the only different phase
that forms, with respect to purely 2D p-H2, is the nonsuperfluid
crystalline phase described above, commensurate with the
underlying impurity lattice. This can be established both by
an examination of the energetics, as well as from the direct
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computation of cogent quantities such as the pair-correlation
function, the superfluid density, the Lindemann ratio, as well
as the frequency with which exchanges of indistinguishable
particles occur and their physical character.

In other words, no evidence is seen of the change in the
physics of the system proposed in Ref. [18], allegedly arising
from a weaker interaction between a p-H2 molecule and the
impurity atom rather than that considered in previous studies.
On the contrary, as already suggested in Ref. [14], the use of
different parameters to characterize the interaction between
p-H2 molecules and impurity atoms brings about no new
physics whatsoever, essentially because no different physics is
possible in the setup considered here [19]. We argue that the
incorrect prediction of superfluid behavior made in Ref. [18] is
a consequence of the failure to identify the equilibrium phase,
as well as of inherent bias of DMC.

The remainder of this paper is organized as follows: In
Sec. II we introduce the model and provide computational
details; in Sec. III we illustrate our results and provide a
theoretical interpretation. Finally, we outline our conclusions
in Sec. IV.

II. MODEL AND CALCULATION

As mentioned in the Introduction, we model our system
of interest as in all previous comparable studies, namely,
Refs. [13–15] and [18]. We considered a collection of N

pointlike particles (p-H2 molecules) of mass m, moving in
two dimensions in the presence of an external potential arising
from a lattice of static, identical impurities. The system is
enclosed in a rectangular simulation cell of sides Lx = 60 Å,
Ly = 51.961 5 Å (and area A = Lx × Ly), with periodic
boundary conditions in all directions. The nominal 2D density
(coverage) of p-H2 is θ = N/A. The quantum-mechanical
Hamiltonian of the system is the following:

Ĥ = − �
2

2m

N∑

i=1

∇2
i +

∑

i<j

V (rij ) +
∑

iσ

U (|ri − Rσ |). (1)

Here, V is the interaction potential between any two p-H2

molecules, depending only on their relative distance rij ≡
|ri − rj |; the accepted Silvera-Goldman [20] potential is
used to describe these interactions. The system also includes
M impurities, positioned at regular lattice sites Rσ , with
σ = 1,2,...,M of a triangular lattice, with lattice constant
10 Å. M = 36 in this study, i.e., the density of impurities
is M/A = 0.011 55 Å−2.

The interaction between a p-H2 molecule and an impurity
[i.e., the U term in (1)] is described by a Lennard-Jones
potential with parameters ε = 30 K and σ = 4.14 Å, i.e.,
as suggested in Ref. [18], where it is claimed to provide a
reasonably realistic description of the interaction of a p-H2

molecule with a Na atom. It is worth noting that, as suggested
in Ref. [13], it may be feasible to produce a lattice of alkali
atoms such as the one described here by adsorbing fractions
of a monolayer of alkali metal atoms (Rb, Cs, and K) onto a
Ag(111) or on a graphite substrate [21,22].

We studied the low-temperature physical properties of the
system described by Eq. (1) by means of first-principles
computer simulations based on the worm algorithm in the

continuous-space path integral representation [23,24]. Be-
cause this well-established computational methodology is
thoroughly described elsewhere, we do not review it here.
The most important aspects to be emphasized here are that
it enables one to compute thermodynamic properties of Bose
systems at finite temperature, directly from the microscopic
Hamiltonian, in particular, energetic, structural, and superfluid
properties, in practice with no approximation. Technical details
of the simulation are standard, and we refer the interested
reader to Ref. [24]. We used the standard high-temperature
approximation for the many-particle propagator accurate up to
order τ 4, and all of the results reported here are extrapolated
to the τ → 0 limit; in general, we found that a value of
the imaginary time step τ = 1/320 K−1 yields estimates that
are indistinguishable from the extrapolated ones, within the
statistical errors of the calculation. We obtained results in the
temperature range 0.125 K � T � 1 K.

III. RESULTS

Figure 1 shows computed energetics of 2D p-H2 films at
different 2D coverages θ . Our results are for a temperature
T = 1 K; we find that the results for all relevant physical
quantities do not change significantly in the temperature range
considered here. The contribution to the potential energy from
particles outside the main simulation cell can be estimated at
less than half of our typical statistical errors (or the order of
0.02 K). The first remark is that the energy per molecule e(θ )
displays a well-defined minimum at θ0 = 0.038 5 Å−2, with an
energy per molecule e = −47.353(16) K. For our simulated
system, the coverage θ0 corresponds to a density equal to
precisely 10/3 that of the underlying impurity lattice.

