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In this work, we employ and critically evaluate a first-principles approach based on supercell calculations
for predicting the magnetic critical order-disorder temperature Tc. As a model material we use the recently
discovered nanolaminate Mn2GaC. First, we derive the exchange interaction parameters Jij between pairs of Mn
atoms on sites i and j of the bilinear Heisenberg Hamiltonian using the novel magnetic direct cluster averaging
method (MDCA), and then compare the J ′s from the MDCA calculations to the same parameters calculated
using the Connolly-Williams method. We show that the two methods yield closely matching results, but observe
that the MDCA method is computationally less effective when applied to highly ordered phases such as Mn2GaC.
Secondly, Monte Carlo simulations are used to derive the magnetic energy, specific heat, and Tc. For Mn2GaC,
we find Tc = 660 K. The uncertainty in the calculated Tc caused by possible uncertainties in the J ′s is discussed
and exemplified in our case by an analysis of the impact of the statistical uncertainties of the MDCA-derived J ′s,
resulting in a Tc distribution with a standard deviation of 133 K.
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I. INTRODUCTION

The magnetic critical order-disorder temperature Tc, which
encompasses both the Curie temperature TC for ferromagnetic
(FM) materials and the Néel temperature TN for antiferro-
magnetic (AFM) materials, is of fundamental importance for
the functionality of magnetic devices under realistic working
conditions. An active area of research in materials science
is the development of first-principles based methods which
qualitatively and quantitatively describe the interactions that
govern the magnetic properties of a material, including Tc

[1]. One important aim of this research is to enable accurate
and time-efficient computational screening for materials with
magnetic transition temperatures suitable for technological
applications. The quantum-mechanical nature of the problem
makes this endeavor a challenging task, and so far experimental
trends in Tc with, e.g., chemical composition, have generally
been easier to accurately reproduce and predict than specific
values of Tc, although examples of quantitatively accurate re-
sults for different materials systems are occasionally reported
[2–6].

Adding to the challenge is the question of whether the
investigated materials should be treated according to the
itinerant or localized model of magnetism, or whether it is
necessary to invoke the more general theory of spin density
fluctuations introduced by Moriya, in which the itinerant
and localized magnetic moment models are limiting cases
[7]. However, for many magnetic solids where 3d transition
metals are responsible for the magnetic properties, the d-band
electrons, while itinerant, are still fairly strongly bounded
to their respective sites [1,8]. Thus, for these materials, the
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localized model, where the electronic spins close to the atomic
nuclei are viewed collectively as a single, localized magnetic
moment that interacts with the moments of the other sites in
the lattice, is a good approximation [9]. This is convenient
for calculations of Tc, as it allows for the magnetic energy of
any magnetic configuration to be mapped onto a Heisenberg
Hamiltonian. In its simplest form, this Hamiltonian takes into
account only bilinear interaction terms, and can be expressed as

H = −
∑

i �=j

Jij ei · ej , (1)

where the parameter Jij is the magnitude of the magnetic
exchange interaction (MEI) between atoms i and j , and ei and
ej are unit vectors parallel to the respective magnetic moments
of these atoms. The Heisenberg Hamiltonian can be evaluated
at a range of different temperatures by randomly changing
the relative directions of ei and ej using, for instance, Monte
Carlo simulations. The magnetic critical temperature Tc can
then be found directly from the peak of the heat capacity or
magnetic susceptibility curve.

