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Topological superconductor with a large Chern number and a large bulk excitation gap
in single-layer graphene
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We show that a two-dimensional topological superconductor (TSC) can be realized in a hybrid system with
a conventional s-wave superconductor proximity coupled to a quantum anomalous Hall (QAH) state from the
Rashba and exchange effects in single-layer graphene. With very low or even zero doping near the Dirac points,
i.e., two inequivalent valleys, this TSC has a Chern number as large as 4, which supports four Majorana edge
modes. More importantly, we show that this TSC has a robust topologically nontrivial bulk excitation gap, which
can be larger or even 1 order of magnitude larger than the proximity-induced superconducting gap. This unique
property paves a way for the application of QAH insulators as seed materials to realize robust TSCs and Majorana
modes.
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I. INTRODUCTION

Majorana modes can naturally exist in topological super-
conductors (TSCs) [1–5]. The intrinsic TSC has been predicted
to exist in superconducting Sr2RuO4 with a p-wave paring
state [6,7]. However, this has not yet been experimentally
confirmed. Recently, many efforts have been devoted to design
artificial TSCs [8–34]. So far, most studies focus on the
effective p-wave superconductors in hybrid systems with
conventional s-wave superconductors in proximity to strong
topological insulators [8], semiconductors with strong spin-
orbit coupling (SOC) [9–25], or ferromagnetic atom chains
[26–32]. Some attention has also been paid to the conventional
s-wave superconductors coupled to quantum anomalous Hall
(QAH) insulators, such as topological insulators with magnetic
dopants [33,34]. Among all the above TSCs, multiple spa-
tially overlapping Majorana modes, which greatly benefit the
transport properties, can only coexist in one-dimensional (two-
dimensional) TSCs belonging to class BDI [19–24,27–30]
(D [31–34]) with integer topological invariant [35]. In reality,
the one-dimensional TSCs in class BDI can easily reduce to
those indexed by class D with zero or one Majorana mode
[20–24,28–30]. As for the two-dimensional TSCs in class D,
the number of Majorana modes or the Chern number is limited
up to two [32–34]. More Majorana modes or larger Chern
numbers are limited by large chemical potential (i.e., very
high doping) and an overall much smaller bulk excitation gap
than the proximity-induced superconducting gap [31,32].

In this work, we show that a two-dimensional TSC can
be realized in a hybrid system with a conventional s-wave
superconductor proximity coupled to a QAH state [36] due
to the Rashba SOC [37] and exchange field in single-layer
graphene. Interestingly, with very low or even zero doping
near the Dirac points, i.e., two inequivalent valleys, the TSC
from the QAH state has a Chern number reaching as large as
four, hosting four Majorana edge modes. More importantly,
these Majorana modes are protected by a bulk excitation
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gap, which can be larger or even 1 order of magnitude
larger than the superconducting gap from the proximity
effect. This is in strong contrast to the case of effective
p-wave superconductors where the excitation gap is always
smaller than the superconducting gap [9–18]. As the large
topologically nontrivial gap has been shown to be probably
most important for applications in topological insulators [4,5],
topological crystalline insulators [38], and QAH insulators
[38–40], our finding, i.e., reporting a large bulk excitation
gap in the TSC, is crucial to the field of TSCs and Majorana
modes. This paves a way to obtain robust TSCs and Majorana
modes using the QAH states. We also address the experimental
feasibility of the TSC from the QAH state.

This paper is organized as follows. In Sec. II, we present
our model and lay out the tight-binding Hamiltonian of single-
layer graphene. Then we calculate the topological invariant in
Sec. III. We further present the results on the phase diagram,
Majorana edge states, and bulk excitation gap in Sec. IV.
Finally, we summarize and discuss in Sec. V.

II. MODEL AND HAMILTONIAN

The real-space tight-binding Hamiltonian of single-layer
graphene with the Rashba SOC, exchange field, and proximity-
induced s-wave superconductivity is given by [36,41,42]

H = −t
∑
〈i,j〉α

c
†
iαcjα + iλ

∑
〈i,j〉αβ

(σ αβ × dij )
z
c
†
iαcjβ

− μ
∑
iα

c
†
iαciα + Vz

∑
iα

c
†
iασ αα

z ciα

+ �
∑

i

(c†i↑c
†
i↓ + H.c.), (1)

where 〈i,j 〉 represents the nearest-neighboring sites and
ciα (c†iα) annihilates (creates) an electron with spin α at site
i. The first term stands for the nearest-neighbor hopping with
t = 2.7 eV [43] being the hopping energy. The second term
denotes the Rashba SOC, with λ, σ , and dij representing the
coupling strength, Pauli matrices for real spins, and a unit
vector from site j to site i, respectively. μ in the third term
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is the chemical potential. Vz (�) in the fourth (fifth) term
corresponds to the exchange field (superconducting gap from
the proximity effect).

