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Diffusive magnonic spin transport in antiferromagnetic insulators
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It has been shown recently that a layer of the antiferromagnetic insulator (AFI) NiO can be used to transport
spin current between a ferromagnet (FM) and a nonmagnetic metal (NM). In the experiments one uses the
microwave-driven ferromagnetic resonance in a FM layer to produce a spin pumped spin current that flows
through an AFI layer and reaches a NM layer where it is converted into a charge current by means of the inverse
spin Hall effect. Here we present a theory for the spin transport in an AFI that relies on the spin current carried
by the diffusion of thermal antiferromagnetic magnons. The theory explains quite well the measured dependence
of the voltage in the NM layer on the thickness of the NiO layer.
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I. INTRODUCTION

The continuing discovery of new processes and materials
to generate, transport, and detect spin currents has been
driving the field of spintronics to possibilities not imaginable
one decade ago [1,2]. Nowadays spin currents are routinely
generated by means of the spin Hall effect (SHE) [3–6],
ferromagnetic resonance (FMR) driven spin pumping [7–10],
and spin Seebeck effect (SSE) [11–16]. Detection of spin
currents is usually done through their conversion into charge
currents by means of the inverse spin Hall effect (ISHE)
[3,5,6,10] or the inverse Rashba-Edelstein effect (IRRE)
[17–20], and also by the spin-transfer torque exerted on the
magnetization of attached magnetic layers [21,22].

Spin current phenomena were initially studied with non-
magnetic metals (NMs), in which a pure spin current consists
of electrons with opposite spins moving in opposite directions
[1,2,23]. Nonmagnetic metals with large spin-orbit interaction,
such as Pt, were then widely used to generate and detect spin
currents by the ISHE and SHE, and also to transport spin
information [1,2,5,6]. It was early recognized that the transport
mechanism is the diffusion of spin accumulation generated by
some process, such as spin pumping at the interface with a
ferromagnet under FMR [5–8]. Later it was discovered that
spin currents could also flow in the insulating ferrimagnet
yttrium iron garnet (YIG) with the advantage of not having
Joule losses [24]. This gave rise to the areas of magnon spin-
tronics and insulator spintronics, in which the carriers of spin
information are magnons, the quanta of spin waves [25,26].

Antiferromagnetic (AF) materials, on the other hand,
have had a minor role in spintronics. They are essential
in the most important spintronic device, namely spin-valve
reading heads employed in all hard-disk drives. But they
only have a passive role of pinning the magnetization of the
reference magnetic layer by means of the interfacial exchange
bias [27–29]. However, it has been predicted that, due to
some unique dynamic features, AF materials might have
applications in novel devices [30]. In fact, recent discoveries
of SHE [31,32], SSE [33,34], and spin transport [35–38] in
antiferromagnets have largely increased the possibilities of
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using AF materials for signal processing making possible the
field of antiferromagnetic spintronics [39–45].

Spin transport in antiferromagnetic insulators (AFIs) has
been largely overlooked, probably because these materials
have vanishing net magnetization. However, recently three
groups independently demonstrated unequivocally [35–38]
that a spin current can flow through NiO, a room-temperature
AFI widely used for exchange biasing in spin valves. Two
experiments were done with similar YIG/NiO/Pt trilayer
structures where a spin current was generated by spin pumping
through microwave-driven FMR in the YIG layer. The pumped
spin current flows through the NiO layer and reaches the Pt
layer where it is converted into a charge current by the ISHE.
Recently two theoretical models have been proposed for the
spin transport in FM/AFI/NM trilayers [46,47]. Both are based
on the coherent magnetization dynamics in antiferromagnets
but none of them explain quantitatively the experimental
results in YIG/NiO/Pt trilayers [35–37]. In this paper we
present a theory for the spin transport in AFI based on
the diffusion of thermal antiferromagnetic magnons. The
theory explains the distinctive initial increase and the peak
in the voltage with increasing AFI thickness followed by
an exponential decay. The model is applied to YIG/NiO/Pt
structures and is shown to be in good quantitative agreement
with the experimental data of Refs. [35–37].

II. DIFFUSIVE MAGNONIC SPIN TRANSPORT

We consider the FM/AFI/NM trilayer structure illustrated
in Fig. 1, which corresponds to the configuration used in the
experiments of Refs. [35–37], to demonstrate spin transport
through antiferromagnetic insulators. The precessing spins in
the FM layer, undergoing microwave-driven FMR, generate
a spin current at the FM/AFI interface by the spin pumping
process. The spin pumping into the AFI is made possible by
the interface exchange interaction between the spins in the
FM and in the AFI. The pumped spin current is carried by
magnons in the AFI and flows into the NM layer, where it is
converted into a charge current by the ISHE making possible
the electric detection. In this section we discuss the process
by which the spin current is transported in the AFI while
the boundary-value problem in the trilayer is presented in
Sec. III. As we remarked in the Introduction, it has been
proposed that the spin transport in the AFI takes place by means
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FIG. 1. Illustration of the ferromagnet (FM)/antiferromagnetic
insulator (AFI)/nonmagnetic metal (NM) trilayer structure employed
to investigate the spin transport in the AFI, showing the coordinate
axes, the AF magnon spin current produced by the spin pumping in
the FM/AFI interface, the spin current in the NM layer, and the charge
current generated by the ISHE.

of coherent magnetization dynamics [46,47]. Alternatively,
we consider here that the mechanism of spin current is the
diffusion of incoherent thermal magnons due to the gradient
in the concentration of the magnon accumulation produced by
the spin pumping in the FM/AFI interface. This mechanism is
similar to the diffusion of spin accumulation that occurs in a
NM layer under spin pumping in a FM/NM interface [7,8].

