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Magnetic rigid rotor in the quantum regime: Theoretical toolbox
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We describe the quantum dynamics of a magnetic rigid rotor in the mesoscopic scale where the Einstein-De Haas
effect is predominant. In particular, we consider a single-domain magnetic nanoparticle with uniaxial anisotropy
in a magnetic trap. Starting from the basic Hamiltonian of the system under the macrospin approximation,
we derive a bosonized Hamiltonian describing the center-of-mass motion, the total angular momentum, and
the macrospin degrees of freedom of the particle treated as a rigid body. This bosonized Hamiltonian can be
approximated by a simple quadratic Hamiltonian that captures the rich physics of a nanomagnet tightly confined
in position, nearly not spinning, and with its macrospin antialigned to the magnetic field. The theoretical tools
derived and used here can be applied to other quantum mechanical rigid rotors.
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I. INTRODUCTION

A rigid body is described by its center-of-mass position
and linear momentum as well as its orientation and rotational
angular momentum [1,2]. A rigid body can also contain
internal degrees of freedom. Particularly interesting is a
magnetic rigid body such that the internal spin can couple
to the external degrees of freedom via the Einstein-De Haas
effect [3]. The physics of such a magnetic rigid rotor is very
rich specially at mesoscopic scales where the Einstein-De
Haas effect is enhanced due to a smaller moment of inertia.
Quantum effects have to be considered [4,5] when thermal
fluctuations of the degrees of freedom are small. The quantum
mechanical theory of the rigid rotor has been applied to
study rotational spectra of molecules [6,7], to model the
structure of the atomic nucleus [8,9], and to control the
rotational motion of molecules [10–13]. Magnetic rigid rotors
in the quantum regime have been considered to study spin
tunneling in single-molecule magnets and magnetic single-
domain nanoparticles [14–20].

Motivated by the possibility to bring mesoscopic systems
to the quantum regime, see [21] and references therein, here
we use well-known results in quantum angular momentum
theory [22,23] to develop a theoretical toolbox to describe
the quantum dynamics of a levitated magnetic rigid rotor.
We consider a single-domain magnetic nanoparticle (we call
it nanomagnet hereafter) in a magnetic trap to derive, from
first principles, a relatively simple quadratic Hamiltonian able
to describe the rich dynamics of the system. A quantum
mechanical description of the system has to be used when
the thermal fluctuations of the degrees of freedom have been
cooled to the limit where quantum fluctuations dominate.
In the context of quantum nanomechanics many techniques
have been devised to reach this regime [21]. An experimental
proposal to bring a levitated nanomagnet in the quantum
regime will be analyzed elsewhere [24].

The article is organized as follows. In Sec. II, we introduce
the system, its degrees of freedom, the basic Hamiltonian in
the laboratory and body frame, and the Hilbert space with the
relevant basis. In Sec. III, we perform a unitary transformation
that diagonalizes the magnetic dipole interaction term. In
Sec. IV, we perform the Lamb-Dicke approximation by

assuming the nanomagnet to be tighly confined in the magnetic
trap. In Sec. V, we show how to map the angular momentum
operators of the Hamlitonian into bosonic creation and
annihilation operators. This allows us to perform a Holstein-
Primakoff approximation by assuming the nanomagnet to be
well antialigned to the external magnetic field and nearly not
rotating. In Sec. VI, we apply these approximations to derive a
quadratic Hamiltonian and discuss its validity. In Sec. VII, we
draw our conclusions and provide some further directions. We
leave to the appendices the discussion of some required tools of
quantum angular momentum theory (Appendix A), an example
of magnetic field trap (Appendix B), and some details about
the derivation of the quadratic Hamiltonian (Appendixes C
and D).

II. DESCRIPTION OF THE SYSTEM

We consider a nanomagnet of mass M , moment of inertia
I , and magnetic moment μ̂. The nanomagnet is interacting in
free space with an external static B field B(r). Being a rigid
body, the position of the nanomagnet in space is specified
by its center of mass position and its orientation. The latter
is equivalent to specifying the orientation of the coordinate
frame Oe1e2e3, attached to the body and centered at the
position of its center of mass, with respect to the position of the
coordinate frame Oexeyez fixed in the laboratory. The mutual
orientation between the two frames is described through the
Euler angles � = {α,β,γ } defined in Fig. 1(a). Hereafter, latin
indexes i,j,k, . . . = 1,2,3 label the body frame axis while
Greek indexes μ,ν,λ . . . = x,y,z label the laboratory frame
axes.

The nanomagnet is characterized by the following degrees
of freedom, see Fig. 1(b). (1) The center of mass described by
its position r̂ and momentum p̂. (2) The rotational momentum
and orientation of the particle described by the angular
momentum �L̂ and the Euler angles �̂ = {α̂,β̂,γ̂ }. (3) The
magnetic moment μ̂.

The operator �L̂ is the angular momentum associated to
the rotational motion of the particle. The magnetic moment
of the nanomagnet μ̂ = �γ F̂, with F̂ = ∑N

i=1 F̂i , is the sum
of the single magnetic moments of its N constituents, where
γ > 0 is the gyromagnetic ratio and F̂i the total spin of the

2469-9950/2016/93(5)/054427(13) 054427-1 ©2016 American Physical Society

http://dx.doi.org/10.1103/PhysRevB.93.054427


COSIMO C. RUSCONI AND ORIOL ROMERO-ISART PHYSICAL REVIEW B 93, 054427 (2016)

ez

ex

ey

e1

e2

e3

e1

e2

e3

ez

ex

ey

r̂

ey

β

β

α

α

γ

γ

F̂
L̂

kF
F−F −F/2 F/2

EkF
= − 2Dk2

F

EF

EF−1

(a) (b) (c)

FIG. 1. (a) Definition of the Euler angles in the ZYZ convention. The Euler angles are defined by three successive rotations that one needs
to apply in order to align Oexeyez with Oe1e2e3. (i) Rotation of the frame Oexeyez of an angle α ∈ [0,2π ] about the axis ez into the new frame
Oe′

xe′
ye′

z. (ii) Rotation of the frame Oe′
xe′

ye′
z of an angle β ∈ [0,π ] about the axis e′

y into the new frame Oe′′
xe′′

ye′′
z . (iii) Rotation of the new

frame Oe′′
xe′′

ye′′
z of an angle γ ∈ [0,2π ] about the axis e′′

z into the final frame Oe1e2e3. (b) Description of the system and its degrees of freedom.
The nanomagnet is represented as a sphere divided in two parts: a red and a blue half that stays, respectively, for the north and south poles of
the magnet, and thus give the direction of the spin F̂. The anisotropy axis is along the direction of e3 and it is represented by a black line in
the nanomagnet, which need not to be aligned with the magnetization. Finally, the angular momentum L̂ relative to the mechanical rotational
motion lies, in general, along a different direction. (c) Anisotropy of the nanomagnet. We consider a nanomagnet with a single axis anisotropy:
the magnetic moment will preferably align parallel or antiparallel to the anisotropy direction. The F̂ 2

3 dependence produce a non linear level
structure.

ith constituent. The individual spins inside the nanomagnet
are subjected to two different interactions: (i) the exchange
interaction, which tends to align all the single magnetic
moments together, and (ii) the anisotropy interaction, which
tends to align independently each magnetic moment to a given
direction in the crystalline structure of the particle. When
the first coupling dominates over the second coupling (weak
anisotropy limit), one can perform the so-called macrospin
approximation [26], which consists in projecting the total spin
into the subspace with F̂2 = Nf (Nf + 1) ≡ F (F + 1), where
f is the total spin of a single constituent (assumed to be
identical for simplicity). Finally, note that the center-of-mass
motion, described by r̂ and p̂, can yield angular momentum
r̂ × p̂. This should not be confused with �L̂.

For a solid nanosphere, the internal vibrations have frequen-
cies of the order of the speed of sound divided by the size of the
object. For a nanosphere, these frequencies are many orders
of magnitude higher than any other frequency in the system.
Hence internal vibrations are effectively decoupled [25] and
can be safely ignored.

