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Fluctuation and strain effects in a chiral p-wave superconductor
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For a tetragonal material, order parameters of px and py symmetry are related by rotation and hence have the
same Tc at a mean-field level. This degeneracy can be lifted by a symmetry-breaking field, such as (uniaxial)
in-plane strain, such that at Tc, the order parameter is only of px or py symmetry. Only at a lower temperature
also the respective other order parameter condenses to form a chiral p-wave state. At the mean-field level, the
derivative of Tc with strain is discontinuous at zero strain. We analyze the consequences of (thermal) fluctuations
on the strain-temperature phase diagram within a Ginzburg-Landau approach. We find that the order-parameter
fluctuations can drive the transition to be weakly first order, rounding off this discontinuity. We discuss the
possibility of a second-order transition into a nonsuperconducting time-reversal-symmetry-breaking phase and
consequences for the spin-triplet superconductor Sr2RuO4.
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I. INTRODUCTION

In a tetragonal superconductor, order parameters of px

and py symmetry are degenerate as they are related by a
C4 rotation. This allows for a time-reversal-symmetry (TRS)-
breaking order parameter of (chiral) px ± ipy structure at Tc

[1], as possibly realized in Sr2RuO4 [2]. When C4 symmetry
is broken, e.g., by in-plane strain, the degeneracy is lifted
and the now distinct order parameters have different critical
temperatures. Within a mean-field picture, this leads to a linear
increase of Tc with strain and a cusp around zero strain [see
Fig. 1(a)]. A recent strain study on Sr2RuO4 has indeed found a
substantial enhancement of Tc for both tensile and compressive
strain [3]. However, no sign of a cusp of Tc around zero
strain was observed, thus raising the question of whether such
behavior is consistent with a chiral p-wave superconductor.

Motivated by this experiment, we analyze how ther-
mal order-parameter fluctuations can change the mean-field
temperature-strain phase diagram. Fluctuations couple the
order parameters of px and py symmetry and can thus both
enhance or suppress the effect of strain. Moreover, as a chiral
superconducting state not only breaks U (1) symmetry, but also
Z2 (TRS), fluctuations associated with the latter possibly lead
to a nonsuperconducting TRS-breaking phase at temperatures
above the superconducting Tc [4,5]. Such behavior has also
been found for multiband superconductors with frustrated
interband coupling [6,7] and is sometimes referred to as having
a “preemptive” [8] or “vestigial” [9] phase. Alternatively, the
fluctuations can also drive the transition to be (weakly) first
order. In that case, the strain has to overcome a finite strength
before breaking up the chiral superconducting state and leading
to a double transition, thus removing the cusp at zero strain.

In this paper, we employ a variational analysis of the
free energy based on Ginzburg-Landau theory describing
a (strained) two-component order parameter. Analyzing the
saddle-point (self-consistent-field) equations, we derive the
conditions for TRS-breaking fluctuations to drive the system
to superconductivity for small strain and discuss the possibility
of a TRS-breaking, nonsuperconducting phase. A similar
analysis has been performed for the pnictides, where the
instability toward striped magnetic order is generally driven
by a nematic instability [8,10,11]. Finally, we present the full

temperature-strain phase diagram and discuss the relevance of
our results for Sr2RuO4.

We investigate a two-component order parameter �d(�k) =
ẑ(ηxkx + ηyky) reflecting the symmetry possibly realized
in Sr2RuO4. The Ginzburg-Landau-type free-energy density
reads [1]

f [�η] = f2[�η] + f4[�η] + fgrad[�η], (1)

with

f2[�η] = a(|�η|2) + s(|ηx |2 − |ηy |2), (2)

f4[�η] = b1|�η|4 + b2

2

(
η∗2

x η2
y + c.c.

) + b3|ηx |2|ηy |2, (3)

fgrad = K1(|∂xηx |2 + |∂yηy |2) + K2(|∂yηx |2 + |∂xηy |2)

+ [K3(∂xηx)∗(∂yηy) + K4(∂yηx)∗(∂xηy) + c.c.]

+K5(|∂zηx |2 + |∂zηy |2), (4)

where a = a0(T − T (0)
c ), bi , and Ki are phenomenological

parameters. Note that the second term of f2[�η] describes the
coupling of the uniaxial strain s along the (1,0) crystalline
axis to the order parameter [12]. Strain along the (1,1) axis
can be introduced through a coordinate transformation or a
term s ′(ηxη

∗
y + ηyη

∗
x). For simplicity, we have absorbed the

coupling constant between strain and the superconducting
order parameter into s.