We consider a two-sublattice antiferromagnet with quan-
tized spin-wave excitations represented by the Hamiltonian

Η =
∑

k

�(ωαkα
†
kαk + ωβkβ

†
kβk), (1)

where α
†
k , αk and β

†
k , βk are the creation, annihilation operators

of the two normal magnon modes α and β with wave number
k and frequencies ωαk and ωβk . In Eq. (1) α

†
kαk and β

†
kβk

represent the number operators of magnons of each mode. In
easy-axis antiferromagnets, such as MnF2, FeF2, and Cr2O3, in
equilibrium the spins of the two sublattices point in opposite
directions along the easy axis. Each magnon mode involves
excitations of both sublattice spins and in the absence of
an applied magnetic field the two frequencies are the same
[48,49]. By applying a field in the easy-axis direction the
frequency of one mode increases linearly with the field
intensity while the other decreases. If the field exceeds a
critical value the frequency of the downgoing mode becomes
negative and there is a transition to the spin-flop phase,
with the spin vectors pointing nearly in opposite directions
and approximately perpendicular to the field. In hard-axis
antiferromagnets, such as MnO and NiO, in equilibrium the
spins of the two sublattices lie in opposite directions in the
plane perpendicular to the axis and point along the in-plane
easy-axis anisotropy. In this case also the two magnon modes
involve excitations of both spins but even in the absence of an
external field the two frequencies are different, as shown in
Appendix A. In both cases the frequencies of the two magnon
modes are minimum at the center of the Brillouin zone,
k = 0, and increase as k increases, reaching the maximum
values at the Brillouin zone boundary. The calculation of the
magnon frequencies for MnF2 and FeF2 is in Ref. [49] and
for the room-temperature antiferromagnet NiO is presented in
Appendix A.

As shown in Appendix B, in both types of antiferromagnets
considered here the spin current is carried by the two magnon
modes and the z-polarized spin current density operator can
be written as

�J z
S = �

V

∑
k

[−�vαkα
†
kαk + �vβkβ

†
kβk], (2)

where �vμk = k̂∂ωμk/∂k is the group velocity of mode μ and
V is the volume of the AFI layer. The spin currents carried by
two magnon modes have opposite directions, so that if they
have the same group velocity and the same magnon number,
the net spin current vanishes in antiferromagnets [49,50]. This
is the case of MnF2, FeF2, and Cr2O with no external magnetic
field. On the other hand, in NiO the two magnon modes have
different frequencies near the Brillouin zone center so that the
net spin current can be nonzero in the absence of external field.

Following the work of Zhang and Zhang [51,52] for
ferromagnetic insulators, we introduce here the concept of
magnon accumulation in an AFI and show that a gradient in its
concentration produces magnon diffusion with an associated
spin current. Denote by nμk(�r) the number of magnons in the
μ = α,β mode with wave number k at a position �r in the AFI
layer, n0

μk the number in thermal equilibrium, given by the
Bose-Einstein distribution,

n0
μk = 1

e�ωμk/kBT − 1
, (3)

and δnμk(�r) = nμk(�r) − n0
μk the number in excess of equilib-

rium. Since
∑

k n0
μk �vμk = 0, with Eq. (2) we can write the

magnon spin current carried by thermal magnons in excess of
equilibrium as

�J z
S = �

V

∑
k

�vαk

[−(
nαk(�r) − n0

αk

) + ρk

(
nβk(�r) − n0

βk

)]
, (4)

where ρk = vβk/vαk is a coefficient expressing the ratio
between the group velocities of the two modes. We define
the effective magnon accumulation δ nm(�r) for the AFI as
the density of the effective number of magnons in excess of
equilibrium

δnm(�r) = 1

V

∑
k

{−[
nαk(�r) − n0

αk

] + ρk

[
nβk(�r) − n0

βk

]}
.

(5)
The distribution of the magnon number under the influence

of a thermal gradient can be calculated with the Boltzmann
transport equation [51–54]. In the absence of external forces
and thermal gradient, in the relaxation approximation and
steady state, the Boltzmann equation gives for each magnon
mode

nμk(�r) − n0
μk = −τμk �vμk · ∇[

nμk(�r) − n0
μk

]
, (6)

where τμk is the μk-magnon relaxation time. Using Eq. (6)
in Eq. (4) and approximating the sums by integrals over the
Brillouin zone one can show that the spin current density
due to gradients in the magnon concentrations in excess of
equilibrium is

�J z
S = − �

(2π )3

∫
d3k

[
ταk �vαk �vαk · ∇δnαk

− τβk �vβk �vβk · ∇δnβk

]
. (7)
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In order to calculate the spin current due to the gradient
of magnon accumulation, one needs to relate the integral in
Eq. (7) with δ nm(�r) in Eq. (5). For simplicity we assume
variation only in the y direction in the coordinate system in
Fig. 1. We consider for the solution of the Boltzmann equation
expansions of the nonequilibrium magnon distribution for each
mode as [54,55]

nμk(�r) = n0
μk + n0

μkεμkg(y), (8)

where εμk = �ωμk is the magnon energy, T the temperature,
and g(y) a spatial distribution to be determined by the solution
of the boundary-value problem. With Eq. (8) the magnon
accumulation in Eq. (5) becomes

δnm(y) = 1

(2π )3

∫
d3k

[−n0
αkεαk + ρkn

0
βkεβk

]
g(y), (9)

so that one can write δ nm(y) = (−I0α + I0β )g(y), where

I0α = 1

(2π )3

∫
d3kn0

αkεαk

(10)
and I0β = 1

(2π )3

∫
d3kρkn

0
βkεβk.

