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Domain walls in magnetic multilayered systems can exhibit a very complex and fascinating behavior. For
example, the magnetization of thin films of hard magnetic materials is in general perpendicular to the thin-film
plane, thanks to the strong out-of-plane anisotropy, but its direction changes periodically, forming an alternating
spin-up and spin-down stripe pattern. The latter is stabilized by the competition between the ferromagnetic
coupling and dipole-dipole interactions, and disappears when a moderate in-plane magnetic field is applied.
It has been suggested that such a behavior may be understood in terms of a self-induced stripe glassiness. In
this paper we show that such a scenario is compatible with the experimental findings. The strong out-of-plane
magnetic anisotropy of the film is found to be beneficial for the formation of both stripe-ordered and glassy
phases. At zero magnetic field the system can form a glass only in a narrow interval of fairly large temperatures.
An in-plane magnetic field, however, shifts the glass transition towards lower temperatures, therefore enabling
it at or below room temperature. In good qualitative agreement with the experimental findings, we show that a
moderate in-plane magnetic field of the order of 50 mT can lead to the formation of defects in the stripe pattern,
which sets the onset of the glass transition.
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I. INTRODUCTION

In its common use, the word “frustration” has generally
a negative connotation. It encodes the ensemble of feelings
experienced by somebody who, subject to various constraints
that cannot be simultaneously satisfied, is forced to choose
one of many nonoptimal solutions. Physical systems can
also experience something similar, although in a much less
dramatic way. The classical examples are Ising spin glasses
[1]. In the standard formulation, the frustration is introduced
by the random signs of couplings between the local magnetic
moments. Indeed, each spin interacts ferromagnetically with a
(randomly chosen) set of its neighbors, and antiferromagnet-
ically with the others. Therefore, for a generic choice of the
couplings, it is not clear in which direction it should orient in
order to lower its energy. This is a “cooperative problem”: to
find the ground-state energy it is indeed necessary to consider
the system as a whole, and not at the level of the single
spin. This problem is extremely complicated, since the system
exhibits a large number of configurations energetically very
close to the ground state. It is well known that a glass forms
in these conditions [1]. Below a characteristic temperature
TA the system is indeed stuck in each of the exponentially
many metastable configurations for a characteristic time τw,
and it eventually freezes in one of them below the Kauzmann
temperature [2] TK, when τw → ∞.

Randomizing the couplings is not the only way to introduce
frustration in a system. Spins ordered in perfect lattices can
also exhibit a glassy behavior due to the geometric frustration
they experience if the signs of the couplings between them are
properly chosen (like, e.g., in the antiferromagnetic triangular
net [3]). Another way to introduce frustration is to have
competing interactions on different length scales [4]. This is
the case, e.g., of spins locally coupled by a ferromagnetic
exchange but subject to a long-range dipole-dipole interaction
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[5–7]. The minimization of the energy requires the total
magnetization to be zero, a condition that prevents the
formation of a uniformly polarized state. A striped phase is
realized at low temperature: spin-up stripes alternate with
spin-down ones [8–11]. The modulus of the wave vector of
the stripes is determined by the competition between the local
and long-range interactions, while its direction is due to the
spontaneous breaking of the rotational symmetry.

The frustration due to the two competing interactions at
different length scales gives rise [12–16], in the thermody-
namic limit, to an exponentially large number of local minima
in the phase space. Such states are populated according to the
Boltzmann distribution. At sufficiently large temperature, the
large number of states compensates for their little statistical
weight and allows the striped phase to “melt,” thus forming a
stripe glass. The chaotic pattern arises from the superposition
of waves whose wave vectors have nearly the same modulus
and random directions [17]. This state can be characterized by
the entropy lost by the system (Sc) by finding itself in a local
(but not global) minimum of the potential landscape. Sc is also
called “configuration entropy.”

The competition between interactions at different length
scales arises naturally in multilayered thin films of alternating
ferromagnetic layers [5–11]. These systems have attracted a
huge deal of interest in the recent past [18–28]: many experi-
mental techniques allow a real-time probing of the domain wall
structure [26,29–37], thereby enabling the study of the domain-
wall dynamics and evolution. From a theoretical standpoint,
the equilibrium state of these heterostructures is completely
determined by the energetics: striped domain-wall structures
can form in layered thin films because of the complex interplay
between magnetostatic energy, domain-wall energy, magne-
tocrystalline anisotropy, and dipole-dipole interaction [38–41].
The competition between local ferromagnetic and long-range
dipole-dipole interactions leads to the formation of striped
domain walls. A chaotization of the domain-wall pattern is
observed when a sufficiently strong in-plane magnetic field
H‖ is applied, with defects starting to appear at a field as low
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as H‖ ∼ 30 mT [38,42,43]. Following the general idea of self-
induced stripe glassiness [13], it has been speculated [38] that
such behavior represents the onset of a glass transition. In this
paper we show that this scenario is actually compatible with the
experimental observations. We find that (i) the perpendicular
magnetocrystalline anisotropy, which can be very strong in
layered thin films, plays a key role and is beneficial for the
formation of a stripe glass and that (ii) the in-plane magnetic
field can be used to trigger the glass transition.