A. Hamiltonian in the laboratory frame

The dynamics of a rigid body can be studied both in the
laboratory frame Oexeyez and in the body frame Oe1e2e3. In
the laboratory frame, the dynamics of a spherical nanomagnet
of radius R (moment of inertia I = 2MR2/5) is described by
the Hamiltonian

Ĥ = p̂2

2M
+ �

2

2I
L̂2 − �

2D[F̂ · e3(�̂)]2 − �γ F̂ · B(r̂). (1)

Note that when a nonspherical shape is considered, the moment
of inertia will be a tensor depending on the Euler angles [1,2].
The first (second) term represents the kinetic energy of the
center of mass (rotational) motion. The third term repre-
sents the uniaxial anisotropy energy term in the macrospin

approximation with the preferred axis e3, see Fig. 1(c). The
uniaxial anisotropy is common in nanomagnets [14] but
other anisotropies could be straightforwardly included in the
analysis. In the laboratory frame, the unit vector e3 depends
on the Euler angles and it is therefore an operator, e3 = e3(�̂).
The anisotropy constant D depends on the material and
is related to the blocking temperature of the nanomagnet
Tb ≡ �

2DF 2/Kb [27], where Kb is the Boltzmann’s constant.
The fourth term represents the magnetic dipole interaction of
the macrospin with the external static field B(r), which we
describe as a classical field.

For later convenience we define Ĵ ≡ L̂ + F̂, which is the
total angular momentum of the system when r̂ × p̂ = 0. The
operators Ĵ, L̂, and F̂ fulfill the usual commutation relations
of angular momenta, see Table I. Moreover, we assume
[L̂ν,F̂μ] = 0,∀μ,ν, namely that the spin angular momentum
is independent of the Euler angles. This is commonly assumed
in molecular quantum mechanics [6,28], and corresponds to
neglecting the spin-orbit interaction between the individual
spins of the nanomagnet and the electronic rotational motion
within the Born-Oppenheimer approximation.

B. Hamiltonian in the body frame

The dynamics of a rigid body is more conveniently
described in the body frame Oe1e2e3 where the inertia tensor of
a nonspherical body does not depend on the Euler angles [1,2].
The operators in the body frame are obtained by the following
change of variables:

Ĵi =
∑

ν

Riν(�̂)Ĵν, L̂i =
∑

ν

Riν(�̂)L̂ν,

F̂i =
∑

ν

Riν(�̂)F̂ν, Bi(r,�̂) =
∑

ν

Riν(�̂)Bν(r), (2)

054427-2



MAGNETIC RIGID ROTOR IN THE QUANTUM REGIME: . . . PHYSICAL REVIEW B 93, 054427 (2016)

TABLE I. Commutation rules of the components of the angular momentum operators L̂, Ŝ = −F̂ and Ĵ = F̂ + L̂ = −Ŝ + L̂ both in the
laboratory frame (left column) and in the body fixed frame (right column). The ladder operators in the body frame are Ĵ↑(↓) = Ĵ1 ∓ iĴ2

(Ŝ↑(↓) = Ŝ1 ∓ iŜ2), while in the laboratory are Ĵ± = Ĵx ± iĴy (F̂± = F̂x ± iF̂y). Summation over repeated indexes is here assumed.

Laboratory frame Oexeyez Body frame Oe1e2e3

[L̂μ,L̂ν] = iεμνλL̂λ

[L̂z,L̂±] = ±L̂±
[L̂+,L̂−] = 2Ĵz

[F̂μ,F̂ν] = iεμνλF̂λ

[F̂z,F̂
±] = ±F̂ ±

[F̂ +,F̂ −] = 2F̂z

[Ĵμ,Ĵν] = iεμνλĴλ

[Ĵz,Ĵ±] = ±Ĵ±
[Ĵ+,Ĵ−] = 2Ĵz

[L̂μ,F̂ν] = 0

[Ĵμ,F̂ν] = iεμνλF̂λ

[Ĵμ,L̂ν] = iεμνλL̂λ

[L̂μ,Riν(�̂)] = iεμνλRiλ(�̂) ∀i

[Ĵμ,Riν(�̂)] = iεμνλRiλ(�̂) ∀i

[F̂μ,Riν(�̂)] = 0

[Riμ(�̂),Rjν(�̂)] = 0 ∀i,j,μ,ν

[L̂i ,L̂j ] = −iεijkL̂k

[L̂3,L̂↑(↓)] = (−)L̂↑(↓)

[L̂↑,L̂↓] = 2L̂3

[Ŝi ,Ŝj ] = −iεijkŜk

[Ŝ3,Ŝ↑(↓)] = (−)Ŝ↑(↓)

[Ŝ↑,Ŝ↓] = 2Ŝ3

[Ĵi ,Ĵj ] = −iεijkĴk

[Ĵ3,Ĵ↑(↓)] = (−)Ĵ↑(↓)

[Ĵ↑,Ĵ↓] = 2Ĵ3

[L̂i ,Ŝj ] = −iεijkŜk

[Ĵi ,Ŝj ] = 0

[Ĵi ,L̂j ] = −iεijkĴk

[L̂i ,Rjμ(�̂)] = −iεijkRkμ(�̂) ∀μ

[Ĵi ,Rjμ(�̂)] = −iεijkRkμ(�̂) ∀μ

[Ŝi ,Rjμ(�̂)] = 0

[Riμ(�̂),Rjν(�̂)] = 0 ∀i,j,μ,ν

where the orthogonal matrix R(�̂) is given by

R(�̂) =
⎛
⎝ cos γ̂ sin γ̂ 0

− sin γ̂ cos γ̂ 0
0 0 1

⎞
⎠

⎛
⎝cos β̂ 0 − sin β̂

0 1 0
sin β̂ 0 cos β̂

⎞
⎠

×
⎛
⎝ cos α̂ sin α̂ 0

− sin α̂ cos α̂ 0
0 0 1

⎞
⎠. (3)

The change of variables (2) does not preserve the commu-
tation relations of the angular momenta. Indeed, by writing
the operator L̂ in the laboratory frame in the Euler angles
representation [23]⎛
⎜⎝

L̂x

L̂y

L̂z

⎞
⎟⎠ = −i

sin β

⎛
⎝cos α cos β sin β sin α cos α

sin β sin α sin β cot β sin α

0 0 1

⎞
⎠

⎛
⎜⎝

∂α

∂β

∂γ

⎞
⎟⎠,

(4)

one can show that using Eq. (3)

[L̂μ,Riν(�̂)] = i
∑

λ

εμνλRiλ(�̂). (5)

Note, however, that this is not the case for the spin angular mo-
mentum since, as already discussed in Sec. II A, it commutes
with the Euler angles

[F̂μ,Riν(�̂)] = 0. (6)

The results in Eqs. (5) and in (6) together with the property∑
μ,ν

εμνλRiμ(�̂)Rjν(�̂) =
∑

k

εijkRkλ(�̂), (7)

valid for an orthogonal matrix, allow to derive the commutation
relations of the operators in the body frame, as given in Table I.
Note that the body frame components of the spin commute
as in the laboratory frame, while the commutators for the
body frame components of L̂ and Ĵ acquire a minus sign,
namely [L̂i,L̂j ] = −i

∑
k εijkL̂k and [Ĵi ,Ĵj ] = −i

∑
k εijkĴk .

It is convenient to introduce the operator Ŝ = −F̂ to force
the three angular momentum to have the same commutation
rules. Note that Ŝ2 = F̂2 and we define S ≡ F . The body frame
ladder operators are given by Ĵ↑ = (Ĵ↓)† = Ĵ1 − iĴ2 and Ŝ↑ =
(Ŝ↓)† = Ŝ1 − iŜ2, where Ĵ↑,Ŝ↑ (Ĵ↓,Ŝ↓) increase (lower) the
value of Ĵ3, Ŝ3, see Table I.

With the change of variables given in Eq. (2), the Hamilto-
nian Ĥ in the body frame reads

Ĥ = p̂2

2M
+ �

2

2I
(Ĵ2 + 2Ŝ3Ĵ3 + Ĵ↑Ŝ↓ + Ĵ↓Ŝ↑)

− �
2DŜ2

3 + �γ Ŝ · B(r̂,�̂). (8)

The term with Ŝ2 has been dropped since under the macro-
scopic approximation Ŝ2 = S(S + 1) is a c number. The
external magnetic field depends in this frame on the Euler
angles. So far, only a change of variables has been performed
without any approximation.