Using Eqs. (9) and (10) in Eq. (7) we can write the magnonic
diffusion spin current as

J z
S (y) = −�Dm

∂δnm(y)

∂y
, (11)

where

Dm = 1

(2π )3(I0β − I0α)

∫
d3kcos2θ

×[−v2
αkταkn

0
αkεαk + v2

βkτβkn
0
βkεβk

]
(12)

is the diffusion coefficient that can be calculated for a specific
AFI by integration over the Brillouin zone. Considering
that the magnon accumulation relaxes into the lattice with
magnon-phonon relaxation time τmp, conservation of angular
momentum implies that

∂J z
S

∂y
= −�

δnm

τmp

. (13)

Using this relation in Eq. (11) we obtain a diffusion equation
for the magnon accumulation that has the same form as in a
ferromagnet [51–54],

∂2δnm(y)

∂y2
= δnm(y)

l2
m

, (14)

where lm = (Dmτm)1/2 is the magnon diffusion length. Con-
sidering that the magnon accumulation is created only by the
spin pumping current, the solution of Eq. (14) is

δnm(y) = A sinh(y/lm) + B cosh(y/lm), (15)

where A and B are coefficients to be determined by the
boundary conditions. The y component of the z-polarized
magnon spin current in the AFI, calculated with Eqs. (11)
and (15), is

J z
S (y) = −�

Dm

lm
A cosh (y/lm) − �

Dm

lm
B sinh (y/lm). (16)

Using Eqs. (15) and (16) one can obtain expressions for
the magnon accumulation and the spin current density at an
arbitrary position y in terms of the spin currents at the two
sides of the AFI layer,

δnm(y) = lm/�Dm

sinh(d/lm)

{
J z

S (0) cosh [(y − d)/lm]

− J z
S (d) cosh(y/lm)

}
, (17)

J z
S (y) = − 1

sinh(d/lm)

{
J z

S (0) sinh [(y − d)/lm]

− J z
S (d) sinh(y/lm)

}
. (18)

Equations (17) and (18) will be used in the next section for
matching the boundary conditions at the two interfaces.

III. MAGNONIC SPIN CURRENT IN A FM/AFI/NM
TRILAYER

In this section we consider the FM/AFI/NM trilayer of
Fig. 1 and calculate the spin current density at the AFI/NM
interface that flows through the AFI layer, reaches the NM
layer, and gives origin to the charge current and the voltage
measured in the experiments. For this we use the boundary
conditions at y = 0 and y = d given by the continuity of the
spin current at the interfaces, J z

S (0−) = J z
S (0+) and J z

S (d−) =
J z

S (d+) [8,56].
At the FM/AFI interface the spin current is produced

by spin pumping from the precessing magnetization �M in
the FM layer, driven by the microwave field. The spin
current density pumped at the interface is [7,8] �J sp

S (0,t) =
(�/4πM2)g↑↓

1r ( �M × d �M/dt), where g
↑↓
1r is the real part of the

spin-mixing conductance of the FM/AFI interface, in units of
area−1. The z component of the spin current flowing in the y

direction has a dc contribution, given by the time average of
�J sp

S (0,t), J
sp

S (0) = (�ωg
↑↓
1r /4πM2)Im(m∗

xmy), where mx and
my are the amplitudes of the transverse components of the
magnetization. In this equation and hereafter, for simplicity,
we omit the superscript z indicating the direction of spin
polarization. Using the expressions for the rf susceptibility
one can show that the spin current pumped at the FM/AFI
interface is [57]

J
sp

S (0) = �ωpg
↑↓
1r

4π

(
h

�H

)2

L(H − HR), (19)

where h is the amplitude of the driving rf field; �H and HR

are, respectively, the linewidth and field for resonance of the
FM layer at the frequency ω; L(H − HR) is the Lorentzian
line shape; and p is the precession ellipticity. In order to find
the net spin current flowing into the AFI one has to calculate
the backflow spin current produced by the spin excitations
in the AFI. Since the FMR frequency is typically orders of
magnitude smaller than the magnon frequencies in the AFI,
the backflow current is not produced by coherent excitations
in the AFI. Instead, we consider that it is due to spin pumping
by the spin precessions associated with the magnon accumu-
lation at y = 0+ corresponding to the thermal magnons in
excess of equilibrium with all frequencies in the Brillouin
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zone. The spin pumping from coherent spin precession in
antiferromagnets has been calculated in Ref. [58] using a
semiclassical approach. In Appendix B we show that the
spin current produced by spin pumping from the magnon
accumulation is given by

J
bf

S (0) = b�g
↑↓
1r δnm(0), (20)

where b is a factor involving integrations over the Brillouin
zone given by Eq. (B11).

As we will show later, the backflow spin current in Eq. (20)
can be written as J

bf

S (0) = βg
↑↓
1r JS(0), where β is a backflow

factor and JS(0) is the net spin current at the FM/AFI interface
flowing into the AFI, given by JS(0) = J

sp

S (0) − J
bf

S (0). With
these relations and Eq. (19) one can write the net spin current
pumped into the AFI as

JS(0) = (g↑↓
1eff/g

↑↓
1r

)
J

sp

S (0)

= �ωpg
↑↓
1eff

4π

(
h

�H

)2

L(H − HR), (21)

where g
↑↓
1eff is the real part of the effective spin-mixing

conductance given by g
↑↓
1eff = g

↑↓
1r [1 + βg

↑↓
1r ]−1. Equation (21)

provides the input for the first boundary condition at y = 0.
The second boundary condition at y = d results from the fact
that the spin current in the NM is produced by the spin pumping
from the magnon accumulation in the AFI. The same reasoning
used to calculate the spin pumping current from the AFI into
the FM can be used here to show that the spin current at the
AFI/NM interface is given by

JS(d+) = b�g
↑↓
2effδnm(d). (22)

where g
↑↓
2eff is the effective spin-mixing conductance of the

AFI/NM interface that takes into account the backflow spin
current from the spin accumulation in the NM [7,8]. Using
in Eq. (22) the expression for the magnon accumulation in
Eq. (17) and with Eq. (20) we obtain

JS(d) = c

sinh(d/lm) + c cosh(d/lm)
JS(0), (23)

where c is a dimensionless parameter defined by

c = lm

Dm

bg
↑↓
2eff . (24)

Using the result in Eq. (23) in Eq. (17) for y = 0 we obtain
the magnon accumulation at the FM/AFI interface,

δnm(0) = lm

�Dm

[
1 + c tanh(d/lm)

c + tanh(d/lm)

]
JS(0). (25)

With this result in Eq. (20) we find for the backflow factor at
the FM/AFI interface

β = lmb

Dm

[
1 + c tanh(d/lm)

c + tanh(d/lm)