To start, we transform the Hamiltonian of Eq. (1) to the
Bogoliubov–de Gennes (BdG) Hamiltonian in the momentum
space. Specifically,

H = 1

2

∑
k

�
†
kHBdG(k)�k, (2)

where �
†
k = [ψ†

A↑(k), ψ
†
B↑(k), ψ

†
A↓(k), ψ

†
B↓(k), ψA↓(−k),

ψB↓(−k), − ψA↑(−k), − ψB↑(−k)] with ψ
†
iα(k) creating

an electron with spin α and momentum k counted from the
momentum 	 at sublattice i (i = A, B) and

HBdG(k) =
(

He(k) − μ �

� μ − σyH
∗
e (−k)σy

)
. (3)

He(k) represents a tight-binding Hamiltonian without the s-
wave superconductivity, which can be written as

He(k) =

⎛
⎜⎝

Vz f (k) 0 h1(k)
f ∗(k) Vz h∗

2(k) 0
0 h2(k) −Vz f (k)

h∗
1(k) 0 f ∗(k) −Vz

⎞
⎟⎠, (4)

where f (k) = −t[(2 cos kx

2 cos ky

2
√

3
+ cos ky√

3
) − i(2 cos kx

2

sin ky

2
√

3
− sin ky√

3
)],h1(k) = −λ[(cos kx

2 + √
3 sin kx

2 ) sin ky

2
√

3

+ sin ky√
3
] − iλ[− cos ky√

3
+ cos ky

2
√

3
(cos kx

2 + √
3 sin kx

2 )],

and h2(k) = λ[(
√

3 sin kx

2 − cos kx

2 ) sin ky

2
√

3
− sin ky√

3
] +

iλ[cos ky√
3

− cos ky

2
√

3
(cos kx

2 − √
3 sin kx

2 )]. Note that the
lattice constant is set to be unity in the calculation for
simplicity.

III. TOPOLOGICAL INVARIANT

Before investigating the topological properties of HBdG(k),
we first identify the gap closing conditions. The gap closing of
the BdG Hamiltonian HBdG(k) is equivalent to the existence
of bulk zero energy states due to particle-hole symmetry. The
condition for bulk zero energy states is obtained by calculating
det(HBdG) = 0. We find that the gap closes at the momenta
	 (single one), M (three inequivalent ones), and K (two
inequivalent ones) points with the corresponding conditions
given by (μ ± 3t)2 = V 2

z − �2, (μ ± t)2 = V 2
z − �2, and

μ2 = V 2
z − �2, respectively. It is noted that + (−) stands

for a lower (higher) energy band at the momentum 	 or M .
The detailed calculation is shown in Appendix B. Obviously,
our system is topologically trivial in the case of |Vz| < |�|.
As for |Vz| � |�|, we have ten critical chemical potentials
in order, i.e., μ1,2 = 3t ± √

V 2
z − �2, μ3,4 = t ± √

V 2
z − �2,

μ5,6 = ±√
V 2

z − �2, μ7,8 = −t ± √
V 2

z − �2, and μ9,10 =
−3t ± √

V 2
z − �2 by assuming |Vz|,|�| � t , which divide

the system into 11 topological regimes.
These topological regimes are characterized by the Chern

number C1 since HBdG(k) belongs to class D with an integer
topological invariant [35]. C1 can be calculated by [44]

C1 = 1

2π

∫
BZ

d2kfxy(k) (5)

with the Berry curvature

fxy(k) = i
∑
m,n

(fm − fn)u†
m(k)[∂kx

HBdG(k)]un(k)

× u†
n(k)[∂ky

HBdG(k)]um(k)/[Em(k) − En(k)]2.

(6)

Here, um(k) is the mth eigenvector of HBdG(k) with the
corresponding eigenvalue being Em(k); fm = 1 (0) for the
occupied (empty) band. The Chern number of all topological
regimes is given by

C1 =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎩

1 (−1), μ2 < μ < μ1

−3 (3), μ4 < μ < μ3

4 (−4), μ6 < μ < μ5

−3 (3), μ8 < μ < μ7

1 (−1), μ10 < μ < μ9

0, other regimes

(7)

when Vz > 0 (Vz < 0). It is seen that |C1| = 1 (3) near
the momentum 	 (M) point, which is consistent with the
number of the zero energy states in Ref. [25]. These Majorana
modes require very large chemical potential (of the order of
electronvolts), clearly unachievable experimentally. It is noted
that the study on the Majorana modes near the Dirac points is
absent in Ref. [25]. In this work, with very low or even zero
doping near the Dirac points, i.e., K (two inequivalent ones),
we have a Chern number as large as four.