C. Hilbert space structure of the system and suitable basis

The Hilbert space H associated to the system is given by
H = L2(R3) ⊗ Ham. L2(R3) is the Hilbert space associated to
the motion of a pointlike particle in R3, and it is spanned by
the general basis {ψn(r)}n. Ham is the Hilbert space associated
to the angular momenta of the particle. From the commutation
relations in Table I, it is possible to find three different complete
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sets of commuting observables (CSCO) for the particle angular
momenta [7]. (1) Laboratory frame uncoupled representation
{F̂2,F̂z,L̂2,L̂z,L̂3} with eigenstates

|ϕam〉1 = |FmF ,LmLkL〉1, (9)

such that ⎛
⎜⎜⎜⎜⎜⎜⎝

F̂2

F̂z

L̂2

L̂z

L̂3

⎞
⎟⎟⎟⎟⎟⎟⎠

|ϕam〉1 =

⎛
⎜⎜⎜⎜⎜⎝

F (F + 1)

mF

L(L + 1)

mL

kL.

⎞
⎟⎟⎟⎟⎟⎠|ϕam〉1. (10)

The Hilbert space is H1
am = C2F+1 ⊗ (

⊕∞
L=0C

(2L+1)2
).

(2) Body frame uncoupled representation {Ĵ2,Ĵz,Ĵ3,Ŝ2,Ŝ3}
with eigenstates

|ϕam〉2 = |JmJ kJ ,SkS〉2, (11)

such that ⎛
⎜⎜⎜⎜⎜⎜⎝

Ŝ2

Ŝ3

Ĵ2

Ĵz

Ĵ3

⎞
⎟⎟⎟⎟⎟⎟⎠

|ϕam〉2 =

⎛
⎜⎜⎜⎜⎜⎝

S(S + 1)

mS

J (J + 1)

mJ

kJ

⎞
⎟⎟⎟⎟⎟⎠|ϕam〉2. (12)

The Hilbert space is H2
am = C2S+1 ⊗ (

⊕∞
J=0C

(2J+1)2
).

(3) Coupled representation {Ĵ2,Ĵz,Ŝ2,L̂2,L̂3} with eigen-
states

|ϕam〉3 = |JmJ ,S,LkL〉3, (13)

such that ⎛
⎜⎜⎜⎜⎜⎜⎝

Ĵ2

Ĵz

Ŝ2

L̂2

L̂3

⎞
⎟⎟⎟⎟⎟⎟⎠

|ϕam〉3 =

⎛
⎜⎜⎜⎜⎜⎝

J (J + 1)

mJ

S(S + 1)

L(L + 1)

kL

⎞
⎟⎟⎟⎟⎟⎠|ϕam〉3. (14)

The Hilbert space is H3
am = ⊕∞

L=0 (C2L+1 ⊗ Cdj ) ∼= ⊕∞
J=0

(C2J+1 ⊗ Cdl ), where dj = ∑L+F
J=|L−F | 2J + 1 and dl =∑J+S

L=|J−S| 2L + 1.
The set 1 (2) contains the additional commuting operator

Ĵz = F̂z + L̂z (L̂3 = Ŝ3 + Ĵ3), which has not been included
since it is determined by some of the operators within the set
and thus it does not represent an additional degree of freedom.
The three Hilbert spaces of the representation are isomorphic
(they correspond to a different choice of basis), and the change
of basis is achieved by a unitary transformation. To switch from
1 to 3, one uses the relation

|FmF ,LmLkL〉1 =
L+F∑

J=|L−F |
C

JmJ

FmF ,LmL
|JmJ ,S,LkL〉3 (15)

and from 2 to 3 the relation

|JmJ kJ ,SkS〉2 =
J+S∑

L=|J−S|
C

LkL

JkJ ,SkS
|JmJ ,S,LkL〉3. (16)

e1

e2

e3

n(r, Ω)

θ/2

θ

ϕ

B(r,Ω)

FIG. 2. Definition of the vector n(r,�) and B(r,�). The unitary
Û is a rotation of an angle π around the local direction n(r,�). This
transformation aligns e3 with B(r,�).

Here, C
JmJ

FmF ,LmL
= 3〈JmJ ,S,LkL|FmF ,LmLkL〉1 and

C
LkL

JkJ ,SkS
= 3〈JmJ ,S,LkL|JmJ kJ ,SkS〉2 are Clebsch-Gordan

coefficients under the Condon-Shortley convention (they
are real numbers) [23]. CJm

J1m1,J2m2
is nonzero provided

m = m1 + m2 and J ∈ {J1 + J2,J1 + J2 − 1, . . . ,|J1 − J2|},
which embodies the conservation of angular momentum.

The inspection of the Hamiltonian in the body frame,
Eq. (8), suggests to use the representation 2 (body frame
uncoupled representation). The basis of the total Hilbert space
will thus be {|ψn〉 ⊗ |JmJ kJ ,SkS〉2}.

III. DIAGONALIZATION OF THE MAGNETIC
DIPOLE INTERACTION

In the context of magnetic trapping, it is convenient to
apply a unitary transformation Û to the Hamiltonian such that
the magnetic dipole interaction in Eq. (8) is transformed as
follows:

Û †B(r̂,�̂) · ŜÛ = |B(r̂)|Ŝ3. (17)

This can be achieved with the unitary transformation given by1

Û ≡ exp[−iπn(r̂,�̂) · Ŝ], (18)

where n(r̂,�̂) = (n1(r̂,�̂),n2(r̂,�̂),n3(r̂,�̂))T is the unit vec-
tor that lies in the same plane as e3 and B(r̂,�̂), and bisects the
angle between them, see Fig. 2.

The body frame Hamiltonian (8) transformed by the unitary
transformation (18) can be written as

Ĥ ′ = Û †Ĥ Û = Ĥ0 + ĤI + V̂D + V̂P , (19)

where (1) Ĥ0, which is diagonal in the basis |JmJ kJ ,SkS〉2, is
given by

Ĥ0 = p̂2

2M
+ �

2

2I
(Ĵ2 + 2Ŝ3Ĵ3) − �

2DŜ2
3 + �γ |B(r̂)|Ŝ3. (20)

1An analogous unitary transformation is also used in describing
the magnetic trapping of atoms [29,30]. However, note that here the
unitary operator (18) depends on �̂ and hence has to be treated more
carefully.
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Since local minima of |B(r̂)| are allowed, the term �γ |B(r̂)|Ŝ3

can trap the nanomagnet for macrospin states with 〈Ŝ3〉 > 0.
(2) ĤI is given by

ĤI = �
2

2I
(Ĵ↑Ŝ↓ + Ĵ↓Ŝ↑). (21)

This term originates from the rotational kinetic energy of the
nanomagnet, �(Ĵ + Ŝ)2/2I and couples the spin Ŝ with the
total angular momentum Ĵ.

(3) V̂D is given by

V̂D = �
2DŜ2

3 − �
2D

[
Ŝ3

(
1 − 2n2

3(r̂,�̂)
)

− n3(r̂,�̂)(n↑(r̂,�̂)Ŝ↓ + n↓(r̂,�̂)Ŝ↑)
]2

, (22)

where we defined n↑(r̂,�̂) = [n↓(r̂,�̂)]† = n1(r̂,�̂) −
in2(r̂,�̂). This arises from the unitary transformation of the
anisotropy interaction.

(4) V̂P is given by

V̂P = p̂ · A(r̂,�̂) + A(r̂,�̂) · p̂
2M

+ A2(r̂,�̂)

2M
, (23)

where Aν(r̂,�̂) = −2�[n(r̂,�̂) × ∂νn(r̂,�̂)] · Ŝ. This term
originates in the unitary transformation of the center of mass
momentum p̂, which does not commute with Û .