]
. (26)

As expected, this gives an effective spin-mixing conduc-
tance of the FM/AFI interface that depends on the AFI layer
thickness,

g
↑↓
1eff(d) = g

↑↓
1r

{
1 + g

↑↓
1r

lmb

Dm

[
1 + c tanh(d/lm)

c + tanh(d/lm)

]}−1

. (27)

At this point it is important to check the value of g
↑↓
1eff in the

limit of vanishing AFI layer thickness. With d = 0 Eq. (27)
gives

1

g
↑↓
1eff(0)

= 1

g
↑↓
2eff

+ 1

g
↑↓
1r

, (28)

which is a result similar to the one obtained for the well
studied FM/NM/FM trilayer [7,8] and that suffers from the
same drawback; namely, the spin-mixing conductance for the
FM/NM bilayer without the AFI layer is tied to the values
for the FM/AFI and AFI/NM interfaces, which is nonphysical.
In the case of the FM/NM/FM trilayer this inconsistency is
solved by adding to Eq. (28) a dimensionless resistance to the
intermediate NM layer [7,8]. Here we add a dimensionless
parameter δ in Eq. (27) so that its value can be adjusted to the
one of the FM/NM interface in the limit of d → 0. Thus we
use for the spin-mixing conductance of the FM/AFI interface

g
↑↓
1eff(d) = g

↑↓
1r

{
δ + c + tanh(d/lm)

c(1 + r) + (1 + rc2) tanh(d/lm)

}
,

(29)

where r = g
↑↓
1r /g

↑↓
2eff . For d = 0 this gives g

↑↓
1eff(0) =

g
↑↓
1r [δ + g

↑↓
2eff/(g↑↓

1r + g
↑↓
2eff)] so that its value can be adjusted to

the actual spin-mixing conductance of the FM/NM interface.
In the experiments of Refs. [35–37], the voltage is measured
at the edges of the NM layer as a function of the AFI layer
thickness d and expressed in terms of the voltage with d = 0.
Since the voltages are proportional to the spin current density
at the AFI/NM interface, we use Eqs. (23) and (29) to write

V (d)

V (0)
= c(1 + r)

1 + δ(1 + r)

[
δ + c + tanh(d/lm)

c(1 + r) + (1 + rc2) tanh(d/lm)

]

× 1

[sinh(d/lm) + c cosh(d/lm)]
. (30)

This is the quantity that has to be compared with the
experimental data. It is valid for a FM/AFI/NM trilayer with
any antiferromagnet. In the next section it is evaluated for the
YIG/NiO/Pt trilayer investigated experimentally [35–37].

IV. APPLICATION TO YIG/NiO/Pt TRILAYER

In order to compare the results of the diffusive magnonic
spin-transport model with experimental results for a specific
AFI one needs detailed information on the dispersion relations
and relaxation rates for the two magnon modes. They are used
to calculate the integrals over the Brillouin zone that appear in
the relevant parameters, such as the diffusion coefficient in
Eq. (12) and the spin pumping parameter in Eq. (B11).
In a hard-axis AF, such as NiO, the magnon frequencies
in Eqs. (A26) and (A27) are

ωαk = γ
[
HE(HAx + HAy) + HAxHAy

+ γkHE(HAx − HAy) + H 2
E

(
1 − γ 2

k

)]1/2
, (31)

ωβk = γ
[
HE(HAx + HAy) + HAxHAy

− γkHE(HAx − HAy) + H 2
E

(
1 − γ 2

k

)]1/2
, (32)
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FIG. 2. Spin-wave dispersion in antiferromagnetic NiO at T =
300 K. (a) Solid curves show the magnon frequencies calculated with
Eqs. (31) and (32). Symbols represent the neutron scattering data
of Ref. [59]. (b) Blowup of the Brillouin zone center showing the
separation of the frequencies of the α (upper blue curve) and β (lower
red curve) magnon modes.

where HE , HAx , and HAy are the exchange, hard-axis
anisotropy, and in-plane anisotropy effective fields, respec-
tively; γ = gμB/� is the gyromagnetic ratio; g is the spectro-
scopic splitting factor; and γk is the structure factor. As shown
in Appendix A, the values of the parameters for NiO can be
obtained by fitting Eqs. (31) and (32) to the experimental data
[59–61]. Figure 2 shows the calculated dispersion relations for
zero external field and T = 300 K. We assume a spherical
Brillouin zone with a structure factor γk = cos(πk/2km),
where km = π/al , al being the lattice parameter, and use
the following parameters:HE = 9684 kOe, HAx = 6.35 kOe,
HAx = 0.11 kOe, and g = 2.18. The magnon frequencies
over the whole Brillouin zone are shown in Fig. 2(a) as
a function of the reduced wave number q = k/km. The
separation between the curves for the two modes barely can
be seen in Fig. 2(a) but it is very clear in Fig. 2(b) showing a
blowup near the zone center. Note that in MnF2 at zero field the
two modes have the same frequency, varying from 260 GHz at
the zone center to 1.6 THz at the zone boundary [62]. Similarly,
in FeF2 at zero field the modes are degenerate with frequencies
that vary from 1.6 to 2.5 THz [63,64]. Thus, in order to have
a sizable separation in the magnon frequencies in MnF2 and
FeF2 it is necessary to apply a field of tens of kOe [49]. In NiO
the frequency reaches 29.5 THz at the zone boundary due to
the very large exchange field. But a most important fact is that
in the region q < 0.1 the two modes have different frequencies
and consequently different thermal populations. Thus in NiO
the spin currents carried by the two magnon modes do not
cancel out in the absence of an external field, in contrast to
MnF2 and Cr2O3 [33,34,50] that require the application of a
large magnetic field to enable magnonic spin transport. Notice
that the FMR experiments of Refs. [35–38] are done in a
magnetic field in the range 2–3 kOe. When applied in the
direction of the spin alignment in NiO, the effect of the field is
simply to shift the magnon frequencies by less than 10 GHz.
This is negligible compared to the frequencies in zero field
and for this reason the effect of the field is not considered
here.