Figure 1(b) shows the mean-field phase diagram for the free
energy density of Eq. (1) without applied strain. As we are
interested in the chiral �η = η0(1, ± i) solution, we consider
only b2 > b3. Further, the stability condition for the fourth-
order terms requires 4b1 − b2 + b3 > 0. For finite strain, the
transition splits and the system undergoes a first transition at
T (1)

c (s) = T (0)
c + |s/a0|. Only at a lower temperature

T (2)
c (s) = T (0)

c −
∣∣∣∣ s

a0

∣∣∣∣4b1 − b2 + b3

b2 − b3
(5)

does the system enter a chiral phase [see Fig. 1(a)]. Note
that for two completely decoupled order parameters, i.e.,
b3 = −2b1 and b2 = 0, T (2)

c (s) = T (0)
c − |s/a0|.
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FIG. 1. (a) Mean-field temperature-strain phase diagram for the
weak-coupling parameters b2 = −b3 = 2/3b1 and (b) phase diagram
for s = 0 with respect to the fourth-order terms of the free energy.
For parameters inside the dashed triangle, fluctuations cannot drive
the superconducting transition.

II. METHOD

In the following, we use a self-consistent harmonic varia-
tional approach [13] to find the phase diagram described by
the free energy

F = 〈h〉 − T S = T (〈f 〉 − S), (6)

with h = Tf the Hamiltonian density of the system, S the
entropy, and T the temperature. The expectation value 〈·〉 in
Eq. (6) is evaluated as

〈A〉 = 1

Z

∫
(D�η)Aρ[�η], (7)

with ρ[�η] = exp(−f [�η]/T ) the Boltzmann distribution func-
tion, Z = ∫

(D�η)ρ[�η], and A any functional of the fields
�η. We approximate ρ[�η] ≈ ρ�[�η] = exp(−f� [�η]/T ), where
f� [�η] = f2[�η] + fgrad[�η] + �η†� �η is a quadratic variational
free energy with � a variational 2 × 2 matrix. The free energy
can thus be written as

F� = 〈f 〉� − T S�

= 〈f�〉� − T S� + 〈f − f�〉�, (8)

where S� is the entropy corresponding to the quadratic action.
The first two terms on the right-hand side are simply F 0

� , the
free energy corresponding to f�[�η], while the last one can be
decoupled, since it is evaluated over the Gaussian distribution
function ρ�[�η]. Finally, we minimize with respect to all
fields. This approach allows us to approximate the free energy
both in the normal and the ordered, i.e., superconducting
state. In Appendix A, we will comment on its relation to
another decoupling scheme, namely, a Hubbard-Stratonovich
approach in large N , the number of flavors of each field ηx,y

(with N = 1 the physical value).
Concretely, starting from the disordered side, 〈�η〉 = 0,

f� [�η] reads in momentum space

f�[�η] =
∫

(d3q)�η†G−1
q �η, (9)

where G−1
q = [f0(q)τ 0 + �f (q) · �τ ], τ 0 and �τ are the 2 × 2

identity and Pauli matrices, respectively, and we used the short

form (d3q) = d3q/(2π )3. Further,

f0(q) = a + ψ0 + K1 + K2

2

(
q2

x + q2
y

) + K5q
2
z , (10)

f1(q) = ψ1 + (K3 + K4)qxqy, (11)

f2(q) = ψ2, (12)

f3(q) = s + ψ3 + K1 − K2

2

(
q2

x − q2
y

)
, (13)

with � = ψ0τ
0 + �ψ · �τ . It therefore follows that

F 0
� = T

∫
(d3q) log[f0(q)2 − | �f (q)|2], (14)

and using

〈�η�η†〉� =
∫

(d3q)Gq = g0τ
0 + �g · �τ , (15)

we can factorize the fourth-order terms to find
F�

T
=

∫
(d3q) log[f0(q)2 − | �f (q)|2]

+ (6b1 + b3)(g0)2 − 2ψ0g0

+ (2b2 + b3 + 2b1)(g1)2 − 2ψ1g1

+ (b3 + 2b1 − 2b2)(g2)2 − 2ψ2g2

+ (2b1 − b3)(g3)2 − 2ψ3g3. (16)

Minimizing this variational free energy yields the phase
diagram for �η(s,T ). Note that for the ordered, i.e., super-
conducting, side, we have to replace ηi �→ η̄i + δηi and
additionally minimize with respect to η̄i (see Appendix B for
the resulting free energy).