IV. RESULTS

A. Phase diagram

In the following, we focus on the investigation near the
Dirac points. We first study the topological phase diagram
as shown in Fig. 1(a). The phase boundaries between the
topological and nontopological superconductors (NTSCs)
are determined by the dashed curves, i.e., V 2

z = μ2 + �2.
To further distinguish the TSCs (i.e., V 2

z > μ2 + �2), we
suppress the s-wave superconductivity. Without the s-wave
superconductivity, we show the bulk energy spectrum of the
low-energy effective Hamiltonian near the Dirac points H eff

e

(see Appendix A) in Fig. 1(b). When the chemical potential
lies in the gap (|μ| < E0), e.g., μin, the system behaves as a
QAH state with the Chern number |N | = 2 [36]. Note that E0

is the absolute value of the minimum (maximum) energy of the
conduction (valence) band with the formula given in Appendix
A. This QAH state in proximity to an s-wave superconductor
becomes a TSC with the Chern number 2|N | = 4 [33] (see
regime I). When the chemical potential is tuned out of the
gap below the upper limit |Vz|, e.g., μout, the system is in
a metallic phase with two Fermi surfaces in each valley, as
shown in Fig. 1(b). (The K ′ valley is not shown here.) With
the s-wave superconductivity included, the effective paring
near each of these four Fermi surfaces is equivalent to that
of a p-wave superconductor [9,11,27]. Each of these effective
p-wave superconductors hosts a Majorana edge mode, which
is in agreement with the Chern number near the Dirac
points, i.e., |C1| = 4. This effective p-wave superconductor
from metal is labeled as regime II. Similarly, the NTSCs
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FIG. 1. (a) Topological phase diagram in the (μ,Vz) space with
� 
= 0 or � = 0. The dashed curves, i.e., V 2

z = �2 + μ2, are the
phase boundaries between the TSC and NTSC, whereas the dotted
ones, i.e, μ2 = E2

0 , stand for the phase boundaries between the QAH
state and metal. (b) Bulk energy spectrum of H eff

e near the K point
with ky = 0 and � = 0. Vz (−Vz) is the upper (lower) limit of the
chemical potential in the topological nontrivial regime (V 2

z > μ2 +
�2). μin and μout stand for the chemical potential in and out of the
gap, respectively. Vz = 6 meV and λ = 4 meV.

(i.e., V 2
z < μ2 + �2) can also be divided into two regimes,

i.e., regime III (from the QAH state) and regime IV (from
metal).

B. Majorana edge states

As the effective p-wave superconductors (regime II) have
been widely investigated in the literature [9–18], we con-
centrate on the TSC from the QAH state (regime I). The
Majorana edge states are studied in thick graphene ribbons.
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FIG. 2. (a, b) The energy spectrum of zigzag graphene ribbon
with the Rashba SOC, exchange field, and proximity-induced s-
wave superconductivity near the K and K ′ points, respectively. (c,
(d)) Real-space probability amplitude |ψ | across the width for the
Majorana edge state with a smaller (larger) |kx | near the K point at
one edge (i.e., y = 0) with vx > 0 (only part of the ribbon is shown).
A (B) refers to A (B) sublattice. The fluctuations of |ψ | at the positions
far away from the edge are due to numerical error. Here, Vz = 6 meV,
λ = 4 meV, μ = 0, and � = 2 meV.

The numerical method is detailed in Appendix C. We plot the
energy spectrum of zigzag graphene ribbon near the K and
K ′ points in Figs. 2(a) and 2(b), respectively. We find that
there exist four zero energy states in each valley. These eight
states can be divided into two categories, i.e., four propagate
along the same direction +x (−x) determined by the group
velocity vx = 1

�

∂E(kx )
∂kx

> 0 (< 0). Moreover, the four states in
the same category are at the same edge, which is in agreement
with the magnitude of the Chern number, i.e., |C1| = 4. This
indicates that these eight zero energy states are topologically
protected Majorana edge states. Specifically, we choose two of
them at the same edge with vx > 0 near the K point and show
the real-space probability amplitude of the one with smaller
and larger |kx | in Figs. 2(c) and 2(d), respectively. Note that
we separate the A and B sublattices by the blue solid and red
dashed curves. It is seen that the amplitudes of both A and B
sublattices in two Majorana edge states show obvious decay
and oscillation. However, the penetration lengths are different
between these two Majorana edge states.