The transformed Hamiltonian (19) is still exact. The terms
V̂D and V̂P contain the components of n(r̂,�̂), which are
operators acting both on the center of mass subspace, through
r̂, and on the angular momentum subspace, through the Euler
angles �̂. One can show that

n(r̂,�̂) = R(�̂) n(r̂), (24)

where n(r̂) is the unit vector that lies in the same plane
as B(r̂) and ez and bisects the angle between the two. The
operator n(r̂,�̂) acts on the angular momentum subspace
through the matrix elements Riν(�̂), which are a combination
of trigonometric functions of the Euler angles, see Eq. (3).
These can be expressed through the Wigner D-matrix tensor
operators D̂j

mk [31], which are defined as follows. Consider
the function D

j

mk(α,β,γ ) as the matrix element of the general
unitary rotation operator in quantum mechanics2

D
j

mk(α,β,γ ) ≡ 〈jk|eiγ Ĵz eiβĴy eiαĴz |jm〉, (25)

where eiγ Ĵz eiβĴy eiαĴz is the unitary representation of the Euler
angles rotation matrix according to the convention adopted
in Fig. 1. In Eq. (25), the angles α,β,γ are real parameters.
The Wigner D-matrix tensor operator is then defined by
D̂j

mk ≡ D
j

mk(α̂,β̂,γ̂ ), that is, by promoting the Euler angles
to operators. Hereafter, we call the D-matrix tensor operator
just D matrix. All the elements of the rotation matrix R(�̂) can
be written as linear combination of D̂j

mk . The rotation matrix
of Eq. (3) reads

R(�̂) = 1

2

⎛
⎜⎝

(
D̂1

11 + D̂1
−1−1 − D̂1

1−1 − D̂1
−11

) −i
(
D̂1

11 − D̂1
−1−1 + D̂1

−11 − D̂1
1−1

) √
2
(
D̂1

0−1 − D̂1
01

)
i
(
D̂1

11 − D̂1
−1−1 − D̂1

−11 + D̂1
1−1

) (
D̂1

11 + D̂1
−1−1 + D̂1

1−1 + D̂1
−11

) −i
√

2
(
D̂1

0−1 + D̂1
01

)
√

2
(
D̂1

−10 − D̂1
10

)
i
√

2
(
D̂1

10 + D̂1
−10

)
2D̂1

00

⎞
⎟⎠. (26)

This allows to write V̂D and V̂P in terms of D matrices, since
using Eq. (24) one has that⎛

⎜⎝
n3(r̂,�̂)

n↑(r̂,�̂)

n↓(r̂,�̂)

⎞
⎟⎠ = T (�̂)

⎛
⎜⎝

nz(r̂)

n+(r̂)

n−(r̂)

⎞
⎟⎠, (27)

where n±(r̂) ≡ nx(r̂) ± iny(r̂) and

T (�̂) ≡ 1√
2

⎛
⎜⎝

√
2D̂1

00 D̂1
−10 −D̂1

10

−2D̂1
01 −√

2D̂1
−11

√
2D̂1

11

2D̂1
0−1

√
2D̂1

−1−1 −√
2D̂1

1−1

⎞
⎟⎠. (28)

As shown in Appendix A, the D matrices transform the state
|JmJ kJ ,SkS〉2 in the following way:

D̂j

mk|JmJ kJ ,SkS〉2

=
J+j∑

J ′=|J−j |

√
2J + 1

2J ′ + 1
C

J ′m′
j

jm,JmJ
C

J ′k′
J

jk,J kJ
|J ′m′

J k′
J ,SkS〉2, (29)

2The ket |jm〉 is defined as Ĵ2|jm〉 = j (j + 1)|jm〉 and Ĵz|jm〉 =
m|jm〉, where Ĵ is here a generic angular momentum operator.

where m′
J = mJ + m and k′

J = kJ + k. For j �= 0, the D-
matrix operators couple subspaces of different J .

The Hamiltonian Ĥ ′, Eq. (19), which is derived from Ĥ ,
Eq. (8), without any approximation, can be expressed as a
function of the following operators: r̂, p̂, Ŝ3, Ŝ↑(↓), Ĵ2, Ĵ3,
Ĵz, Ĵ↑(↓), and products of D̂1

mk (for m,k = −1,0,1).3 That is,
it can be expressed without an explicit dependence on the
Euler angles. We remark that in such a transformed frame,
some of the mathematical operators appearing in Ĥ ′, Eq. (19),
have a different physical meaning that those appearing in Ĥ ,
Eq. (8). In particular note that (we define M̂ ′ ≡ Û †M̂Û for
any operator M̂),

r̂′ = r̂, (30)

p̂′ = p̂ + A(r̂,�̂), (31)

�̂′ = �̂, (32)

Ŝ ′
3 = −Ŝ3 + 2n3(r̂,�̂)[n(r̂,�̂) · Ŝ], (33)

3As shown in Appendix A, products of D matrices can always be
written as a linear combination of D matrices D̂j

mk with j � 1.
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Ĵ ′
3 = Ĵ3 + 2Ŝ3 − 2n3(r̂,�̂)[n(r̂,�̂) · Ŝ], (34)

Ŝ ′
b = Ŝ3, (35)

Ĵ ′
b = Ĵb + Ŝb − Ŝ3, (36)

where we define the operators Ĵb = B(r̂,�̂) · Ĵ/|B(r̂)| and
Ŝb = B(r̂,�̂) · Ŝ/|B(r̂)|, which represent the projection along
the local direction of the magnetic field. Note, for instance,
that the mathematical operator Ŝ3 in the transformed frame
has the physical meaning of the projection of the spin along
the local magnetic field, as expected. However, this is not the
case for Ĵ3.

In the following sections, some assumptions are considered
in the state of the nanomagnet to perform several approxima-
tion to the very rich, but complicated, Hamiltonian Ĥ ′ given
in Eq. (19).

IV. LAMB-DICKE APPROXIMATION

The first assumption is to consider that the state of the
nanomagnet is such that 〈Ŝ3〉 > 0. This implies that the term
γ �|B(r̂)|Ŝ3 in Ĥ0, see Eq. (20), can confine the nanomagnet
around r ≈ 0 for a magnetic field with a local minima of |B(r)|
at r = 0 [32]. This allows to expand the functions of r̂ in the
Hamiltonian (19) as a Taylor expansion. Note that only Ĥ0,
V̂D , and V̂P depend on r̂. The Lamb-Dicke approximation will
consist in only keeping the lower orders of such expansions.

In Ĥ0, this is done by expanding

|B(r̂)| � B0 +
∑

ν

B ′′
ν r̂2

ν

2
, (37)

where we have defined B0 ≡ |B(0)| and B ′′
ν ≡ (∂2

ν |B(r)|)r=0.
This expansion is valid provided∣∣∣∣

〈
r̂2
ν

〉
B ′′

ν

B0

∣∣∣∣ � 1 ∀ ν. (38)

In full generality the cross talking terms coupling different
spatial directions can be made zero by choosing the laboratory
frame axis where the symmetric matrix (∂ν∂μ|B(r)|)r=0 is
diagonal. Under the Lamb-Dicke approximation, the term Ĥ0

is approximated to

Ĥ0 ≈ p̂2

2M
+ Ŝ3

S

∑
ν

M

2
ω2

ν r̂
2
ν + �ωLŜ3 − �ωD

S
Ŝ2

3

+ �ωI

2S
(Ĵ2 + 2Ĵ3Ŝ3), (39)

where we have defined the following frequencies:

ων ≡
√

�γB ′′
ν

Ms

, (40)

ωI ≡ �S

I
, (41)

ωD ≡ �DS, (42)

ωL ≡ γB0, (43)

10 20 30 40 50104

105

106

107

108

R [nm]

ω
/
2π

[H
z]

ωD

ωI

ωT

ωL

FIG. 3. The frequencies ωL, ωI , ωD , and ωT are plotted as a
function of the radius R of the nanomagnet. We consider a Cobalt
nanomagnet of density ρCo = 8.9 × 103 Kg/m3, S/N = 1.7, and
Tb = �

2DS2/Kb = 30 K. The external Ioffe-Pritchard field is used
with B0 = 10−3 T, B ′ = 104 T/m, and B ′′ = 106 T/m2 [29,30].

with Ms ≡ M/S. Typical values and hierarchy of these
frequencies depend on the size of the particle and on the
external bias field B0, see Fig. 3. The center-of-mass position
operator can be expressed as

r̂ν = r0ν√
S

(b̂ν + b̂†ν), (44)

where r0ν = [�/(2Msων)]1/2 and [b̂ν,b̂
†
μ] = δνμ.