The MEI parameters Jij can be calculated through, e.g.,
methods based on the magnetic force theorem [10–13], or
supercell methods such as the frozen magnon method [14], the
Connolly-Williams method (CW) [15,16], or the ones used
by Fedorova et al. in Ref. [17]. In this work, however, we
critically evaluate a novel supercell method for calculating
MEI parameters, the magnetic direct cluster averaging method
(MDCA), which was recently developed by Lindmaa et al.
to handle chemically and topologically disordered phases
[18]. We apply both the MDCA method and, for comparison,
the CW method, to a structurally completely ordered phase,
the magnetic MAX phase Mn2GaC, whose existence was
predicted from first-principles calculations and subsequently
verified experimentally by Ingason et al. [19]. For this phase,
use of the localized model of magnetism, and hence a
Heisenberg Hamiltonian to represent the magnetic energy,

2469-9950/2016/93(5)/054432(7) 054432-1 ©2016 American Physical Society

http://dx.doi.org/10.1103/PhysRevB.93.054432


A. THORE, M. DAHLQVIST, B. ALLING, AND J. ROSEN PHYSICAL REVIEW B 93, 054432 (2016)

is justified by its strong local Mn moments, as discussed in
Sec. III A.

Mn2GaC belongs to the so-called MAX family (M = early
transition metal, A = A-group element, and X = C and/or
N), which to date consists of more than 70 nanolaminated,
hexagonal phases. It is one of the first MAX phases to
exhibit magnetism [19,20], and together with its potential
for magnetocaloric applications, an in-depth exploration of
the magnetism of this phase is highly interesting. Previous
theoretical and experimental work on Mn2GaC has focused
on the influence on its magnetic behavior of both applied
magnetic fields and temperature, and it has been shown that the
phase is magnetic up to at least 300 K [19,21]. In the present
study we use the MDCA-derived MEI parameters in Monte
Carlo simulations to predict an order-disorder temperature of
660 K. We also discuss how accurate first-principles based
calculations of Tc can be expected to be, given uncertainties in
the values of the MEI parameters. Here we exemplify this by
considering Tc = 660 K as the mean of a Gaussian distribution
caused by the MDCA-specific statistical uncertainties in the
J ′s, and calculating a standard deviation of 133 K for this
distribution.

II. CALCULATION DETAILS

The basic concept of the MDCA method is virtually iden-
tical to that of the direct cluster averaging (DCA) method for
calculating chemical effective pair interactions in binary alloys
first proposed by Berera et al. [22,23], the only difference being
that the site variable in MDCA is the atomic magnetic moment
instead of the atomic species. As described in Ref. [18], to
find Jij for two atoms i and j , we generate a large number of
supercells σk (k = 1, . . . ,n) in which the magnetic moments
of the other N − 2 atoms have been assigned spatial directions
through a randomization procedure. For each σk , an electronic
structure relaxation is performed to obtain the total energy
for a set of different, but fixed, directions of atoms i and j .
This set is the same for all σk . The approximation in Eq. (1),
which only includes bilinear interactions, entails that we can
restrict ourselves to collinear magnetic configurations. This
means that there are only four possible ways to fix the relative
directions of the magnetic moments of atoms i and j : ↑↑, ↓↓,
↑↓, and ↓↑. Thus the MEI between atoms i and j for a single,
randomly generated supercell σk is given by

J
σk

ij = − 1
8 (E↑↑ + E↓↓ − E↑↓ − E↓↑), (2)

since all interactions between the moments of atoms i and j

with any other atom in σk are canceled out by the averaging
over the four spin-pair directions. However, the final value of
Jij is not obtained until all possible multisite interactions have
also been canceled out. This is ideally done by averaging over
the entire magnetic configuration space, but in practice, due to
its immense size (2N−2 possible configurations for each atomic
pair), statistical sampling is necessary. We thus get

Jij ≈ 1

n

n∑

k=1

J
σk

ij , (3)

where n is the size of a subset of the magnetic configuration
space. The sampling entails that each pair interaction will be

associated with a sampling error, here assumed to follow a
t distribution. The corresponding confidence intervals can be
expressed as

�Jij = ±tα/2(f )
s√
n
, (4)

where tα/2(f ) is a two-tailed t distribution of significance level
α with f = n − 1 degrees of freedom, s is the sample standard
deviation, and the fraction s/