C. Bulk excitation gap

1. Chemical potential dependence

The above Majorana edge states are protected by a bulk
excitation gap of the TSC from the QAH state. With different
chemical potentials chosen in the gap of a QAH system, the
bulk excitation gap as a function of the proximity-induced
superconducting gap is plotted in Fig. 3. In the � = 0 limit,
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FIG. 3. Bulk excitation gap Egap of the TSC from the QAH state
as a function of �. The solid curves with diamonds, crosses, and plus
signs correspond to the numerical results at μ = 0, 1 meV, and 2 meV,
respectively. The analytical results at μ = 0, 1 meV, and 2 meV are
separately represented by the symbols of squares, upward triangles,
and downward triangles. Note that for the analytical results at μ 
= 0,
only two limits, i.e., � ∼ 0 and � ∼ �c, are calculated. In addition,
the dotted (dashed) curve corresponds to Egap = � (Egap = 10�).
Vz = 6 meV and λ = 4 meV.

the system can be considered as two copies of QAH insulators
as shown in Fig. 1(b) but with an energy shift of −μ (μ)
for the particle (hole) insulator. Then, the bulk excitation gap
of our system is determined by these two QAH insulators,
i.e., Egap = E0 − |μ|. This nonzero bulk excitation gap in
the limit � = 0 strongly indicates that the bulk excitation
gap can be much larger than �, especially for small �. It
is emphasized that the nonzero excitation gap in the � = 0
limit is totally different from the case of the effective p-wave
superconductors where the excitation gap is exactly zero in the
limit � = 0 [11]. At the critical point �c = √

V 2
z − μ2, the

bulk excitation gap of our system becomes zero. In between,
the bulk excitation gap shows a monotonic decrease with
increasing �. We emphasize that during this process, Egap

can be larger or even 1 order of magnitude larger than � by
referring to Egap = � (dotted curve) and Egap = 10� (dashed
curve). For example, Egap = 4.02 meV (� = 0.3 meV) at
μ = 0; Egap = 3.22 meV (� = 0.3 meV) at μ = 1 meV;
Egap = 2.23 meV (� = 0.2 meV) at μ = 2 meV. This marked
enlargement of the gap is in strong contrast to the effective
p-wave superconductors, where the bulk excitation gap is
always smaller than the induced superconducting gap [9–18].
This makes our proposal, i.e., the TSC from the QAH state,
very promising for the realization of robust Majorana modes
in experiments.

To have a better understanding of the behavior of the bulk
excitation gap of the TSC from the QAH state, we also
perform an analytic derivation. Near the Dirac points, the
BdG Hamiltonian HBdG(k) in Eq. (3) can be expanded as a
low-energy effective Hamiltonian, with He(k) [see Eq. (4)]
being replaced by H eff

e (k) [see Eq. (A1)]. The secular equation
of the eigenvalue E is det[HBdG(k) − EI8×8] = 0, where I8×8

is a unit matrix. After a careful calculation, we have[
α2

1 − 4V 2
z α3 + 4α1

(
λ2

R − μ2 − μVz

) + 4α2
(
μ2 − λ2

R

)]2

− 64V 2
z α3

(
λ2

R − μ2 − μVz

)2 + 8
[
α1μ − 2(μ + Vz)

× (
μ2 − λ2

R

)][
(μ + Vz)

(
α2

1 − 4V 2
z α3

) − 2μα1α2
] = 0,

(8)

with α1 = α2 − α3 + α4, α2 = v2
f k2

x , α3 = E2, α4 = �2 −
V 2

z + μ2, vf = 3t/2, and λR = 3λ/2. Note that we focus
on the calculation near K = (4π/3,0) (τ = 1) and set ky =
0 by considering the isotropy of the low-energy effective
Hamiltonian. It is very difficult to obtain the eigenvalues
by solving Eq. (8) directly. Instead of the eigenvalues, we
are interested in the bulk excitation gap here. Differentiating
Eq. (8) with respect to α2 and then employing the extreme
value condition of the excitation gap (i.e., ∂α3

∂α2
= 0), we have

α3
3 − g2α

2
3 − g1α3 − g0 = 0, (9)