As mentioned in the Introduction, this is exactly what was
already observed in previous studies of this system, albeit
with a different choice of parameters of the interaction U , and
indeed, the e(θ ) curve shown in Fig. 1 is basically identical

FIG. 1. Energy per p-H2 molecule (in K) at different 2D densities
(in Å−2). The concentration of impurities is 0.011 55 Å−2. Circles:
this work, T = 1 K, 36 impurities. Boxes: DMC results of Ref. [18],
quoted therein as ground-state estimates, 30 impurities. Solid line
going through the boxes is the fit to the DMC data proposed in
Ref. [18], whereas that through the circles was obtained in this
work. Separate curves were obtained above and below the equilibrium
coverage θ0 = 0.038 5 Å−2.
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FIG. 2. Pair-correlation function of p-H2 molecules, computed at
T = 0.125 K and at the equilibrium density (θ0 = 0.038 5 Å−2) on a
120-particle system. Distances (r) are given in angstroms.

to that of the inset of Fig. 1 of Ref. [15]. In particular, its
abrupt [25] change of slope at θ0 is not only consistent with
the equilibrium phase being commensurate but also suggests
that interstitial doping will not result in a homogeneous phase,
but rather in the coexistence of two commensurate phases.
As expected and shown below, the equilibrium phase at
coverage θ0 displays the same crystalline arrangement of p-H2

molecules already seen on different substrates with the same
geometry but different parameters of the interaction term U .

Comparison of our results with those of Ref. [18] (hence-
forth referred to as CB) shows obvious, significant qualitative
and quantitative differences between the two studies. First, the
energy values obtained in this work at T = 1 K are consis-
tently lower than the (supposedly “exact”) DMC ground-state
estimates by approximately 0.2 K. For example, the value of
the energy per p-H2 molecule found here at θ1 = 0.038 Å−2 is
−47.31(1) K, as opposed to −47.13(2) K reported in Ref. [18]
for the same coverage [26]. Second, and more important, there
are not enough points in the e(θ ) curve of CB, not only to
obtain a precise estimate of the equilibrium coverage (quoted
in CB at θ = 0.038 1 Å−2, i.e., away from commensuration),
but also to capture important details of the shape of the curve,
as seen in Fig. 1. Thus, the fit to the DMC data obtained in CB
is misleading.

Figure 2 shows the pair-correlation function g(r) for the
p-H2 molecules at the equilibrium coverage θ0 at the lowest
temperature considered here, namely, T = 0.125 K. Our result
is, again, virtually identical to that of Ref. [15], and also
reasonably close to that given in CB at the slightly lower
coverage θ1, featuring considerable structure, as expected from
the presence of the impurity lattice. In principle, of course,
there is no reason why the adsorbed film may not display
some of the qualities of a liquid, even though its density will
inevitably not be uniform but reflect the underlying external
potential arising from the impurity atoms. In particular,
molecules may still enjoy a great deal of mobility, and
quantum-mechanical exchanges of indistinguishable particles,
which underlie superfluidity, may still occur. This is, however,
not the case, as we now show.

Figure 3 shows a typical instantaneous density snapshot
of the system at the equilibrium density θ0 at a temperature
T = 0.125 K. It can be regarded as representative of the

FIG. 3. Density snapshot of the system at the equilibrium density
θ0 at T = 0.125 K. All lengths are in angstroms. Impurity atoms are
not shown for clarity; there is one in the middle of each ring of p-H2

molecules.

physics of the system at T � 1 K, as it is qualitatively identical
to many other similar snapshots, collected at random times in
the course of long simulations at different temperatures. Aside
from the arrangement of p-H2 molecules on a regular kagome
lattice, which is clear, it is worth noting that molecules are
very nearly “pinned” at lattice sites, with little or no overlap
between the delocalization clouds of adjacent molecules, i.e.,
that quantum-mechanical exchanges are all but suppressed.
Indeed, the only (very infrequent) permutation of indistin-
guishable molecules that is observed in the simulations, in
the temperature range explored here, is simply a rotation of
the seven molecules on one of the rings of the lattice. It is
important to stress that molecules are not placed as shown
in Fig. 3 at the start of the simulation but rather such an
arrangement appears spontaneously, even if molecules are
initially positioned differently (e.g., on a uniform triangular
lattice).

The crystalline, insulating nature of this system can be
quantitatively, conclusively established through the so-called
Lindemann ratio, namely, the ratio of the rms excursion u

of molecules away from their equilibrium points and the
mean intermolecular distance. This quantity can easily be
computed with the methodology utilized here, and its value at
T = 0.125 K is ∼0.28; for comparison, in the 2D bulk
crystalline phase of parahydrogen its equilibrium density [3],
namely, 0.067 Å−2 at T = 0.5 K, is ∼0.33. Thus, the results
of this study yield strong evidence that the system forms a
commensurate crystal with no evidence of liquidlike behavior.