√
n is the sampling distribution

standard deviation.
For each supercell σk , the four energy terms in Eq. (2) were

determined through electronic energy minimization with the
ions fixed in the calculated 0 K geometry of AFM[0001]A2
Mn2GaC, which exhibits a layered AFM configuration with
two consecutive Mn layers with parallel spins along the
[0001] direction that change sign upon crossing a Ga layer
(hence “A2”), as shown in Fig. 1(a) [20]. The formation
enthalpy for this configuration (−30 meV/atom) is just below
that for FM Mn2GaC (−29 meV/atom), and just above that
for a second AFM spin configuration denoted AFM[0001]A4
(−31 meV/atom), which differs from AFM[0001]A2 in that it
has four consecutive Mn layers with parallel spins, instead
of two, before flipping spins upon passing a Ga layer [20].
While these three spin configurations, which all have slightly
different lattice geometries, are nearly degenerate in energy, we
chose the geometry associated with the AFM[0001]A2 configu-
ration for three reasons: (i) magnetization measurements so far
seem to preclude a purely FM configuration, but rather point to
the phase being AFM; (ii) the match between a simulated x-ray
diffraction spectrum and the experimental room temperature
spectrum is closer for AFM[0001]A2 Mn2GaC than for both
FM and AFM[0001]A4 ; and (iii) the lattice parameters for
AFM[0001]A2 Mn2GaC more closely match the experimental
ones measured at room temperature [20,21].

In the AFM[0001]A2 geometry all Mn sites are equivalent,
and it is therefore sufficient to calculate only one J per
coordination shell. The arrows in Figs. 1(b) and 1(c) point
to Mn atoms in the 11 first coordination shells, where the
11th shell corresponds to a length of ∼7.13 Å. In this case,
interactions involving Mn atoms in the eighth, ninth, and tenth
coordination shells also include a mirror image contribution
that doubles the obtained interaction strength, thus requiring
the resulting J to be divided by a factor of 2. Ideally, supercells
large enough to avoid significant mirror image interactions
should be used, but since we use 4 × 4 × 1 supercells with
128 atoms in total, increasing the size further would have
resulted in impractically high computational times.

In the CW method, the MEI parameters are instead obtained
by solving a system of equations consisting of the Heisenberg
Hamiltonians for several different magnetic configurations.
In this case, the Heisenberg Hamiltonian given by Eq. (1) is
rewritten as

H = −
∑

α

Jαnα�α, (5)

where nα is the number of magnetic atoms in the αth coor-
dination shell and �α the corresponding correlation function.
For a set of different magnetic configurations, one can obtain
Jα by calculating the electronic energy for each magnetic
configuration as well as their respective sets of correlation
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FIG. 1. (a) Schematic representation of the AFM [0001]A
2 magnetic configuration. (b), (c) Side and top view, respectively, of a 4 × 4 ×

1 Mn2GaC supercell, with arrows pointing to atoms in each of the 11 different coordination shells �α considered in this work.

functions and nα (which, for a given shell α, is the same
for all configurations), and then perform a least-squares fit
on the equation system [15]. The CW method is particularly
well suited for chemically ordered MAX phases, since the αth
coordination shell with respect to each magnetic M atom then
always contains neighboring magnetic M atoms at the same
relative locations, i.e., nα is independent of the M atom for
which �α is to be determined.

All electronic energy minimizations in this work have
been carried out within the framework of density functional
theory [24] as implemented in the Vienna ab initio simulation
package (VASP) [25–28], using the Perdew-Burke-Ernzerhof
exchange-correlation energy functional [29], and the projector
augmented wave method for solving the Kohn-Sham equations
[14,15]. The Brillouin zones of all of the 4 × 4 × 1, 128-
atom supercells were sampled using a �-centered 3 × 3 × 3
Monckhorst-Pack k-point grid, and the cutoff energy was set
to 400 eV.