The r̂ dependence of the terms V̂D and V̂P arise from the
components of n(r̂). Under the Lamb-Dicke approximation
one can use the expansion

nμ(r̂) ≈ nμ(0) +
∑

ν

r0ν√
S

(
b̂ν + b̂†ν

)
∂νnμ

+ 1

2

∑
νλ

r0νr0λ

S

(
b̂†ν + b̂ν

)(
b̂
†
λ + b̂λ

)
∂ν∂λnμ, (45)

where we define ∂νnμ = ∂νnμ(r)|r=0 for shortness. Since the
vector n(r) defined in Sec. III depends on r only through
the magnetic field B(r), this expansion is justified when the
condition (38) is fulfilled. Recall that to obtain the Taylor
expansion for the components of n(r̂,�̂), it is sufficient to use
Eqs. (27) and (45). This allows to expand V̂D and V̂P in powers
of r̂, see Appendixes C and D.

V. HOLSTEIN-PRIMAKOFF APPROXIMATION:
BOSONIZATION

Our aim is to describe the nanomagnet in the following
regime:

〈r̂〉 ≈ 0, (46)

〈Ŝ3〉 � S, (47)

〈Ĵ2〉 ≈ 〈Ŝ2〉 = S(S + 1), (48)

〈Ĵ3〉 ≈ 〈Ĵz〉 � −J ≈ −S. (49)
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Recall that for a nanomagnet S � 1. We called this regime
highly polarized, which corresponds to the nanomagnet being
(1) highly confined in position, (2) with the macrospin highly
antialigned to the external magnetic field (recall that Ŝ = −F̂),
and (3) nearly not rotating, namely 〈L̂2〉 � 0. According to
Eq. (36), we can approximate Ĵ ′

b ≈ Ĵ3 when the nanomagnet
is nearly not spinning.

We apply a Holstein-Primakoff (HP) boson mapping [33] to
express the angular momentum operators and the D matrices as
a function of a set of bosonic operators. This mapping allows
us to express Ĥ ′, Eq. (19), in terms of bosonic operators.
The exact mapping yields nonlinear bosonic terms to keep
the angular momentum character of the original operators.
Nevertheless, by assuming the highly-polarized regime of the
nanomagnet, a quadratic Hamiltonian in bosonic operators can
be obtained under the so-called HP approximation.

A. Holstein-Primakoff boson mapping

The HP boson mapping for the spin angular momentum is
given by [33]

Ŝ3 = S − ŝ†ŝ, Ŝ↑ = Ŝ
†
↓ = (2S − ŝ†ŝ)1/2ŝ. (50)

We have introduced the spin bosonic operator [ŝ,ŝ†] = 1.
In the highly-polarized regime, one can perform the HP
approximation, namely,

Ŝ3 = S − ŝ†ŝ, Ŝ↑ = Ŝ
†
↓ ≈

√
2Sŝ. (51)

The boson mapping for the angular momentum operator
Ĵ and the D matrices has to be done more carefully since
J is not fixed, as discussed in Eq. (29). The HP map can
be generalized by promoting the quantum number J to the
operator Ĵ ≡ d̂†d̂/2 with [d̂,d̂†] = 1 [9]. The exact mapping
is given by

Ĵ3 = − d̂†d̂

2
+ k̂†k̂,

Ĵ↑ = Ĵ
†
↓ = k̂†

(
d̂†d̂

2
− k̂†k̂

)1/2

,

Ĵz = − d̂†d̂

2
+ m̂†m̂,

Ĵ+ = Ĵ
†
− = m̂†

(
d̂†d̂

2
− m̂†m̂

)1/2

,

Ĵ2 = d̂†d̂

2

(
d̂†d̂

2
+ 1

)
. (52)

We have introduced the angular momentum bosonic operators
[m̂,m̂†] = [k̂,k̂†] = 1. One can show that the mapping fulfills
the commutation rules given in Table I. Therefore the general
state |JmJ kJ ,SkS〉2 can be obtained, using the bosonic
mapping, from the vacuum of four bosonic modes, namely,

|JmJ kJ ,SkS〉2 = N (d̂†)2J (m̂†)J+mJ (k̂†)J+kJ (ŝ†)kS |0〉, (53)

where N = [(2J )!(J + mJ )!(J + kJ )!kS!]−1/2. In the highly
polarized regime of the nanomagnet, it is useful to define d̂ ≡√

2J + ĵ , where J � 1. In this case, the HP approximation

of Eq. (52) reads

Ĵ3 = −J −
√

2J

2
(ĵ † + ĵ ) − ĵ †ĵ

2
+ k̂†k̂,

Ĵ↑ = Ĵ
†
↓ ≈

√
2J k̂† + ĵ † + ĵ

2
k̂† + O

(
1√
J

)
,

Ĵz = −J −
√

2J

2
(ĵ † + ĵ ) − ĵ †ĵ

2
+ m̂†m̂,

Ĵ+ = Ĵ
†
− ≈

√
2J m̂† + ĵ † + ĵ

2
m̂† + O

(
1√
J

)
, (54)

and for the total angular momentum Ĵ2 is

Ĵ2 = J (J + 1) + J
√

2J (ĵ † + ĵ )

+ J

[
(ĵ + ĵ †)2

2
+ ĵ †ĵ

]

+
√

2J

2
[{ĵ † + ĵ ,ĵ †ĵ} + (ĵ † + ĵ )]

+ ĵ †ĵ

2

(
ĵ †ĵ

2
+ 1

)
. (55)

Let us now address the boson mapping of the D matri-
ces [34]. This can be done using Eqs. (29) and (53). Knowing
how the single creation and annihilation bosonic operators act
on |JmJ kJ ,SkS〉2, we can derive an expression of D̂q

mk in terms
of {ĵ ,ĵ †,m̂,m̂†,k̂,k̂†}, such that when applied to |JmJ kJ ,SkS〉2

using the mapping (53) gives exactly the right-hand side of
Eq. (29). While this can be done exact, in Table II, we provide
the mapping, using the HP approximation up to order O(1/J ),
for the D̂q

mk appearing in the Hamiltonian.

VI. QUADRATIC BOSONIZED HAMILTONIAN

At this stage, one can use the Lamb-Dicke approximation
and the HP mapping of the angular momentum operators and
the D matrices to write the Hamiltonian Ĥ ′, Eq. (19), as a func-
tion of the bosonic modes of the system: {b̂x,b̂y,b̂z,ĵ ,ŝ,k̂,m̂}.
In principle, this Hamiltonian can be divided into two parts:

Ĥ ′ = ĤG + ĤNG. (56)

ĤG collects terms containing up to two bosonic operators
(quadratic form), which lead to Gaussian physics. ĤNG

contains normally ordered terms with more than two bosonic
operators. Let us first obtain ĤG and then discuss when ĤNG

can be neglected.

A. Quadratic terms

In order to obtain ĤG, one substitutes Eqs. (51), (54), (55),
and Table II into the Hamiltonian (19) after doing the Lamb-
Dicke approximation. After normal ordering the bosonic
operators, one obtains the quadratic Hamiltonian of the system.
The quadratic terms arising from Ĥ0, Eq. (39), and ĤI ,
Eq. (21), are straightforward to obtain. The bosonization of
the terms V̂D , Eq. (22), and V̂P , Eq. (23), is more involved, see
details in Appendixes C and D.

In deriving the quadratic Hamiltonian, we assume the Ioffe-
Pritchard configuration for the external magnetic field. This
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TABLE II. Bosonized expression, up to order O(1/J ), for the relevant D̂j

mk appearing in the Hamiltonian.

j = 1:

D̂1
00 = 1 − 1

J
[1 + k̂†k̂ + m̂†m̂ − k̂†m̂† − k̂m̂] + O

(
1

J
√

J

)
D̂1

01 = −[
D̂1

0−1

]† = 1√
J

(k̂† − m̂) − 1
2
√

2
1
J

[(ĵ † + ĵ )k̂† + (ĵ − 3ĵ †)m̂] + O
(

1
J
√

J

)
D̂1

10 = −[
D̂1

−10

]† = 1√
J

(m̂† − k̂) − 1
2
√

2
1
J

[(ĵ † + ĵ )m̂† + (ĵ − 3ĵ †)k̂] + O
(

1
J
√

J

)
D̂1

11 = [
D̂1

−1−1

]† = 1 − ĵ†−ĵ√
2J

− 1
2J

[
2(ĵ †ĵ + 1) + k̂†k̂ + m̂†m̂ − 2m̂†k̂† + ĵ 2 − 3

4 (ĵ † + ĵ )2 − 1
4 (ĵ † − ĵ )2

] + O
(

1
J
√

J

)
D̂1

1−1 = [
D̂1

−11

]† = 1
2J

(k̂2 − 2m̂†k̂ + (m̂†)2) + O
(

1
J
√

J

)
j = 2:

D̂2
00 = 1 − 3

J
[1 + k̂†k̂ + m̂†m̂ − k̂†m̂† − k̂m̂] + O

(
1

J
√

J

)
D̂2

01 = −[
D̂2

0−1

]† =
√

3
J

(k̂† − m̂) −
√

3
2
√

2
1
J

[(ĵ † + ĵ )k̂† + (ĵ − 3ĵ †)m̂] + O
(

1
J
√

J

)
D̂2

10 = −[
D̂2

−10

]† =
√

3
J

(m̂† − k̂) −
√

3
2
√

2
1
J

[(ĵ † + ĵ )m̂† + (ĵ − 3ĵ †)k̂] + O
(

1
J
√

J

)
j = 4:

D̂4
00 = 1 − 10

J
[1 + k̂†k̂ + m̂†m̂ − k̂†m̂† − k̂m̂] + O

(
1

J
√

J

)
D̂4

01 = −[
D̂4

0−1

]† =
√

10
J

(k̂† − m̂) −
√

10
2
√

2
1
J

[(ĵ † + ĵ )k̂† + (ĵ − 3ĵ †)m̂] + O
(

1
J
√

J

)
D̂4

10 = −[
D̂4

−10

]† =
√

10
J

(m̂† − k̂) −
√

10
2
√

2
1
J

[(ĵ † + ĵ )m̂† + (ĵ − 3ĵ †)k̂] + O
(

1
J
√

J

)

magnetic field is characterized by three parameters: the bias
field B0, the field gradient along z, B ′, and the field curvature
along z, B ′′, see Appendix B for details. With this field one
has that ωx = ωy ≡ ωT , and the first-order terms in the Lamb-
Dicke expansion of n(r̂,�̂) can be characterized by a single
expansion parameter η = r0B

′/(2B0), where r0 ≡ r0x = r0y .
After some effort, one obtains the following quadratic

Hamiltonian:

ĤG = Ĥ0 + V̂s + V̂b, (57)

where (1) Ĥ0 is given by

Ĥ0

�
= ωrb̂

†
r b̂r + ωlb̂

†
l b̂l + ωzb̂

†
zb̂z − �ŝ†ŝ

+ωj ĵ
†ĵ + ξ1(ĵ † + ĵ ) + ξ2(ĵ † + ĵ )2

+ωmm̂†m̂ + ωkk̂
†k̂ − ωm(m̂†k̂† + m̂k̂). (58)

The frequencies are given in Table III. We define the modes
b̂r(l) = (b̂x ∓ ib̂y)/

√
2 describing a counter clock wise (clock

wise) circular motion of the center of mass. Note that � can be
controlled via the strength of B0 and can, in principle, be either
positive or negative (see Fig. 3). As seen below, the mode ĵ is
decoupled from the other modes in the quadratic Hamiltonian.

(2) V̂s is given by

V̂s

�
= gk(ŝ†k̂† + ŝk̂) − gm(ŝ†m̂ + ŝm̂†). (59)

This term describes the coupling between the spin degree
of freedom and the total angular momentum. The coupling
strengths are given in Table III. In essence, this term describes
the Einstein-de Haas effect.

(3) V̂b is given by

V̂b

�
= glb̂l(m̂

† − k̂) + gr b̂
†
r (m̂† − k̂)

− gs ŝ
†(b̂†r − b̂l) + H.c. (60)

This term describes the coupling between the center-of-mass
motion and the angular momenta. The coupling strengths are
given in Table III. Note that the coupling is induced due to the

TABLE III. Definition of the frequencies appearing in Eqs. (58)–
(60) in terms of the fundamental frequencies of the system, ωI ,ωL,ωD ,
and ων . In the expression below, we neglected terms smaller than
O(ωη), where ω = ωI ,ωL,ωD , or ων .

ωr b̂
†
r b̂r ωr ≡ ωT

ωlb̂
†
l b̂l ωl ≡ ωT

−�ŝ†ŝ � ≡ ωL − 2ωD − ωI
J

S

ωkk̂
†k̂ ωk ≡ ωI + 8ωD

S

J

ωmm̂†m̂ ωm ≡ 8ωD
S

J

ωj ĵ
†ĵ ωj = ωI

2

(
J

S
− 1

)
ξ1(ĵ † + ĵ ) ξ1 =

√
2J

2 ωI

(
J

S
− 1

)
ξ2(ĵ † + ĵ )2 ξ2 = ωI

4
J

S

gkŝk̂ gk ≡ ωI

√
J

S
+ 4ωD

√
S

J

gmŝm̂† gm ≡ 4ωD

√
S

J

gr b̂
†
r (m̂† − k̂) gr ≡ η(8ωD + 2ωT )

√
S

J

gl b̂l(m̂† − k̂) gl ≡ η(8ωD − 2ωT )
√

S

J

gs ŝ
†(b̂†

r − b̂l) gs ≡ 2ωT η
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nonzero magnetic field gradient since gr = gl = gs = 0 for
B ′ = 0.

The derivation of the quadratic Hamiltonian ĤG is the
main result of this article. The nonquadratic contributions
given by ĤNG can be typically neglected, see below. ĤG

describes the quantum dynamics of the nanomagnet in the
magnetic trap provided it is in the highly-polarized regime
defined by Eqs. (46)–(49). Under which physical parameters
the highly-polarized regime is stable, the rich physics and
wealth of applications that ĤG can describe, and how to
implement it in an experimentally feasible scenario, are very
interesting questions that lie beyond the scope of this paper
and will be addressed elsewhere [24].

B. Nonquadratic terms: when can they be neglected?

The nonquadratic Hamiltonian ĤNG collects the terms
with more than two normally ordered bosonic operators
{b̂x,b̂y,b̂z,ĵ ,ŝ,k̂,m̂}. In the highly-polarized regime, Eqs. (46)–
(49) J ≈ S � 1, one can realize that terms with an additional
bosonic operator are a factor 1/

√
S smaller. All the energy

terms that appear in the Hamiltonian Ĥ ′ = ĤG + ĤNG can be
expressed in terms of the frequencies ωT , ωz, ωD , ωI , and ωL.
Establishing a hierarchy between these frequencies is needed
to understand when the nonlinear terms can be neglected.
The strength of these frequencies depends on the size of the
nanomagnet and on the external magnetic field. As shown in
Fig. 3, different regimes can be achieved but we consider the
following one:

ωL � ωI � ωD ∼ ωT ,ωz. (61)

In order to neglect the nonquadratic contribution in the
bosonized Hamiltonian, one needs to compare the order of the
strongest of the nonquadratic terms in ĤNG with the weakest
contribution kept in ĤG taking into account Eq. (61). The
smallest terms in ĤG are of the order O(ωT η) and O(ωDη).
The strongest nonlinear term contribution comes from the
bosonization of ĤI and reads

V̂jkm = �ωI

2
√

2S
(ĵ † + ĵ )(k̂†ŝ† + k̂ŝ) ∼ O

(
ωI√
S

)
. (62)

Therefore ĤNG can be neglected provided

η � min

{
ωI

ωD

√
S

,
ωI

ωT

√
S

}
, (63)

which can be easily satisfied under typical experimentally
feasible parameters [24].

VII. CONCLUSION AND OUTLOOK

In conclusion, we have shown how to describe the quantum
dynamics of a nanomagnet with uniaxial anisotropy in a
magnetic trap. Starting from the basic Hamiltonian under the
macroscopin approximation, we have performed (1) a change
of variables to describe the dynamics in the body frame, (2)
a unitary transformation to diagonalize the magnetic dipole
coupling, (3) the Lamb-Dicke expansion around the trapping
position of the nanomagnet, (4) a bosonic mapping of the
angular momentum operators, and (5) the Holstein-Primakoff

expansion when the macrospin is well antialigned and the
nanomagnet is nearly nonrotating (highly polarized regime).

This allows to derive a quadratic Hamiltonian depending
on the bosonic operators that describes both the Einstein-de
Haas coupling between the macrospin and the rotational
angular momentum, and the magnetic-trap-induced-coupling
between the center-of-mass motion and the rotational angular
momentum. The nonquadratic terms can be neglected in the
highly-polarized regime with typical experimental parameters.