where g2 = 3(α2 + α4) + 2(2λ2
R − μ2 + 2V 2

z ),g1 = −3(α2

+ α4)2 + 4(−2λ2
R − V 2

z + μ2)(α2 + α4) + 4α2(λ2
R + μ2) −

8V 2
z (λ2

R + μ2), and g0 = (α2 + α4)3 − 2(μ2 − 2λ2
R)(α2 +

α4)2 + 4(α2 + α4)[α2(−λ2
R − μ2) − 2λ2

R(μ2 − V 2
z − λ2

R)] +
8α2(μ4 − λ4

R) + 8α4λ
2
R(μ2 − λ2

R).
At μ = 0, Eq. (9) can be simplified to

(α2 + α4 − α3)(4α2
3 + q1α3 + q2) = 0 with q1 =

−8(α2 + α4) − 16(λ2
R + V 2

z ) and q2 = 4(α2 + α4)2 +
16λ2

R(α2 + α4) − 16λ2
Rα2 + 32λ2

RV 2
z . Since the equation

4α2
3 + q1α3 + q2 = 0 is inconsistent with the gap closing

condition, we only have α2 + α4 − α3 = α1 = 0. With
this condition together with Eq. (8), one obtains the bulk
excitation gap Egap = E0(1 − |�|/|Vz|), which is linearly
dependent on � and agrees very well with the numerical
results as shown in Fig. 3. Specifically, for Egap > |�|
(Egap > 10|�|), we have |�| < E0|Vz|/(E0 + |Vz|) ≡
�1[|�| < E0|Vz|/(E0 + 10|Vz|) ≡ �2 ≈ 0.1E0]. These
conditions will guide the experiments to obtain robust
TSCs and Majorana modes. As for the case of μ 
= 0, it
is very difficult for us to obtain an exact analytic solution.
Only the analytical results in two limits, i.e., |�| ∼ �c and
� ∼ 0, are given. In the |�| ∼ �c limit, we have Egap =
(�c − |�|)�2

c |μ2 − λ2
R|/

√
V 2

z (�2
c + λ2

R)(μ4 + λ2
R�2

c). In

the limit � ∼ 0, Egap =
√

(E0 − μ)2 − �2w2/w1, with
w1 = −λ2

Rμ2V 2
z + μ(λ2

R + V 2
z )(−λ2

R + μ2 − V 2
z )E0 and

w2 = μ(λ2
R − μ2)(λ2

R + V 2
z )E0 − 16λ2

RV 2
z (λ4

R − μ2V 2
z −

2λ2
Rμ2 + λ2

RV 2
z )/(λ2

R + V 2
z ) by assuming 0 < μ < E0. The

analytical results at μ 
= 0 in both limits agree fairly well with
the numerical ones, as shown in Fig. 3.

2. Rashba SOC strength and exchange field dependencies

We then turn to investigate the effects of the Rashba
SOC and exchange field on the bulk excitation gap of the
TSC from the QAH state. In Figs. 4(a) and 4(b), we plot
the dependence of the bulk excitation gap on the proximity-
induced superconducting gap at μ = 0 under different Rashba
SOC strengths and exchange fields, respectively. It is seen that
the bulk excitation gap increases with the increase of either
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FIG. 4. Numerical results of bulk excitation gap Egap of the
TSC from the QAH state as a function of the proximity-induced
superconducting gap � at μ = 0 (a) under different λ with Vz =
6 meV and (b) under different Vz with λ = 4 meV.

the Rashba SOC strength or exchange field. This can be easily
understood from Egap = E0(1 − |�|/|Vz|) mentioned above,

where E0 (see Appendix A) increases with increasing Rashba
SOC strength and exchange field.

V. SUMMARY AND DISCUSSION

In summary, we have proposed that in the presence of
proximity-induced s-wave superconductivity, the QAH state
due to the Rashba SOC and exchange field in single-layer
graphene can become a two-dimensional TSC. With very low
or even zero doping near the Dirac points, i.e., two inequivalent
valleys, we show that this TSC, which exhibits a Chern number
as large as 4 and hosts four Majorana edge modes, has a
bulk excitation gap being larger or even 1 order of magnitude
larger than the proximity-induced superconducting gap. This
unique feature is in strong contrast to the case of the effective
p-wave superconductors where the bulk excitation gap is
always smaller than the proximity-induced superconducting
gap. This also applies to other QAH systems as seed materials
to obtain robust TSCs and Majorana modes.

Finally, we address the experimental feasibility of the
TSC from the QAH state. Single-layer graphene on the
(111) surface of an antiferromagnetic insulator BiFeO3 can
have an exchange field (Vz = 142 meV) and Rashba SOC
(λ = 1.4 meV), realizing a QAH insulator with a gap being
2E0 = 4.2 meV [39]. This QAH state (|μ| < E0) in proximity
to a conventional s-wave superconductor (e.g., Nb with a
large superconducting gap �Nb = 0.83 meV [34]) becomes a
TSC, since the topologically nontrivial condition �2 + μ2 <

V 2
z is easily satisfied due to |μ| < E0 � |Vz| and |�| <

|�Nb| � |Vz|. With � = 0.5 meV (�2 = 0.21 meV < � <

�1 = 2.1 meV) for estimation, we have the bulk excitation gap
Egap = 2.05 meV, 1.56 meV, and 1.06 meV, corresponding
to a temperature of 23.8 K, 18.1 K, and 12.3 K, at μ = 0,
0.5 meV, and 1 meV, respectively. The large excitation gap
(of the order of 10 K) ensures that robust Majorana modes can
be achieved.
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APPENDIX A: He(k) IN EQ. (3) NEAR THE DIRAC POINTS