The calculations of the diffusion parameter in Eq. (12)
and the spin pumping coefficient in Eq. (B11) are done by
expressing all integrals in terms of dimensionless quantities.

One can show that Eq. (12) can be written as

Dm = π2τ0�
2γ 4H 4

E

12k2
m(kBT )2

(B1β − B1α)

(B0β − B0α)
, (33)

where τ0 is the relaxation time of the k = 0 magnon and the
parameters B are given by the integrals

B0α =
∫

dq q2 xα

exα − 1
B0β =

∫
dq q2 vβq

vαq

xβ

exβ − 1
, (34)

B1α =
∫

dq q2 sin2(πq/2)

xαkηαq(exα − 1)

×{−[(HAx − HAy)/(2HE)] + cos(πq/2)}2, (35)

B1β =
∫

dq q2 sin2(πq/2)

xβkηβq(exβ − 1)

×{[(HAx − HAy)/(2HE)] + cos(πq/2)}2, (36)

where xμ = �ωμk/(kBT ) is the dimensionless reduced energy,
ημq = ημk/τ0 is the k dependent dimensionless relaxation rate
relative to the k = 0 magnon, and vμq is the group velocity
calculated with vμk = ∂ωμk/∂k from Eqs. (31) and (32),
given by

vαk = γ 2 π sin(πq/2)

4kmωαk

[−HE(HAx − HAy) + 2H 2
E cos(πq/2)

]
,

(37)

vβk = γ 2 π sin(πq/2)

4kmωβk

[
HE(HAx − HAy) + 2H 2

E cos(πq/2)
]
.

(38)

The integrals in Eqs. (34)–(36) were evaluated numerically
with the parameters of NiO and using the relaxation rate at
T = 300 K of Eq. (A29) written as

ηk = η0[1 + (1240q + 5860q3)], (39)

where the relaxation rate of the k = 0 mode is η0 = 1/τ0 =
1.5 × 109 s−1 as reported in Ref. [61]. As shown in Fig. 3 the
integrands of B1α and B1β in Eqs. (35) and (36) are zero for
q = 0 due to the vanishing of the density of states, increase
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FIG. 3. Integrands of the integrals in Eqs. (35) and (36) for the
two magnon modes in NiO at T = 300 K.
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rapidly with increasing q, reach a peak at q ≈ 0.15, and fall fast
for higher q because the thermal magnon number decreases
exponentially with increasing frequency. For q < 0.25 the
integrand of B1β is larger than in B1α because the β magnon
mode has smaller frequency, thus a larger thermal occupation
number, and larger group velocity than the α mode. The
integrations lead to B0α = 2.59 × 10−2, B0β = 2.62 × 10−2,
B1α = 8.15 × 10−7, and B1β = 8.52 × 10−7. Using these val-
ues in Eq. (33) and the lattice parameter al = 0.417 nm for
NiO, we obtain for the diffusion parameter Dm = 9.5 cm2/s.
This is about one order of magnitude smaller than the value
for ferrimagnetic yttrium iron garnet at T = 300 K [53,54].
With the diffusion parameter one obtains the magnon-phonon
relaxation time τmp that enters in Eq. (13) through the relation
τmp = lm

2/Dm. Using for the diffusion length the value lm ≈
10 nm estimated in Ref. [37] we obtain for NiO at T = 300 K,
τmp ≈ 10−13 s, which is one order of magnitude smaller than
in YIG.

The integrals entering in the spin pumping parameter are
calculated in a similar manner. From Eq. (B11) one can write
the spin pumping coefficient as

b = a3
l kBT

2π2�

(B2β − B2α)

(B0β − B0α)
, (40)

where the new integrals are given approximately by

B2α =
∫

dq q2

(
γHE

ωk

)
n0

αkx
2
αk, (41)

B2β =
∫

dq q2

(
γHE

ωk

)
ρkn

0
βkx

2
βk, (42)

where ωk = ωβk ≈ ωαk in the region q > 0.2 that contributes
mostly to the integrals. Numerical integration with the parame-
ters for NiO gives B2α = 0.1226 and B2β = 0.1237. With these
values and the factor in Eq. (40) we get b ≈ 7 × 10−10 cm3 s−1.
We can now obtain a value for the relevant parameter c in
Eq. (24). For this we use the calculated diffusion parameter
Dm = 9.5 cm2/s, the estimated diffusion length lm ≈ 10 nm
[37], and a spin-mixing conductance for the NiO/Pt interface
similar to the one for YIG/Pt, g

↑↓
2eff ≈ 1015 cm−2 [5,6]. With

Eq. (24) we obtain c ≈ 8 × 10−2.
Having the value for the important parameter c that contains

information on the AFI and the AFI/NM interface, we are in the
position to compare the model with the experimental results.
The measured dependence of the voltage on the AFI thickness
is fit with Eq. (30) allowing the four adjustable parameters
to vary in the following ranges: c = [0, 1],r = [1, 10],δ =
[−5,+5],lm = [5, 15] nm. Figure 4 shows the least-squares
deviation fit to the data of Ref. [37], obtained with the following
parameters: c = 0.1, r = 4.2, δ = −0.15, and lm = 7.4 nm.
The value of the parameter c obtained from the fit is in excellent
agreement with the one calculated for NiO. The diffusion
length is also very close to the value of 9.8 nm obtained
from the fit of an exponential variation to the experimental
data [37]. From the value of the ratio r obtained from the
fit we find that g

↑↓
YIG/NiO = 4.2g

↑↓
NiO/Pt. This result provides a

physical explanation for the initial increase of the voltage with
increasing AFI thickness. The coupling of the spin excitations
at the YIG/NiO interface is larger than in NiO/Pt and in YIG/Pt,
so that when a NiO layer is introduced between YIG and

0 10 20 30 40 50
0

1

2

 Data
 Fit

 d (nm)

V
(d

)/V
(0

)

FIG. 4. Voltage measured at the Pt layer in YIG/NiO(d)/Pt
trilayers as a function of the NiO layer thickness. The symbols
represent the experimental data of Ref. [37] and the curve represents
the best fit with Eq. (30).