The derivation of the Hamiltonian can be straightforwardly
extended to cover more general situations. For instance, one
could consider ellipsoidal objects instead of spherical and other
forms of magnetic anisotropy (e.g., cubic anisotropy). This
would change the rotational kinetic term and the magnetic
anisotropy term, respectively, in the very initial Hamiltonian
but the derivation to obtain the quadratic Hamiltonian would
be analogous. Should one also be interested in describing
the magnetic coupling of the nanomagnet with the quantum
electromagnetic field, one could just add the quantized
magnetic field operator to the magnetic dipole interaction
term in the very initial Hamiltonian. This could be used to
calculate vacuum forces and decay rates of the eigenstates
of the Hamiltonian. Also note that the derivation of the
quadratic Hamiltonian is constructive in the sense that one
could consider next orders in both the Lamb-Dicke and the
Holstein-Primakoff expansions to obtain the higher order
nonquadratic contributions.

The unitary transformation in Sec. III is motivated by
the goal of making the magnetic trapping potential appear
explicitly in the Hamiltonian of the system. However, this
transformation is not necessary to describe the dynamics of
the quantum fluctuations around a stable state of the system.
One could carry out the bosonization of the fluctuations in
the Hamiltonian Eq. (8), before applying the unitary transfor-
mation. While this is mathematically equivalent, one should
nevertheless be careful when performing the approximations
after bosonizing since the physical meaning of the fluctuations,
should one bosonize the same mathematical operators, would
be different in the two cases. Recall the remark made in the
end of Sec. III.

The derived quadratic Hamiltonian can be handled with
the usual techniques of quantum optics and describes a very
rich and original physical system. This opens many further
directions that we are currently investigating [24]. Some of
them are the following: (i) an experimental proposal where
nanomagnets can be levitated in a Z-shaped atom chip and
brought to the quantum regime by inductively coupling its
motion to a flux-dependent quantum circuit. This coupling
can be used to cool the center-of-mass motion to the ground
state as well as to sympathetically cool the rotational angular
momentum and the macroscopin degrees of freedom. (ii) The
proposal and study of magnetically levitating the nanomagnet
using the Meissner field induced on a superconductive film
with a hole [35]. This permanent passive short-distance
trap could be used to measure Casimir and short-distance
gravitational forces; (iii) once in the quantum regime, exploit
the nanomagnet as a nanogyroscope. (iv) Perform matter-
wave interferometry by releasing the ground-state cooled
nanomagnet from the trap. (v) Explore the regimes where
the non-Gaussian physics given by the nonquadratic terms is
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relevant, for instance, in the context of superradiance effects,
etc.
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APPENDIX A: PROPERTIES OF THE WIGNER D-MATRIX
TENSOR OPERATOR

In this Appendix, we list some useful properties of the
D-matrix tensor operator. We will not prove them. The
interested reader is referred to [22,23] for more details.
These are the following. (1) The matrix elements of D̂q

mk

between the eigenstates |LmLkL〉 of the operators L̂2,L̂z, and
L̂3 read

〈L′m′
Lk′

L|D̂q

mk|LmLkL〉 = 8π2

2L′ + 1
C

L′m′
L

qm,LmL
C

L′k′
L

qk,LkL
. (A1)

(2) The matrix elements of D̂q

mk on the basis |JmJ kJ ,SkS〉2

read

2〈J ′m′
J k′

J ,S ′k′
S |D̂q

mk|JmJ kJ ,SkS〉2

= δSS ′δkSk′
S

√
2J + 1

2J ′ + 1
C

J ′m′
J

qm,JmJ
C

J ′k′
J

qk,J kJ
(A2)

This result can be proved by changing the basis to
|LmLkL,SkS〉1 through Eqs. (15) and (16) and then applying
Eq. (A1).

(3) The product of two D-matrix operators reads

D̂q1
m1k1

D̂q2
m2k2

=
q1+q2∑

Q=|q1−q2|

Q∑
M,K=−Q

CQM
q1m1,q2m2

C
QK
q1k1,q2k2

D̂Q
MK.

(A3)

(4) The D-matrix operators fulfill the following commuta-
tion relations with the total angular momentum of the system
Ĵ: [

Ĵz,D̂q

mk

] = mD̂q

mk,[
Ĵ±,D̂q

mk

] =
√

(q ∓ m)(q ± m + 1)D̂q

m±1k,[
Ĵ3,D̂q

mk

] = kD̂q

mk,[
Ĵ↑,D̂q

mk

] =
√

(q − k)(q + k + 1)D̂q

mk+1,[
Ĵ↓,D̂q

mk

] =
√

(q + k)(q − k + 1)D̂q

mk−1.

(A4)

The strategy to prove these relations is via the properties of
the function D

j

mk(α,β,γ ), defined in Eq. (25). It can be shown
that D

j

mk(α,β,γ ) ∼ 〈α,β,γ |L,mL,kL〉. These eigenfuntions
satisfy the following normalization condition:∫ 2π

0
dα

∫ π

0
dβ sin β

∫ 2π

0
dγ

(
D

q1
m1k1

(α,β,γ )
)∗

D
q2
m2k2

(α,β,γ )

= 8π2

2q1 + 1
δq2,q1δm2m1δk1k2 . (A5)

Moreover, it can be shown that the product of two such
eigenfunction can be written as a linear combination of single
eigenfuctions with different indexes according to the following
relation:

D
q1
m1k1

(�)Dq2
m2k2

(�)

=
q1+q2∑

Q=|q1−q2|

Q∑
M,K=−Q

CQM
q1m1,q2m2

C
QK
q1k1,q2k2

D
Q
MK (�). (A6)

Combining the results in Eqs. (A5) and (A6), one can prove
the following identity involving the angular integral of three
eigenfunction:

∫ 2π

0
dα

∫ π

0
dβ sin β

∫ 2π

0
dγ

[
DL′

M ′K ′ (�)
]∗

D
q

mk(�)DL
MK (�)

= 8π2

2L′ + 1
CL′M ′

qm,LMCL′K ′
qk,LK. (A7)

The integral in Eq. (A7) can be used to obtain Eq. (A2). See
Refs. [22,23] for further details.

APPENDIX B: IOFFE-PRITCHARD MAGNETIC TRAP

Among the many different field configurations realizable
in the magnetic traps, the Ioffe-Pritchard configuration is one
of the most common. The shape of this magnetic field close to
the vertical axis z reads [36]

B(r) = ex

(
B ′x − B ′′

2
xz

)
− ey

(
B ′y + B ′′

2
zy

)

+ ez

[
B0 + B ′′

2

(
z2 − x2 + y2

2

)]
, (B1)

where B0 = |B(0)|, B ′ ≡ ∂zBz(r)|r=0, and B ′′ ≡ ∂2
z Bz(r)|r=0.

When the particle is confined at the center of the trap,
namely,

√
〈ẑ2〉 �

√
B0

B ′′ , (B2)

√
〈x̂2〉 ≈

√
〈ŷ2〉 �

√
B2

0

B ′2 − B0B ′′ ∼ B0

B ′ , (B3)

one can approximate

|B(r)| � B0 + B ′′

2
z2 + B ′2 − B0B

′′/2

2B0
(x2 + y2). (B4)

By substituting this expansion into the Hamiltonian Ĥ0 in
Eq. (20), one obtains a three-dimensional Harmonic potential
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with trapping frequencies

ωx = ωy = ωT ≡
√

�γ

MsB0

(
B ′2 − 1

2
B0B ′′

)
,

ωz =
√

�γB ′′

Ms

.