Near the Dirac points, i.e., K = (4π/3,0) (τ = 1) and K ′ = (−4π/3,0) (τ = −1), He(k) in Eq. (3) can be expanded as a
low-energy effective Hamiltonian:

H eff
e (k) =

⎛
⎜⎜⎜⎝

Vz vf (τkx − iky) 0 iλR(1 − τ )

vf (τkx + iky) Vz −iλR(1 + τ ) 0

0 iλR(1 + τ ) −Vz vf (τkx − iky)

iλR(τ − 1) 0 vf (τkx + iky) −Vz

⎞
⎟⎟⎟⎠. (A1)

The energy spectrum of this effective Hamiltonian is shown in Fig. 1(b). The minimum (maximum) energy of the conduction

(valence) band is E0 = |VzλR|/
√

V 2
z + λ2

R (−E0) after a simple calculation and then the band gap is given by 2E0.
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APPENDIX B: GAP-CLOSING CONDITION OF THE BDG HAMILTONIAN HBdG(k)

The gap of HBdG(k) closes at the momenta 	 (single one), M (three inequivalent ones), and K (two inequivalent ones)
points. Specifically, at the momentum 	, the Rashba SOC vanishes [see Eq. (4)], which is similar to the previous studies in
semiconductors [9,10]. The gap-closing condition is given by (μ ± 3t)2 = V 2

z − �2, with + (−) representing the lower (higher)
energy band at 	 after a simple calculation. As for the momentum M , the Rashba SOC does not cause spin splitting but leads to
an energy shift for the spin degenerate bands. We take M = (0, 2

√
3π

3 ), for example, and HBdG(M) [see Eq. (3)] reads

HBdG(M) =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

−μ+ Vz

√
3i − 1

2 t 0 −λ(i + √
3) � 0 0 0

−√
3i − 1
2 t −μ+ Vz − λ(

√
3 − i) 0 0 � 0 0

0 −λ(i + √
3) −μ− Vz

√
3i − 1

2 t 0 0 � 0

−λ(
√

3 − i) 0 −√
3i − 1
2 t −μ− Vz 0 0 0 �

� 0 0 0 μ+ Vz −
√

3i − 1
2 t 0 λ(i + √

3)

0 � 0 0
√

3i + 1
2 t μ+ Vz λ(

√
3 − i) 0

0 0 � 0 0 λ(i + √
3) μ− Vz −

√
3i − 1

2 t

0 0 0 � λ(
√

3 − i) 0
√

3i + 1
2 t μ− Vz

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

.

(B1)

Performing a unitary transformation as H̃BdG(M) = U
†
MHBdG(M)UM with

UM =
√

2

2

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

0 1−√
3i

2 0 −1+√
3i

2 0 0 0 0

0 1 0 1 0 0 0 0
1−√

3i
2 0 −1+√

3i
2 0 0 0 0 0

1 0 1 0 0 0 0 0

0 0 0 0 0 1−√
3i

2 0 −1+√
3i

2

0 0 0 0 0 1 0 1

0 0 0 0 1−√
3i

2 0 −1+√
3i

2 0

0 0 0 0 1 0 1 0

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

, (B2)

one obtains

H̃BdG(M) =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

−t − μ− Vz 0 0 −2iλ � 0 0 0

0 −t − μ+ Vz −2iλ 0 0 � 0 0

0 2iλ t − μ− Vz 0 0 0 � 0

2iλ 0 0 t − μ+ Vz 0 0 0 �

� 0 0 0 t + μ− Vz 0 0 2iλ

0 � 0 0 0 t + μ+ Vz 2iλ 0

0 0 � 0 0 −2iλ −t + μ− Vz 0

0 0 0 � −2iλ 0 0 −t + μ+ Vz

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

.

(B3)

At μ ∼ t , the block with the diagonal terms being −t − μ ∓ Vz and t + μ ∓ Vz in H̃BdG(M) is far from gap closing, whereas
the gap closing is determined by the remaining block. By considering that |λ| � t , we use the Löwdin partition method [45,46]
to obtain the effective Hamiltonian for the block determining the gap closing as

Heff(M) =

⎛
⎜⎜⎜⎜⎝

t − μ − Vz + 2λ2

t−Vz
0 � 0

0 t − μ + Vz + 2λ2

t+Vz
0 �

� 0 −t + μ − Vz − 2λ2

t+Vz
0

0 � 0 −t + μ + Vz + 2λ2

−t+Vz

⎞
⎟⎟⎟⎟⎠. (B4)