The magnetic energy given by Eq. (1) was minimized
by running Metropolis-type semiclassical Heisenberg Monte
Carlo simulations [30] using the MDCA-derived MEI param-
eters and 32 000 Mn atoms, for temperatures in the interval
of 20–1000 K. At each temperature step, 30 000 random spin
flips were performed, out of which the trailing 24 000 were
collected (to avoid remnant effects from the previous step).

III. RESULTS AND DISCUSSION

A. Mn magnetic moments

Figure 2 shows a histogram of the local Mn magnetic
moments for all randomly generated magnetic configurations,
after the electronic structure relaxations. The vast majority of
these moments have magnitudes of at least 1.5μB , and for all
but a tiny fraction of them, the spatial orientation is the same
as the orientation before the relaxations. The variation in the

strengths of the local moments is not due to the longitudinal
spin fluctuations characteristic of itinerant magnets, but is here
instead caused by variations in the local magnetic environment.
Strong local moments are consistent with the localized model
of magnetism (where only transverse spin fluctuations are
important), but not with the itinerant model.

B. Magnetic exchange interaction parameters

Three different sets of MEI parameters for a number of
coordination shells α are shown in Fig. 3. One set has been
calculated using the MDCA method, while for the other two
sets the CW method has been used. The CW parameters
were determined from two different sets of magnetic spin

FIG. 2. The local Mn moments for different, randomly generated
magnetic configurations, after electronic structure relaxations have
been performed.
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FIG. 3. Magnetic exchange interaction parameters derived using
the MDCA method and the Connolly-Williams method, the latter
applied both to a large set of randomly generated magnetic configu-
rations (CW-r) and a smaller set of ordered configurations (CW-o).
The inset shows the nearest neighbor (α = 1) MEI parameters for
each of the randomly generated magnetic supercell configurations
(open squares), together with the cumulative moving average (closed
circles) and its associated 95% confidence intervals.

configurations: the ones also used in the calculations of
the MDCA parameters, for which the correlation functions
�α generally are very small due to the low probability of
generating magnetically ordered shells using a randomizing
procedure, and manually constructed ordered ones (FM as well
as different AFM spin configurations); these sets are denoted
CW-r and CW-o, respectively. For the CW-o parameters only
the first seven coordination shells have been considered as the
relatively low number of included configurations significantly
limited the accuracy of the MEI parameters for the more
long-ranged shells.

By comparing the MDCA with the CW-o MEI parameters,
we see that, while the trends are similar, some of the
short-range interactions differ significantly between the two
parameter sets, e.g., J1 differs by a factor of 2. If we instead
compare the MDCA MEI parameters to the CW-r ones, we
see that the differences are small, with each CW-r parameter
lying within the 95% confidence interval calculated for the
corresponding MDCA parameter.

This discrepancy exemplifies a potential pitfall when
calculating MEI parameters: the obtained J ′s are strongly
dependent on the magnetic reference state, i.e., whether it
is ordered or disordered. This may in turn have an impact
on the accuracy of the magnetic thermodynamics calculated
from the J ′s. For MEI parameters derived from a set of
ordered spin configurations, a calculation of the energy of
a highly disordered state is likely to be less accurate than
if the input set instead consists predominantly of low-order
spin configurations, and vice versa [31]. Hence, since we are
interested in the energy around the order-disorder temperature,
the set of CW-r parameters should be the preferred choice as
a reference set with respect to the MDCA parameters. The
good agreement between the MDCA and CW-r parameter sets

suggests that either method may be used. However, in addition
to accuracy, the computational cost is an important factor.