Before we continue, we can gain some first insights from
the self-consistency equations following from ∂ψi

F� = 0,

ψ0 = (6b1 + b3)
∫

(d3q)
f0(q)

f0(q)2 − | �f (q)|2 , (17)

ψ1 = −(2b2 + 2b1 + b3)
∫

(d3q)
f1(q)

f0(q)2 − | �f (q)|2 (18)

ψ2 = (2b2 − 2b1 − b3)
∫

(d3q)
f2(q)

f0(q)2 − | �f (q)|2 (19)

ψ3 = −(2b1 − b3)
∫

(d3q)
f3(q)

f0(q)2 − | �f (q)|2 . (20)

The first equation describes the fluctuations in the order
parameter 〈|�η|2〉, which are nonzero for all temperatures. ψ1

and ψ2 describe fluctuations with a relative phase shift of 0
and π/2, 〈η∗

xηy ± η∗
yηx〉, respectively, between ηx and ηy . For

b2 > 0, only the fluctuations ψ2 become nonzero and we thus
set ψ1 ≡ 0 in the following. Finally, ψ3 are fluctuations that
break the symmetry between ηx and ηy , 〈|ηx |2 − |ηy |2〉.

Note that for any of the fields ψi , i = 1,2,3, the prefactor
has to be positive in order to allow for a nonzero solution
for zero strain in the normal state. There is thus a region in
parameter space where the transition into the superconducting
state is second order despite the additional Z2 symmetry
breaking (see the dashed triangle in Fig. 1). It is currently
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FIG. 2. Zero-strain order parameter for α = 0.05 and various
TRS-breaking couplings β/α. For β/α = 0.75, the points where the
metastable solutions disappear are indicated as well (dashed lines).
Note that for any finite β/α > 0, the transition becomes (weakly)
first order.

not clear to us whether this is a real effect, or whether it is
an artifact of the self-consistent harmonic approximation. In
what follows, we will focus on parameters that are outside
the dashed triangle in Fig. 1(b). Outside this triangle, the
superconducting transition is either first order, or it is preceded
by a transition in which either ψ1, ψ2, or ψ3 acquire a nonzero
expectation value. These states corresponds to a time-reversal
broken (ψ2) and C4 broken (ψ1,ψ3) phases, respectively.

III. RESULTS

In order to minimize the variational free energy Eq. (16),
we perform the integrals numerically on a lattice, i.e., we
replace q2

i �→ 2 − 2 cos qi and qxqy �→ sin qx sin qy . Note that
this introduces a fixed ultraviolet cutoff. As a consequence,
the absolute values of the parameters become important and
not simply their ratios. We set the energy scale through
a0T

(0)
c = 1, and use the weak-coupling, circular Fermi surface

parameters K1 = 3K2 = 3K3 = 3K4, and a strong anisotropy
K5 = K1/100 [14].

A. Zero strain

We start our discussion of the results for the case of zero
strain, s = 0. In this case, ψ1 ≡ ψ3 ≡ 0, and we are left with
the two coupled equations

ã = a0
(
T − T (0)

c

) + α

∫
(d3q)

f0(q)

f0(q)2 − | �f (q)|2 , (21)

ψ2 = β

∫
(d3q)

f2(q)

f0(q)2 − | �f (q)|2 , (22)

where, for simplicity, we have introduced ã = a0(T − T (0)
c ) +

ψ0, α = 6b1 + b3, and β = 2b2 − 2b1 − b3. Note that this
removes the explicit temperature dependence from Eq. (22).

Figure 2 shows the superconducting order parameter |�η|
as a function of temperature for β � 0. For β = 0, the
system in general undergoes a second-order transition into a
superconducting state when ã = 0 [15]. Since for K5 > 0 the
integral in Eq. (21) is bound by some constant C from above
for ã → 0, this transition occurs at a finite T

(0)
SC = T (0)

c − C/a0,
with T (0)

c the mean-field transition temperature.

1 1.5 2

K5 = 0.01
K5 = 0.02

0
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K5 = 0.03
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K1
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FIG. 3. The minimal ratio α/β needed in order to have a second-
order transition into a nonsuperconducting TRS-breaking phase. The
shaded region denotes α/β < 1, where the action Eq. (1) becomes
unstable.