Pt, the spin current pumped by the magnetization precession
in YIG increases. Of course, as the thickness of the NiO
increases the spin current tends to decrease due to magnon
diffusion and loss of spin angular momentum to the lattice.
The overall behavior of the voltage with increasing d is the
peak followed by an exponential decay as in Fig. 4. Finally
we note that for d � lm the dependence of the voltage on the
AFI thickness is V (d) ∝ exp(−d/lm), as assumed in Ref. [37].
However, this exponential decay breaks down for thickness
smaller or comparable to the magnon diffusion thickness, as
demonstrated here.

In summary, we have presented a model for the spin
transport in an antiferromagnetic insulator based on the
diffusion of thermal magnons. In easy-axis AFs such as MnF2,
FeF2 and Cr2O3, in the absence of an external magnetic field
the spin currents carried by the two magnon modes cancel out.
However, in the room-temperature AFI NiO, even in zero field,
the two magnon modes have different frequencies and hence
different thermal populations, so that magnonic spin transport
is made possible. We have shown that in a FM/AFI/NM
structure with the FM layer under ferromagnetic resonance,
the spin current pumped into the AFI is carried by the diffusion
of magnons. Solution of the spin current boundary-value
problem for the trilayer yields an expression for the voltage
detected in the NM layer that depends on the thickness of
the AFI layer and on the spin-mixing conductance of the two
interfaces. We have used in the model the magnon diffusion
and spin pumping properties of NiO calculated based on the
actual magnon dispersions and damping rates. The calculated
dependence of the voltage on the AFI layer thickness is in
quite good quantitative agreement with the experimental data
of Refs. [35–37].

ACKNOWLEDGMENT

This research was supported in Brazil by Conselho Na-
cional de Desenvolvimento Cientı́fico e Tecnológico (CNPq),
Coordenação de Aperfeiçoamento de Pessoal de Nı́vel Supe-
rior (CAPES), Financiadora de Estudos e Projetos (FINEP),

054412-6



DIFFUSIVE MAGNONIC SPIN TRANSPORT IN . . . PHYSICAL REVIEW B 93, 054412 (2016)
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APPENDIX A: SPIN WAVES IN THE HARD-AXIS
ANTIFERROMAGNET NiO

Nickel oxide is a prototype two-sublattice hard-axis anti-
ferromagnet with Néel temperature TN = 523 K. It has a fcc
crystal structure with a hard-axis anisotropy perpendicular to
(111) planes [59]. At temperatures below TN the spins of one
sublattice are aligned along 〈112̄〉 directions in (111) planes
and the spins of the other sublattice are oppositely aligned
in neighboring (111) planes. In the absence of an applied
magnetic field, the spin Hamiltonian with exchange interaction
and out-of-plane (x) and in-plane (y) anisotropy energies can
be written as [59]

Η =
∑
i �=j

2Jij
�Si · �Sj +

∑
i

Dx

(
Sx

i

)2 + Dy

(
S

y

i

)2
, (A1)

where z is the direction of spin alignment; �Si is the spin (in units
of �) at a generic lattice site i; Jij is the exchange constant
of the interaction between spins �Si and �Sj ; Dx and Dy are,
respectively, the anisotropy constants in the hard direction and
in the plane. We treat the quantized excitations of the magnetic
system with the approach of Holstein-Primakoff [65], which
consists of transformations that express the spin operators in
terms of boson operators that create or destroy magnons. In the
first transformation the components of the local spin operators
are related to the creation and annihilation operators of spin
deviations at site i. Since there are two sublattices we introduce
different spin deviation operators for each sublattice. Denoting
the spins of the up and down sublattices by subscripts 1 and 2,
respectively, we have in the linear approximation [65]

S+
1i = (2S)1/2ai, S−

1i = (2S)1/2a
†
i , Sz

1i = S − a
†
i ai, (A2)

S+
2i = (2S)1/2b

†
i , S−

2i = (2S)1/2bi, Sz
2i = −S + b

†
i bi, (A3)

where a
†
i , ai and b

†
i , bi are the creation, destruction operators

for spin deviations at sites 1 and 2, which satisfy the boson
commutation rules [ai,a

†
j ] = δij , [ai,aj ] = 0, [bi,b

†
j ] = δij ,

and [bi,bj ] = 0. The next step consists in introducing a
transformation from the localized field operators to collective
boson operators that satisfy the commutation rules [ak,a

†
k′ ] =

δkk′ , [ak,ak′ ] = 0, [bk,b
†
k′ ] = δkk′ , [bk,bk′] = 0,

ai = N−1/2
∑

k

ei�k.�ri ak, bi = N−1/2
∑

k

ei�k.�ri bk, (A4)

where N is the number of spins in each sublattice and �k is a
wave vector. Using Eq. (A4) in Eqs. (A2) and (A3) one can
write the Hamiltonian quadratic in boson operators in the form

Η = �

∑
k

Ak(a†
kak + b

†
kbk) + Bk(akb−k + a

†
kb

†
−k)

+ 1

2
Ck(aka−k + bkb−k + H.c.), (A5)

where

Ak = γ [HE + (HAx + HAy)/2], (A6)

Bk = γ γkHE, γk = (1/z)
∑

δ

exp(i�k · �δ), (A7)

Ck = γ (HAx − HAy). (A8)

We have considered only intersublattice exchange interac-
tion between the z nearest neighbors with parameter J and
defined the effective exchange and anisotropy fields as

HE = 2SzJ/γ �, HAx = 2SDx/γ �, HAy = 2SDy/γ �,

(A9)

where γ = gμB/� is the gyromagnetic ratio, g is the spec-
troscopic splitting factor, μB the Bohr magneton, and � the
reduced Planck constant. We wish to find a transformation to
normal mode magnon creation and destruction operators α