As illustrated by the inset in Fig. 3, the size of each
confidence interval of the MDCA parameters depends on
the number of terms J

σk

ij included in Eq. (3). Using current
state-of-the-art hardware, calculating even one such term is
quite costly, and we have therefore restricted our calculations
to k ∼ 20 for all coordination shells except for the first one
(α = 1), for which k = 67 as a test case (80 supercells were
generated initially, but 13 were discarded due to spin flips
during the calculations). For ordered phases like Mn2GaC
this is a practical limitation of the MDCA method, which
makes it less suitable than the CW method for determining
MEI parameters. Using the CW method, reliable parameter
values up to the 11th coordination shell could be obtained
for as few as ∼20 of the randomly generated supercells. This
shows the importance of carefully choosing which method to
apply. As discussed by Lindmaa et al. in Ref. [18], the MDCA
method gives direct access to any specific pair interaction,
thus making it highly suitable for phases in which several or all
magnetic atoms occupy unique lattice sites, such as chemically
disordered or amorphous phases.

C. Critical temperature of Mn2GaC

The curves in Fig. 4(a) show the specific heat Cv for
Mn2GaC in the interval of 0–1000 K, obtained from Monte
Carlo simulations of Eq. (1) using the MDCA-derived MEI
parameters seen in Fig. 4. It is clear from the figure that the
location of the peak of Cv , and hence the critical temperature

FIG. 4. (a) Specific heat as a function of temperature for the
MDCA MEI parameters for increasing numbers of coordination
shells (cs). The horizontal and vertical error bars belonging to the
11 cs peak are the standard deviations for Tc and Cv , respectively.
Inset: convergence of Tc as a function of the number of considered
coordination shells. (b) The magnetic energy. The difference between
FM and PM (DLM) VASP energies is indicated by the closed circle.
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Tc (which coincides with this peak), is very sensitive to
the number of coordination shells considered. For instance,
if the MEI parameters for only the first three coordination
shells are included, Tc is found at 450 K, whereas for 11
coordination shells it is found at 660 K. This further shows
that, even as the strengths of the individual interactions begin to
vanish—which in this case happens beyond the fourth coordi-
nation shell, as seen in Fig. 3—they may collectively contribute
to a non-negligible effect on Tc. Also, the possibility exists
that long-range interactions that have not been considered
may actually be strong enough to have a significant impact.
However, an argument that Tc = 660 K should be reasonably
close to the real value can be made from an analysis of the
temperature-dependent free energy curves, which are shown
in Fig. 4(b). The difference in energy between 20 K, which
corresponds to a FM spin configuration, and infinity, where
the magnetic energy is 0 eV and thus corresponds to a perfect
paramagnetic (PM) spin configuration, varies from −0.085
to −0.12 eV/atom depending on the number of coordination
shells considered. This is close to the result from our 0 K VASP

calculations, which, when the AFM[0001]A2 geometry is used,
yield an energy difference of −0.092 eV/atom between FM
and PM Mn2GaC [the PM spin configuration was modeled
by a disordered local moment (DLM) state [32,33]]. We note
here that an exact agreement with the VASP result should not be
expected due to the fact that the MDCA MEI parameters were
derived from highly disordered states, and therefore likely do
not describe the low-temperature magnetic behavior of the
phase entirely accurately, as discussed in the previous section.

Given a set of MEI parameters, converging MEI parameter-
dependent properties such as Tc is thus merely a matter
of considering enough coordination shells. However, the
accuracy of the converged properties depend on the accuracy
of the MEI parameters, the latter which can be affected
by several possible factors. Examples of such factors are
lattice vibrations, thermal expansion, electronic excitations,
and structural defects like vacancies and impurities. Factors
related to the tools and methods used may also influence the
accuracy, such as various approximations implemented in den-
sity functional theory (the exchange-correlation functionals in
particular) as well as the choice of Hamiltonian onto which
the magnetic energy is mapped. For a few materials systems,
efforts have been undertaken to estimate the impact of some of
these factors on the MEI parameters and the degree to which
this propagates to the properties derived from the parameters
[11,14,17,32]. For instance, in Ref. [11] Alling et al. have
investigated the dependence of the Curie temperature of the
half-Heusler Ni1−xCuxMnSb alloy on, e.g., thermal expansion,
structural defects, and choice of magnetic reference state
used in the derivation of the MEI parameters. They found
that by going from room temperature to ∼1000 K, the lattice
parameter increases by ∼1%, which—depending on whether
the magnetic reference state is DLM or FM—in turn can lead
to as much as a 15% decrease in the Curie temperature. While
this is certainly significant, it is unclear whether these results
are directly transferable to Mn2GaC, one reason being that
the coefficient of thermal expansion for this phase may be
different. However, although it would certainly be worthwhile
to study the impact on Tc for Mn2GaC of thermal expansion as
well as of other internal and external factors, we have in this