For β > 0, however, TRS-breaking fluctuations in the
order parameter develop above T

(0)
SC due to the divergence in

the integral in Eq. (22), hence driving the superconducting
transition. This can either lead to a combined first-order
transition as in Fig. 2, or there could be two consecutive
transitions with a TRS-breaking, nonsuperconducting phase
that precedes the superconducting phase. The situation is
analogous to that of the magnetic ordering in the iron-based
superconductors (see Refs. [8,10,11]), where the magnetic
phase can be preceded by a nematic (C4 breaking) phase. To
analyze the possibility of a precursory time-reversal breaking
phase, we follow the treatment in Ref. [8], first expressing
ã = ã(ψ2) through Eq. (22). We then write Eq. (21) as a
function of ψ2 only,

a0
(
T − T (0)

c

) = ã(ψ2) − αI (ψ2). (23)

For the right hand side of this equation, a maximum at ψ2 = 0
leads to a first solution upon decreasing temperature at ψ2 = 0,
hence a second-order transition. Since ã is a monotonically
increasing function of ψ2, the integral I (ψ2) needs to be an
increasing function of ψ2, too, for this to happen.

Figure 3 shows the ratio α/β needed to have a second-order
transition for various values of K5. Note that the ratio α/β

depends on the value of β. For the strictly two-dimensional
case, a TRS-breaking phase forms at a finite T TRS

c , while
within the self-consistent harmonic approximation, T

(0)
SC ≡ 0

due to fluctuations. For finite K5, the ratio diverges at a
finite β; therefore, β needs to exceed a critical value for a
precursory TRS-breaking phase to exist. Below this critical
value, the transition into a TRS-breaking phase becomes first
order, though there could still be a split transition.

B. Full phase diagram

We now discuss how fluctuations change the temperature-
strain mean-field phase diagram of Fig. 1(a). Here, we use
for (numerical) simplicity the more isotropic parameter K5 =
K1/3. For finite strain, the shape of the phase diagram is
mainly determined by the ratio b1/b3. Figure 4 shows the phase
diagram for a fixed transition temperature T

(0)
SC at zero strain,

and b2 = 5 × 10−4b1 for various b3. As in the mean-field case,
the main dependence on the quartic couplings is for the lower
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FIG. 4. Temperature-strain phase diagram for b2 = 5 × 10−4b1

and different values of b3. The upper lines denote T (1)
c , where the

system enters a px (py)-wave state, and the lower lines T (2)
c , where it

enters the chiral state. Note that the temperature is scaled with respect
to the second-order transition temperature T

(0)
SC .

transition temperature T (2)
c , where the system enters the chiral

phase. However, the fluctuations ψ3 also shift T (1)
c , as they

either increase (b3 > −2b1) or decrease (b3 < −2b1) the effect
of strain.

Figure 5 shows the phase diagram for smaller strains and
b2 � 0. For b3 < −2b1, there is a single, weakly first-order
transition (see Fig. 2) into a chiral superconducting phase
driven by the TRS-breaking fluctuations. A finite strain is thus
necessary to first condense into a px- or py-wave phase, which
smoothes the cusp at s = 0. This effect is even stronger for
b2 > 0 (see the solid line in Fig. 5).

IV. DISCUSSION AND CONCLUSIONS

Before concluding, we comment on the relevance of our
results to Sr2RuO4. While the exact values of the parameters
in Eqs. (2)–(4) depend on microscopic details and the form
of the gap function, we can estimate the parameters based
on a (naive) weak-coupling picture for the different bands
[16]. For the two-dimensional γ band [17–19], assuming a
circular Fermi surface yields b2 = −b3 = 2b1/3 and quasi-
two-dimensional dispersions K1 = 3K2 = 3K3 = 3K4 � K5

[20]. Thus, 2b1 − b2 − b3 < 0 and the mean-field transition

-0.02 0 0.02 0.04
s

0.99

1

1.01

1.02

1.03

1.04

1.05

-0.04

T
/T

(0
)

SC

b2 = 3/2b1 = - 3b3

b2 = 3/4b1 = - 9/4b3

b2 = 0, b3 = - 7b1/2

FIG. 5. Temperature-strain phase diagram for finite b2 and b3

showing no cusp at zero strain due to the first-order transition
directly into a chiral state (thick lines) driven by the TRS-breaking
fluctuations. Note that the temperature scale is with respect to the
second-order transition temperature T

(0)
SC .