(B5)

We define r0 ≡ r0x = r0y . It is useful to introduce the following
Lamb-Dicke parameters that characterize the confinement of
the particle in the Ioffe-Pritchard magnetic trap:

η = B ′r0

2B0
, (B6)

η′ = B ′′r2
0

4B0
. (B7)

Typically η′ � η � 1. With such magnetic field, the Taylor
expansion of n(r̂,�̂) can be obtained by realizing that

nz(r = 0) = 1,

∂xn+|r=0 = ∂xn−|r=0 = B ′

2B0
,

∂yn+|r=0 = −∂yn−|r=0 = −i
B ′

2B0
,

∂2
xnz

∣∣
r=0 = ∂2

ynz

∣∣
r=0 = −

(
B ′

2B0

)2

,

∂xzn+|r=0 = ∂xzn−|r=0 = − B ′′

4B0
,

∂yzn+|r=0 = −∂yzn−|r=0 = −i
B ′′

4B0
. (B8)

The other components not shown are identically zero. To
calculate the operators n3(r̂,�̂), n↑(r̂,�̂), n↓(r̂,�̂), and their
derivatives, we just need to substitute the results of Eq. (B8)
into Eq. (27). The terms to zero order in Lamb-Dicke, n3(�̂) =
n3(0,�̂), n↑(�̂) = n↑(0,�̂) and n↓(�̂) = n↓(0,�̂), read

n3(�̂) = D̂1
00,

n↑(�̂) = −
√

2D̂1
01,

n↓(�̂) = (n↑(�̂))†.

(B9)

The first derivative of the components of n(r̂,�̂) evaluated in
r = 0, i.e., the operators ∂νn3(�̂) = ∂νn3(r̂,�̂)|r=0,∂νn↑(�̂) =
∂νn↑(r̂,�̂)|r=0, and ∂νn↓(�̂) = ∂νn↓(r̂,�̂)|r=0, read

∂xn3(�̂) = − B ′

2
√

2B0

(
D̂1

10 − D̂1
−10

)
,

∂xn↑(�̂) = − B ′

2B0

(
D̂1

−11 − D̂1
11

)
,

∂xn↓(�̂) = − B ′

2B0

(
D̂1

1−1 − D̂1
−1−1

)
,

(B10)

for ν = x, and

∂yn3(�̂) = −i
B ′

2
√

2B0

(
D̂1

10 − D̂1
−10

)
,

∂yn↑(�̂) = i
B ′

2B0

(
D̂1

−11 − D̂1
11

)
,

∂yn↓(�̂) = i
B ′

2B0

(
D̂1

1−1 − D̂1
−1−1

)
,

(B11)

for ν = y. The operators for ν = z are zero due to the axial
symmetry of the magnetic field. The second derivatives of the
components of n(r̂,�̂) are obtained from Eq. (B8) as follows:⎛

⎜⎝
∂νμn3(�̂)

∂νμn↑(�̂)

∂νμn↓(�̂)

⎞
⎟⎠ = T (�̂)

⎛
⎜⎝

∂νμnz

∂νμn+
∂νμn−

⎞
⎟⎠, (B12)

where all the derivatives are evaluated in r = 0.

APPENDIX C: BOSONIZATION OF V̂D

This section provides more details on the bosonization
of V̂D = V̂ G

D + V̂ NG
D into quadratic and nonqudratic terms

assuming a the Ioffe-Pritchards field Eq. (B1).
To obtain V̂ G

D , the procedure is the following. (1) Apply
the Lamb-Dicke expansion on the components of n(r̂,�̂) up to
second order in r̂. (2) Substitute it into Eq. (22) and expand the
square keeping only terms up to second order in r̂. After this
procedure, the anisotropy energy reads V̂D = V̂D0 + V̂D1 +
V̂D2, where V̂Di contains terms of order i in r̂. (3) Substitute the
bosonic expressions for the spin angular momentum operators,
Eq. (51), and for the D matrix, Table II. (4) Rearrange the
operators in normal order and keep the terms that contain only
up to a product of two bosons.

Following this procedure one can derive all the quadratic
terms that appear in V̂ G

D = V̂ G
D0 + V̂ G

D1 + V̂ G
D2. Note that some

of this quadratic terms appear from the normal ordering of
nonlinear terms, and will thus lead to subleading contribution.
Here, we report only the quadratic terms up to order O(�ωDη).
(1) V̂ G

D0 collects the zero-order terms in the Lamb-Dicke
expansion of n(r̂,�̂). Its does not contain the center-of-mass
bosons, and couples only the spin with the total angular
momentum. It reads

V̂ G
D0 = 32�ωD

S

J
ĵ †ĵ − 56

5

S

J
�ωD(ĵ † + ĵ )2

+ 8�ωD

S

J
(k̂†k̂ + m̂†m̂ − k̂†m̂† − k̂m̂)

+ 4�ωD

√
S

J
[ŝ†(k̂† − m̂) + H.c.] + O

(
�ωD

J

)
. (C1)

(2) V̂ G
D1 collects the first-order Lamb-Dicke expansion and

couples the center of mass motion with the total angular
momentum Ĵ. It reads

V̂ G
D1 = 8�ωDη

√
S

J
[(b̂†r + b̂l)(m̂

† − k̂) + H.c.] + O

(
�ωD√

SJ
η

)
.

(C2)
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(3) V̂ G
D2 collects the second-order expansion in Lamb-

Dicke. It is a quadratic term in only the center-of-mass bosons
but it is subleading, since V̂ G

D2 � O(�ωT η2).
The procedure to collect the nonlinear contributions is

analogous, but the expansions in steps 2 and 3 are carried up
to the order of interest. Following this approach, the strongest
nonlinear term in V̂ NG

D is a three-boson term that scales as
O(�ωDη′/

√
J ).

APPENDIX D: BOSONIZATION OF V̂P

This section provides more details on the bosonization of
V̂P = V̂P 1 + V̂P 2 in Eq. (23), assuming the Ioffe-Pritchard
field, where

V̂P 1 = A(r̂,�̂) · p̂ + p̂ · A(r̂,�̂)

2M
, (D1)

is the linear term in A(r̂,�̂) and

V̂P 2 = A2(r̂,�̂)

2M
, (D2)

is the quadratic term in A(r̂,�̂). Recall that

Aν(r̂,�̂) = −2�[n(r̂,�̂) × ∂νn(r̂,�̂)] · Ŝ. (D3)

We find the contribution to the final bosonic Hamiltonian ĤG

and estimate the strongest nonlinear term in ĤNG.
The procedure to obtain the quadratic terms V̂ G

P = V̂ G
P 1 +

V̂ G
P 2 is the following. (1) Apply the Lamb-Dicke expansion up

to second order in r̂:

Aν(r̂,�̂) � Aν +
∑

μ

∂μAνr̂μ + 1

2

∑
μλ

∂μλAνr̂μr̂λ + O(r3),

(D4)

where

Aν = −2�(n × ∂νn) · Ŝ

∂μAν = −2�[(n × ∂νμn), + (∂μn × ∂νn)] · Ŝ,

∂μλAν = −�[(n × ∂νμλn) + 2(∂μn × ∂νλn)

+ (∂μλn × ∂νn)] · Ŝ. (D5)

We define n ≡ n(0,�̂), ∂νn ≡ ∂νn(r,�̂)|r=0, ∂νμn ≡
∂νμn(r,�̂)|r=0, ∂νμλn ≡ ∂νμλn(r,�̂)|r=0, and rμ = x,y,z

when μ = x,y,z respectively. (2) Substitute Eq. (D4) into
Eqs. (D1) and (D2) keeping only terms up to second order
in r̂. (3) Use Eqs. (B9)–(B12) to express n,∂νn,∂νμn, and
∂νμλn in terms of D matrices, the components of n(r̂), and
its derivatives, Eq. (B8). (4) Take the expression for V̂P 1 and
V̂P 2 obtained in the preceding step and substitute the bosonic
expression for the angular momentum Ŝ, Eq. (51), and for the
D matrix, Table II. (5) Rearrange the bosonic operators in
normal order and keep only terms that contain a product of up
to two bosonic operators.

The procedure allows to exactly calculate all the quadratic
terms appearing in V̂ G

P = V̂ G
P 1 + V̂ G

P 2. Here, we will report
terms up to O(�ωT η). The linear terms in V̂ G

P read

V̂ G
P 1 = 2�ωT η

√
S
J

[(m̂† − k̂)(b̂†r − b̂l) + H.c.] + O(�ωT η2).

(D6)

The contribution from the quadratic term in A(r̂,�̂) is of order
V̂ G

P 2 � O(�ωT η2), and therefore can be neglected.
To evaluate the nonlinear terms, one proceeds as for

the case of the quadratic terms, however, steps 1–3 must
be done keeping all the bosonic terms up to the order of
interest. Following this approach, one finds that the strongest
nonlinear term in V̂ NG

P is a three-bosons term that scales as
O(�ωT η′/

√
J ).
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