†
k ,

αk and β
†
k ,βk that leads the Hamiltonian to the diagonal form

Η =
∑

k

�(ωαkα
†
kαk + ωβkβ

†
kβk), (A10)

where ωαk and ωβk are the frequencies of the two magnon
modes. We follow White et al. [66] and write Eq. (A5) in
matrix form

Η = �

∑
k>0

Ηk, Ηk = (X)†[Η](X), (A11)

where the matrices are

(X) =

⎛
⎜⎜⎝

ak

b
†
−k

a
†
−k

bk

⎞
⎟⎟⎠, [Η] = �

⎛
⎜⎝

Ak Bk Ck 0
Bk Ak 0 Ck

Ck 0 Ak Bk

0 Ck Bk Ak

⎞
⎟⎠. (A12)

The next step consists of introducing a linear transformation
to new operators

(X) = [Q](Z), (Z) =

⎛
⎜⎜⎝

αk

β
†
−k

α
†
−k

βk

⎞
⎟⎟⎠, (A13)

such that the Hamiltonian in Eq. (A11) can be written as

Η = �

∑
k

(Z)†[ω] (Z), (A14)

where [ω] is a diagonal eigenvalue matrix. In order to find
the transformation matrix [Q] one needs a few relations. The
first follows from the introduction of (A13) in (A11) and
comparison with (A14). This leads to

[Q]†[Η][Q] = � [ω]. (A15)

Another relation is obtained from the boson commutation
rules. They can be written in matrix forms

[X,X†] = X(X)
† − (X∗XT )T = g, (A16)

[Z,Z†] = Z(Z)
† − (Z∗ZT )T = g, (A17)

054412-7
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where

g =

⎛
⎜⎝

1 0 0 0
0 −1 0 0
0 0 −1 0
0 0 0 1

⎞
⎟⎠. (A18)

Using Eq. (A13) in (A16) and in (A17) we obtain an
orthonormality relation for the transformation matrix,

[Q] [g] [Q]† = [g]. (A19)

With (16)–(A19) one obtains an eigenvalue equation

[Η] [Q] = [g]−1[Q] [g]� [ω]. (A20)

Solution of Eq. (A20) yields the elements of the transfor-
mation matrix and the frequencies of the two magnon modes,

ω2
αk = A2

k − (Bk − Ck)2, (A21)

ω2
βk = A2

k − (Bk + Ck)2. (A22)

Note that since (Sx
i )2 + (Sy

i )2 = S2 − (Sz
i )2, if Dx = Dy

the anisotropy becomes easy axis in the z direction, with
HA = 2SDx/gμB and Ck = 0. In this case the two magnon
frequencies are ω2

αk = ω2
βk = ω2

k = A2
k − B2

k , where

ωk = ±γ
[
2HEHA + H 2

A + H 2
E

(
1 − γ 2

k )
]1/2

, (A23)

which is the known result for the AF with easy-axis anisotropy
and no applied external field [49]. In this case the transforma-
tion of the magnon operators is

ak = ukαk − vkβ
†
−k, (A24a)

b
†
−k = −vkαk + ukβ

†
−k, (A24b)

where

uk = [(Ak + ωk)/2ωk]1/2, vk = [(Ak − ωk)/2ωk]1/2.

(A25)

The transformation coefficients satisfy the orthonormality
condition u2

k − v2
k = 1. In NiO the parameter Ck is very small

compared to the others, Ck ≈ 10−3Ak , so that in most parts
of the Brillouin zone the two frequencies are approximately
the same and the transformation of the magnon operators is
approximately given by Eq. (A24) [66,67].

Using the relations (A6)–(A8) in (A21) and (A22) one can
write the frequencies of the two magnon modes in terms of the
effective fields,

ω2
αk = γ 2

[
HE(HAx + HAy) + HAxHAy

+ γkHE(HAx − HAy) + H 2
E

(
1 − γ 2

k

)]
, (A26)

ω2
βk = γ 2

[
HE(HAx + HAy) + HAxHAy

− γkHE(HAx − HAy) + H 2
E

(
1 − γ 2

k

)]
. (A27)

For HE � HAx,HAy , the frequencies of the zone center
k = 0 (γk = 1) magnons are

ωα0 ≈ γ (2HAxHE)1/2, ωβ0 ≈ γ (2HAyHE)1/2. (A28)

The magnetic parameters for NiO are determined by fitting
the calculated frequencies in (A26) and (A27) to three sets
of data. Fitting to the neutron scattering measurements of
Hutchings and Samuelsen [59] gives the value of the exchange
field HE = 9684 kOe considering for the g factor g = 2.18.
Since the neutron data do not have sufficient resolution to
determine the frequencies of the zone-center magnons, we
use the value ωβ0/2π = 0.140 THz measured by Brillouin
light scattering [60] and ωα0/2π = 1.07 THz obtained from
magnetization oscillations in the far infrared [61]. With these
values in (A28) we determine the anisotropy fields, HAx =
6.35 kOe and HAy = 0.11 kOe. Figure 2 shows the dispersion
relations calculated with Eqs. (A26) and (A27) assuming a
spherical Brillouin zone and using for the structure factor
γk = cos(π k/2km), where km = π/al , al being the lattice
parameter.