remains unaffected by fluctuations [see Eq. (19)]. For super-
conductivity dominantly on the quasi-one-dimensional bands
[21,22], the situation might be more favorable. In this case,
the two gaps are almost decoupled, i.e., b3 ≈ −2b1, with
small corrections of order t ′2, with t ′ the energy scale of
terms in the Hamiltonian connecting the two bands, such
as interorbital hopping or spin-orbit coupling. The time-
reversal-symmetry-breaking term will be even smaller and
O(t ′4). Together with the much stronger (one-dimensional)
fluctuations, this could indeed result in a TRS-breaking phase
above the superconducting phase. Note, however, that there
is no justification for such a weak-coupling description of
Sr2RuO4 and interactions could dramatically change these
parameters. While there is currently no evidence for either
a weakly first-order or a precursory nonsuperconducting TRS-
breaking phase above Tc in Sr2RuO4, the lack of a cusp in
Tc as a function of strain [3] may motivate a more refined
experimental examination of the issue.

To conclude, we have analyzed the effects of (thermal) fluc-
tuations for a two-component p-wave superconductor. Within
the self-consistent harmonic approximation, we have found
that the fluctuations due to time-reversal-symmetry breaking
can drive the transition at zero strain to become weakly first
order and have analyzed the possibility of a second-order
transition into a nonsuperconducting TRS-breaking phase.
Interestingly, we found a range of parameters where there is
a second-order transition into the superconducting state out of
the normal state, despite the additional Z2-symmetry breaking.
Whether this is an artifact of our method could be analyzed
within a renormalization group scheme and is beyond the scope
of the present work. We have further discussed the relevance
of our results for the case of Sr2RuO4. Finally, the physics of
a preemptive TRS-breaking state might also be accessible in a
recently proposed cold-atom setup [23].
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APPENDIX A: COMPARISON TO
HUBBARD-STRATONOVICH DECOUPLING

In order to perform a Hubbard-Stratonovich decoupling,
we rewrite the quartic term in Eq. (3) in terms of squares of
quadratic terms. These terms correspond to the four fields ψi ,
i = 0,1,2,3, namely,

f4[�η] = B1(|ηx |2 + |ηy |2)2 + B2(|ηx |2 − |ηy |2)2

+B3(η∗
xηy + ηxη

∗
y)2 + B4(η∗

xηy − ηxη
∗
y)2. (A1)

It is important to note that these four terms are not linearly
independent, namely, the first minus the second term is the
same as the third minus the fourth term. Therefore, this decou-
pling is not unique. However, for the calculation usually done
after decoupling, namely, the saddle-point approximation, a
large-N limit is assumed. Then, the terms have to be rewritten
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as N component vectors, namely,

f4[�η] = B1(|�ηx |2 + |�ηy |2)2 + B2(|�ηx |2 − |�ηy |2)2

+B3

[∑
i

(
ηi

x

)∗
ηi

y + ηi
x

(
ηi

y

)∗
]2

+B4

[∑
i

(
ηi

x

)∗
ηi

y − ηi
x

(
ηi

y

)∗
]2

. (A2)

In the large-N limit, the four terms are thus no longer linearly
dependent, such that a given decoupling in N = 1 corresponds
to a unique quartic term in large N .

APPENDIX B: FREE ENERGY IN THE
SUPERCONDUCTING PHASE

For completeness, we present here the variational free
energy within the superconducting phase. For this purpose,
we start from Eqs. (2)–(4) and expand ηi = η̄i + δηi . For
simplicity, we use η̄x ∈ R and iη̄y ∈ R. Then, we find for

the elements of the inverse Green’s function,

f0(q,η̄) = f0(q) + 6b1 + b3

2

(
η̄2

x + η̄2
y

)
, (B1)

f1(q,η̄) = f1(q), (B2)

f2(q,η̄) = f2(q) + (2b2 − 2b1 − b3)η̄x η̄y, (B3)

f3(q,η̄) = f3(q) + 2b1 − b3

2

(
η̄2

x − η̄2
y

)
, (B4)

with fi(q) from Eqs. (17)–(20). In addition, the free energy
now reads

F SC
�,η̄[δ�η] = F� + F [η̄], (B5)

with the variational free energy for the mean values

F [η̄] = a
(
η̄2

x + η̄2
y

) + s
(
η̄2

x − η̄2
y

)
+ b1

(
η̄2

x + η̄2
y

)2 + (b3 − b2)η̄2
x η̄

2
y. (B6)
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