It is, in principle, not impossible for a system to feature at
the same time superfluid and crystalline properties. However,
in this case the strong suppression of quantum-mechanical
exchanges, and in particular, the absence of long permutations
spanning the whole system, results in a value of zero of the
superfluid density, down to the lowest temperature considered
here; concurrently, and expectedly, the one-body density
matrix displays a temperature-independent exponential decay
with distance, as shown in Fig. 4. This conclusion is also
consistent with the repeated observation that for a system
of hard-core bosons in the presence of a periodic external
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FIG. 4. One-body density matrix (log scale, base 10) for the sys-
tem at the equilibrium density θ0, computed at the two temperatures
T = 1 K (diamonds) and T = 0.25 K (circles). Statistical errors are
of the order of the symbol sizes.

potential, the superfluid fraction vanishes at commensurate
densities [19].

This conclusion is manifestly at variance with the claim
made in CB that the ground state of the system is a superfluid
liquid, with a value of the superfluid fraction approaching
30%. The most obvious explanation for the different physical
behavior observed here is simply that they missed the com-
mensurate crystalline phase. While superfluidity is absent at
the commensurate equilibrium coverage θ0, the system might
be in a metastable superfluid phase below the equilibrium
density, and indeed this was the claim made in the original
study by Gordillo and Ceperley [13,28]. However, much like in
Ref. [15] in which a different set of parameters for the potential
U in Eq. (1) was utilized, calculations carried out in this work
at all coverages, including below θ0, consistently yielded no
evidence of anything resembling a “liquid” phase [29]; on
the contrary, the same nonsuperfluid, commensurate crystal
illustrated above for θ = θ0 was observed, with no superfluid
signal down to T = 0.125 K. Indeed, there is no evidence at all
that the different choice of parameters for U leads to greater
mobility of the p-H2 molecules, as proposed in CB. Since
both calculations make the claim of being numerically “exact”
(meaning, errors are only statistical in nature and can thus be
rendered arbitrarily small by employing a sufficient amount of
CPU time), any numerical discrepancy or physical should be
carefully examined and resolved.

The first thing to mention is that, although it is often
advertised as exact, the DMC method is in fact affected by
a bias associated to the trial wave function out of which the
ground state is projected, as well as by the necessarily finite
population of random walkers utilized. Such a bias, often very
difficult to remove (even with very long computer runs [27]),
has led to several DMC predictions of liquidlike behavior
or superfluidity of various systems that were eventually
disproven [4,30,31]. In general, overwhelming evidence now

suggests that finite temperature methods constitute a superior
option to investigate Bose systems—even their ground state.

The comparison of energy estimates of Fig. 1, showing
finite temperature results consistently and significantly below
DMC results, suggests that the prediction of superfluid
behavior made in CB is merely an artifact of the DMC
methodology utilized therein, specifically of the failure of the
DMC projection to converge to the true ground state in the
relevant range of coverage (phrased alternatively, failure to
remove entirely the bias associated to the trial wave function).

One could argue that the superfluid transition predicted
by CB may simply occur at lower temperatures than those
considered in this work. However, a hypothetical superfluid
transition should still conform to the accepted Kosterlitz-
Thouless paradigm, with the well-known universal jump
condition [32]. On assuming a value of superfluid fraction at
the transition temperature Tc equal to one half of the saturation
value (0.3) claimed in CB, one comes up with Tc ∼ 0.2 K, i.e.,
barring some exceedingly unlikely scenario of melting of the
commensurate crystal at very low temperature, evidence of
it should definitely be seen in our study. In particular, the
one-body density matrix should display a marked dependence
on temperature, which is not seen here.

IV. CONCLUSIONS

Based on an extensive computational study of two-
dimensional para-hydrogen embedded in a crystalline matrix
of Na atoms, modeled in exactly the same way as in a previous
study, we conclude that this system is not a candidate for
observing superfluidity in p-H2. At low temperature, the
system forms instead a 2D crystal, commensurate with the
underlying lattice of impurities. We have presented results
for triangular impurity lattices, but the same results were
seen with other lattices as well (e.g., rectangular). In striking
disaccord with what is proposed in Ref. [18], no qualitative
nor quantitative change is brought about by tweaking the
parameters of the potentials used to describe the interaction
of a p-H2 molecule with an impurity atom. As established in
all previous studies [14,15], when prevented by an impurity
lattice from forming their preferred crystalline arrangement,
p-H2 molecules simply do the “next best thing,” namely, form
a crystal commensurate with such an underlying lattice. The
finite superfluid signal obtained by other authors can be at-
tributed to the bias inherent in the computational methodology
adopted in Ref. [18]. More generally, this study confirms the
physical conclusion of absence of superfluidity in 2D p-H2 in
the presence of external periodic potentials.
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