In order to calculate the diffusion parameter it is necessary
to have the lifetime of magnons as a function of the wave
number. The lifetime of α mode with k = 0 has been measured
in NiO from the decay time of the magnetization oscillations
[61]. However, there are no damping data for the magnons with
wave numbers in the range q = 0.1 − 0.5 that dominate the
integrals in Eqs. (35) and (36) at room temperature. Thus we
have calculated the spin-wave relaxation due to four-magnon
processes that are known to explain the experimental data
in other antiferromagnets [68,69]. The calculation is done
numerically by integrations over a spherical Brillouin zone
of the transition probability for four-magnon scattering at a
fixed temperature T and varying the wave number k [68,69].
Figure 5 shows the calculated relaxation rate for magnons
in NiO as a function of the wave number for T = 300 K
using the parameters obtained from the fit to data of the
calculated magnon frequencies as explained earlier. We use
for the residual damping at k = 0 the value obtained from
the Gilbert damping parameter α = 2.1 × 10−4 measured in
Ref. [61] for the mode at 1.1 THz. Figure 5 also shows a
polynomial fit to the calculated four-magnon relaxation rate

0.0 0.2 0.4 0.6 0.8
0

2

4

6

 Calculated
 Fit

Wave number q=k / km

k (1
012

 s
-1

)

FIG. 5. Magnon relaxation rate in antiferromagnetic NiO. Sym-
bols represent the calculation with four-magnon scattering processes
at T = 300 K while the solid line is the polynomial fit with Eq. (A29).
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with the residual damping described by

ηk = 1.5 × 109 + (2.35q + 8.3q3) × 1012 s−1. (A29)

This is the expression used to evaluate the integrals in Eqs. (35)
and (36).

APPENDIX B: SPIN CURRENT AND SPIN
PUMPING IN NiO

Initially we derive an expression for the spin current
carried by magnons in a hard-axis antiferromagnet simply by
considering that it expresses the flow of angular momentum.
The total z component of the spin angular momentum carried
by magnons is given by Sz = ∑

i (Sz
1i + Sz

2i). With Eqs. (A2)–
(A4) one can write the z component of the spin angular
momentum as

Sz =
∑

k

− a
†
kak + b

†
kbk. (B1)

Using the transformation to the magnon operators given by
(A24) and keeping only terms with magnon number operators
we have

Sz =
∑

k

(−α
†
kαk + β

†
kβk). (B2)

The opposite signs in the angular momenta of the two
modes is consistent with the semiclassical picture of the spins
precessing in opposite directions. Considering for each mode
μ the group velocity

⇀

vμk = k̂∂ωμ/∂k, the spin current density
operator is

�J z
S = �

V

∑
k

[−�vαkα
†
kαk + �vβkβ

†
kβk], (B3)

which is the same expression derived for easy-axis antiferro-
magnets [47].

The spin pumping from coherent magnetization precession
in an antiferromagnet has been studied by Cheng et al.
[56] using a semiclassical approach. Here we calculate the
spin pumping from thermal magnon accumulation in an AFI
using a quantum formulation based on the transformation of
the spin variables into magnon operators. In terms of the
magnetizations of the two sublattices �M1, �M2 the spin current
pumped by an AFI into an adjacent NM layer is at the interface
[7,8,56],

�J sp

S =
(

�g
↑↓
r

4πM2
1

�M1 × d �M1

dt
+ �g

↑↓
r

4πM2
2

�M2 × d �M2

dt

)
, (B4)

where g
↑↓
r is the real part of the spin-mixing conductance of the

interface. From Eq. (B4) one can show that the z component
of the spin current pumped by the precessing magnetization of

the AFI sublattices is given by

J z
Sy = �g

↑↓
r

4πM2

1

2i

(
− m+

1

dm−
1

dt

+m−
1

dm+
1

dt
− m+

2

dm−
2

dt
+ m−

2

dm+
2

dt

)
, (B5)

where m+
1 and m−

1 are the transverse circularly polarized
components of the magnetization of the up sublattice, related
to the spin deviation operators by Eq. (A2),

m+
1 = (γ �/V )

√
2S

∑
i

ai, m−
1 = (γ �/V )

√
2S

∑
i

a
†
i .

(B6)

Similarly, for the down sublattice we have

m+
2 = (γ �/V )

√
2S

∑
i

b
†
i , m−

2 = (γ �/V )
√

2S
∑

i

bi .

(B7)

Using (B6) and (B7) in (B5), replacing the spin deviation
operators by magnon operators by means of transformations
(A4) and (A24), and keeping only terms with magnon number
operators we obtain for the z component of the spin current
density pumped at the interface

J z
S = γ �

2g
↑↓
r

2πMV

∑
k

(
u2

k + v2
k

)
(−ωαkα

†
kαk + ωβkβ

†
kβk). (B8)

Replacing the sum on the wave number by an integral
over the Brillouin zone in the usual way, considering for
expectation values of the magnon numbers the numbers in
excess of equilibrium, and using (A25) we obtain

J z
S = − γ �

2g
↑↓
r

2πM(2π )3

∫
d3k

(
Ak

ωk

)
(δnαkωαk − δnβkωβk). (B9)

With Eq. (8) this becomes

J z
S = − γ �

2g
↑↓
r

2πM(2π )3

∫
d3k

(
Ak

ωk

)

×(
n0

αkεkαωαk − n0
βkεkβωβk

)
g(y).

Finally, using Eqs. (9) and (10) the spin current pumped by
thermal magnons in the AF in excess of equilibrium can be
written as

J z
S = −b�g↑↓

r δnm(0), (B10)

where

b = γ

(2π )32πM

1

(I0β − I0α)

∫
d3k

(
Ak

ωk

)

× (−n0
αkε

2
αk + ρkn

0
βkε

2
βk

)
. (B11)
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Chshiev, H. Béa, V. Baltz, and W. E. Bailey, Appl. Phys. Lett.
104, 032406 (2014).

[44] E. V. Gomonay and V. M. Loktev, Low Temp. Phys. 40, 17
(2014).

[45] H. Chen, Q. Niu, and A. H. MacDonald, Phys. Rev. Lett. 112,
017205 (2014).

[46] S. Takei, T. Moriyama, T. Ono, and Y. Tserkovnyak, Phys. Rev.
B 92, 020409(R) (2015).

[47] R. Khymyn, I. Lisenkov, V. S. Tiberkevich, A. N. Slavin, and
B. Ivanov, arXiv:1511.05785 (2015).

[48] F. Keffer and C. Kittel, Phys. Rev. 85, 329 (1952).
[49] S. M. Rezende, R. L. Rodrı́guez-Suárez, and A. Azevedo, Phys.
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Rev. B 88, 014404 (2013).

[57] A. Azevedo, L. H. Vilela Leão, R. L. Rodrı́guez-Suárez, A. F.
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