Then, the gap-closing condition is (t − μ − Vz + 2λ2

t−Vz
)(−t + μ − Vz − 2λ2

t+Vz
) − �2 = 0 or (t − μ + Vz + 2λ2

t+Vz
)(−t + μ + Vz −

2λ2

−t+Vz
) − �2 = 0. As |Vz| � t , both conditions become (t − μ + 2λ2

t
)2 = V 2

z − �2 approximately. Furthermore, by considering
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that |λ| � t , we neglect the energy shift of 2λ2/t and then the gap-closing condition at the momentum M with μ ∼ t is given by
(t − μ)2 = V 2

z − �2. Similarly, the gap-closing condition at M with μ ∼ −t is (t + μ)2 = V 2
z − �2 under the approximation

|λ|,|Vz| � t .
In contrast to the momenta 	 and M , the Rashba SOC at the Dirac points contributes to a finite spin splitting. Specifically,

with K = (4π/3,0), HBdG(K) [see Eq. (3)] can be written as

HBdG(K) =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

−μ + Vz 0 0 0 � 0 0 0

0 −μ + Vz −3iλ 0 0 � 0 0

0 3iλ −μ − Vz 0 0 0 � 0

0 0 0 −μ − Vz 0 0 0 �

� 0 0 0 μ + Vz 0 0 0

0 � 0 0 0 μ + Vz 3iλ 0

0 0 � 0 0 −3iλ μ − Vz 0

0 0 0 � 0 0 0 μ − Vz

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

, (B5)

which can be divided into two independent 4 × 4 parts, i.e., H1 (H2) without (with) the Rashba SOC terms. Then, we have

H1 =

⎛
⎜⎜⎜⎝

−μ + Vz 0 � 0

0 −μ − Vz 0 �

� 0 μ + Vz 0

0 � 0 μ − Vz

⎞
⎟⎟⎟⎠, (B6)

which is exactly the same as the Hamiltonian of semicon-
ductors with the Rashba SOC, magnetic field, and proximity-
induced s-wave superconductivity at the momentum 	 [9,10].
This indicates that both have the same gap-closing condition,
i.e., V 2

z = μ2 + �2 [9,10]. As for H2 (not shown), due to
the existence of the nonzero Rashba SOC terms, the gap
is always opened. Therefore, the gap-closing condition at
K is just that in the H1 part. Similar analysis can be
applied to K ′ and we obtain the same gap-closing condition
as K .

APPENDIX C: NUMERICAL METHOD FOR
CALCULATING MAJORANA EDGE STATES IN

ZIGZAG AND ARMCHAIR GRAPHENE RIBBONS

We investigate the Majorana edge states near the Dirac
points in both zigzag and armchair graphene ribbons. We first
study the case of the zigzag configuration. The Hamiltonian
of the zigzag ribbon can be obtained from Eq. (1) by choosing
a unit cell and performing a Fourier transformation along the
direction parallel to the edge (assuming x direction). Note that
the unit cell of the zigzag ribbon is the same as that in Ref. [47].
Specifically,

Hzigzag = −t
∑
kx

∑
〈j1,j2〉σ

[
1 + ∣∣sgn

(
xj2 − xj1

)∣∣eikxsgn(xj2 −xj1 )
]

× c
†
kxj1σ

ckxj2σ +
∑
kx

∑
jσ

(σVz − μ)c†kxjσ ckxjσ

+�
∑
kx

∑
j

(
c
†
kxj↑c

†
−kxj↓ + H.c.

)

+ iλ
∑
kx

∑
〈j1,j2〉σσ ′

[(
σσσ ′

x d
y

j1j2
− σσσ ′

y dx
j1j2

)

+ ∣∣sgn
(
xj2 − xj1

)∣∣eikxsgn(xj2 −xj1 )

× (
σσσ ′

x d
y

j1j2
+ σσσ ′

y dx
j1j2

)]
c
†
kxj1σ

ckxj2σ ′, (C1)

where xj2 − xj1 is the relative position between the j2th and
j1th atoms in the unit cell along the x direction and sgn stands
for the sign function. By exactly diagonalizing Hzigzag, one
obtains the eigenvalues and eigenstates. However, this method
fails due to the computational limitations when the width of
the ribbon becomes very large (e.g., of the order of 104 atoms
in the unit cell in our calculation). Alternatively, the zigzag
ribbon with the leading term, i.e., the hopping term, can be
solved analytically near the Dirac points [43]. Near K (τ = 1)
and K ′ (τ = −1), the eigenstates are given by



z,ε
τkx

(r) = Aei(τ |K|+kx )x

×
(−vf [(z − τkx)ezy + (z + τkx)e−zy]/ε

ezy − e−zy

)
,

(C2)

with the eigenvalues being ε2 = v2
f (k2

x − z2) and A =√ √
3

|2(e2zL−e−2zL)/z−8L| . L is the width of the ribbon and z

is determined by the equation e−2zL = (kx + τz)/(kx − τz).
Note that if z0 is a solution of this equation, so is −z0. As



z0,ε
τkx

= −

−z0,ε
τkx

, only one of these two equivalent eigenstates
needs to be taken. Then, one can use these eigenstates in
Eq. (C2) with additional spin and particle-hole degrees of free-
dom included to construct complete basis functions for Hzigzag.
We diagonalize the Hamiltonian matrix of Hzigzag and obtain
the energy spectrum and wave functions as shown in Fig. 2.
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FIG. 5. (a) Energy spectrum of armchair graphene ribbon in
the presence of the Rashba SOC, exchange field, and s-wave
superconductivity from the proximity effect. (b, (c)) Real-space