FIG. 5. Sets of MEI parameters generated using the MDCA
parameters in Fig. 3 as mean values of a Gaussian distribution, each
with a standard deviation given by s/

√
n in Eq. (4). Inset: the resulting

histogram of Tc
′s, with a Gaussian fit superimposed.

work limited our focus to an investigation of a method-related
factor specific to the MDCA method: the effect on Tc of the
errors in the J ′s that arise due to the sampling of magnetic
configuration space.

This is illustrated in Fig. 5 for 150 different sets of
MEI parameters, where each parameter value for a given
coordination shell α has been generated from a Gaussian
distribution centered on the corresponding MDCA-derived J

(see Fig. 3) which is here taken to be a good estimate of the
sample mean for that specific J . The standard deviation for
each J is given by the sampling distribution standard deviation
s/

√
n in Eq. (4). Carrying out a Monte Carlo simulation for

each set results in the histogram of different Tc
′s shown in the

inset of Fig. 5, with Tc = 660 K as the mean temperature.
By fitting the histogram with a Gaussian distribution the
standard deviation is 133 K (20%) in each direction, shown
as an error bar in Fig. 4(a). The uncertainty in Tc is thus quite
significant, despite the relatively small differences between the
MEI parameter sets. We want to emphasize that even though
the uncertainties in the J ′s obtained here stem from a particular
methodological aspect of the MDCA method, uncertainties in
first-principles calculated J ′s are always present to at least
some degree due to the factors discussed in the previous
paragraph. Thus, our finding, i.e., that an uncertainty of a few
meV in the magnitudes of the MEI parameters transforms into
an uncertainty of hundreds of K in Tc, should be of importance
for every future study attempting to predict order-disorder
critical temperatures from first principles, irrespective of
material.

Nevertheless, for Mn2GaC, Tc = 660 ± 133 K, which is
not in conflict with present experimental results. Vibrating
sample magnetometry measurements have shown the phase to
exhibit a magnetic response at least up to room temperature
[21]. We also note that similar experimental results have been
reported for quaternary MAX phases with a solid solution of Cr
and Mn on the M sublattice. For example, Mockuté et al. found
(Cr1−xMnx)2GaC with x = 0.3 to give a magnetic response up
to the maximum measurement temperature of 300 K, as did
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both Petruhins et al. for (Cr1−xMnx)2GaC with x = 0.5 and
Ingason et al. for (Cr1−xMnx)2GeC with x = 0.25 [34–36].
We additionally note that further work on (Cr1−xMnx)2GeC
by Tao et al. has shown that Tc of this phase increases with
increasing Mn content [37].

IV. CONCLUSIONS

In conclusion, we have used the novel magnetic direct
cluster averaging method to calculate magnetic exchange
interaction parameters for 11 different coordination shells in
the magnetic MAX phase Mn2GaC. The MEI parameters were
then used as input in Monte Carlo simulations to predict the
critical magnetic order-disorder temperature.

The MEI parameters were shown to be in good agreement
with a reference parameter set calculated using the Connolly-
Williams method. However, for ordered phases like Mn2GaC,
the MDCA method is associated with a significantly higher
computational cost than the CW method.

The critical temperature was predicted to be 660 K, with
a standard deviation of 133 K stemming from the statistical

nature of the MDCA method. Still, experimental measure-
ments on both Mn2GaC as well as on related MAX phases are
presently not in conflict with the theoretical results presented
here.
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