We turn to the case of armchair graphene ribbon with the
Hamiltonian being

Harmchair

= −t
∑
kx

∑
〈j1,j2〉σ

c
†
kxj1σ

ckxj2σ +
∑
kx

∑
jσ

(σVz − μ)c†kxjσ ckxjσ

+�
∑
kx

∑
j

(
c
†
kxj↑c

†
−kxj↓ + H.c.

)

+ iλ
∑
kx

∑
〈j1,j2〉σσ ′

(
σσσ ′

x d
y

j1j2
− σσσ ′

y dx
j1j2

)
c
†
kxj1σ

ckxj2σ ′

−t
∑
kx

∑
j∗

1 j∗
2 σ

[
ei

√
3kx

(
δj∗

1 ,j∗
2
+ δj∗

1 +1,j∗
2

)
c
†
kxj

∗
1 σ ckxj

∗
2 σ + H.c.

]

+ iλ
∑
kx

∑
j∗

1 j∗
2 σσ ′

{
ei

√
3kx

[
δj∗

1 +1,j∗
2

(√
3

2
σσσ ′

x − 1

2
σσσ ′

y

)

−δj∗
1 ,j∗

2

(√
3

2
σσσ ′

x + 1

2
σσσ ′

y

)]
c
†
kxj

∗
1 σ ckxj

∗
2 σ ′ + H.c.

}
,

(C3)

in which j ∗
1 (j ∗

2 ) represents the j ∗
1 th (j ∗

2 th) atom of the first
(fourth) column in the unit cell. Note that the unit cell of
the armchair ribbon is the same as the one in Ref. [47] and
the edges lie along the x direction. Similar to the case of the
zigzag graphene ribbon, we first solve the armchair ribbon
with only the hopping term analytically near the Dirac points.
The eigenstates read



kn,ε
kx

(r) = 2Aeikxx sin[(|K| + kn)y]

(−vf (kx − ikn)/ε

i

)
,

(C4)

where the eigenvalues are ε2 = v2
f (k2

x + k2
n) with

kn = nπ/L − |K| and A = 1√
8L

. These eigenstates construct
complete basis functions for Harmchair with additional spin
and particle-hole degrees of freedom. By diagonalizing the
Hamiltonian matrix, one obtains the energy spectrum and
eigenstates of armchair graphene ribbon as shown in Fig. 5.
In Fig. 5(a), we find that there exist eight zero energy states,
corresponding to four Majorana fermions at each edge, which
is similar to the case of zigzag ribbon. We then show the
real-space probability amplitude of two Majorana edge states
at the same edge with a smaller and larger momentum |kx |
(kx < 0) in Figs. 5(b) and 5(c), respectively. It is seen that
both show obvious decays and oscillations, but the decay
lengths and oscillation periods are different.

←−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
probability amplitude |ψ | across the width for the Majorana edge
state with a smaller (larger) momentum |kx | (kx < 0) at one edge
(i.e., y = 40 000) (only part of the ribbon is shown). The fluctuations
of |ψ | at the positions far away from the edge are due to numerical
error. Here, Vz = 6 meV, λ = 4 meV, μ = 2 meV, and � = 2 meV.
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Y. Mokrousov, Phys. Rev. B 91, 201401(R) (2015).

[39] Z. H. Qiao, W. Ren, H. Chen, L. Bellaiche, Z. Y. Zhang, A. H.
MacDonald, and Q. Niu, Phys. Rev. Lett. 112, 116404 (2014).

[40] G. Xu, B. Lian, and S.-C. Zhang, Phys. Rev. Lett. 115, 186802
(2015).

[41] C. L. Kane and E. J. Mele, Phys. Rev. Lett. 95, 146802
(2005).

[42] M. Ezawa, Y. Tanaka, and N. Nagaosa, Sci. Rep. 3, 2790 (2013).
[43] A. H. Castro Neto, F. Guinea, N. M. R. Peres, K. S. Novoselov,

and A. K. Geim, Rev. Mod. Phys. 81, 109 (2009).
[44] P. Ghosh, J. D. Sau, S. Tewari, and S. Das Sarma, Phys. Rev. B

82, 184525 (2010).
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