The paper is organized as follows: in Sec. II we introduce
a minimal model that describes a magnetic system subject
to competing interactions. An additional constraint forces the
local magnetization to be a constant and introduces (taking
into account the Gaussian fluctuations around the mean-field
value) a fourth-order coupling between the components of
the magnetization. By means of the replica trick [1] we
derive the expression of the configurational entropy [13].
The fourth-order coupling is fundamental to break the replica
symmetry and obtain a finite Sc. The latter is evaluated in
Sec. III, where we also show the phase diagram of the model.
We find that the in-plane magnetic field can trigger the glass
transition by shifting it to lower temperatures. When the
transition temperature equals the room temperature, defects in
the domain-wall pattern appear and a glass forms. The value of
the critical field is very close to that applied experimentally, and
for which the chaotization of the pattern is observed. Finally,
Sec. IV summarizes the main findings of this work.

II. THE MODEL

In this section we introduce a minimal continuum model of
a two-dimensional (2D) magnetic system. At the microscopic
level, we assume the spins to be locally coupled ferromagneti-
cally (at the nearest-neighbor level) and subject to a long-range
dipole-dipole interaction. Going to the continuum limit, we
introduce the position-dependent magnetization field, which
results from the average over many microscopic spins and
on which the Hamiltonian depends [41]. We assume the
magnetization to be nearly constant and only its direction,
denoted with the unit vector m(r), to change. The partition
function is given by Z = ∫

Dm
∫
Dλ exp{−βH[m,λ]/2},

where β = (kBT )−1 is the inverse temperature (kB is the
Boltzmann constant) and the Hamiltonian is [41]

H[m,λ] =
∫

d r{J [∂imj (r)]2 − Km2
z(r) − 2h(r) · m(r)}

+ Q

2π

∫
d rd r ′mz(r)

×
[

1

|r − r ′| − 1√
d2 + |r − r ′|2

]
mz(r ′)

+
∫

d r{λ(r)[m2(r) − 1]}. (1)

In momentum space space it reads

H[m,λ] =
∑
q,q ′

∑
i,j

mi
q[G(0)(q,q ′,λ)]−1

ij m
j

−q ′

−
∑

q

(2h−q · mq + λq), (2)

where

[G(0)(q,q ′,λ)]−1
ij =

[
Jq2δij −

(
K − Q

1 − e−qd

q

)
Aij

]

× δq,q ′ + λq−q ′δij . (3)

Here J > 0 is the ferromagnetic coupling, K is the out-of-
plane anisotropy, Q characterizes the strength of the dipole-
dipole interaction, d is the film thickness, and Aij = δi,zδj,z

is the anisotropy matrix. Finally, h(r) is the local magnetic
field. The “slave field” λ(r) is introduced to constrain the
magnetization to satisfy the equality |m(r)| = 1.

Following Ref. [13], the configurational entropy is de-
fined as the logarithm of the number of local (metastable)
minima of the action. This quantity can be computed
by introducing the pinning field ψ(r), such that Z[ψ] =∫
Dm

∫
Dλ exp{−βHψ [m,λ]/2}, where β = (kBT )−1 and

Hψ [m,λ] = H[m,λ] + g

∫
d r[m(r) − ψ(r)]2. (4)

Here g → 0+ is a coupling constant which is set to zero after
the thermodynamic limit is taken. The free energy F [ψ] =
−β−1 ln Z[ψ] is small if ψ(r) is equal to a configuration of
m(r) which is also a minimum of the Hamiltonian H[m,λ].

Scanning all the possible configurations of ψ(r) we
can gain information about the potential landscape of the
magnetization, and in particular on the number of local minima
of such a landscape. The total free energy can be written as an
average of F [ψ] weighted with the probability Z[ψ], i.e.,

Fg =
∫
DψZ[ψ]F [ψ]∫

DψZ[ψ]
. (5)

Note that, if the limit g → 0 is taken before the thermodynamic
limit, Feq = limN→∞ limg→0 Fg is the free energy of the
equilibrium state. On the contrary, if the two limits are
interchanged, F = limg→0 limN→∞ Fg contains the informa-
tion about all the metastable states (i.e., the local minima
of the potential landscape). It is important to note that the
two limits coincide if the number of local minima does not
grow exponentially with the volume of the system, V [13].
Conversely, when the number of metastable states scales
as ∼eV , interchanging the two limits leads to two different
results. The large number of states, indeed, compensates for
the fact that their statistical weight is smaller than that of the
equilibrium state. The difference between the two free energies
is the configurational entropy, i.e.,

Sc = β(F − Feq), (6)

which corresponds to the entropy lost by freezing the system
in one of the exponentially many metastable states. Therefore,
Sc �= 0 hints to a possible glassy phase. We now introduce

Fn = −(βn)−1 lim
g→0

ln
∫

DψZn[ψ], (7)

where the function Z[ψ] in Eq. (7) is replicated n times.
Therefore,

F = ∂(nFn)

∂n

∣∣∣∣
n→1

, (8)
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and

Sc = β
∂Fn

∂n

∣∣∣∣
n→1

. (9)

Performing the functional integration over the field ψ(r) we
get

Fn = −(βn)−1 lim
g→0

ln
∫
Dm

∫
Dλ exp

{
− β

2
H̃[m,λ]

}
, (10)

where

H̃[m,λ] =
∑
q,q ′

∑
α,β

∑
i,j

mi,α
q [G̃(0)(q,q ′,λ)]−1

ij,αβm
j,β

−q ′

−
∑
q,α

(
2hα

−q · mα
q + λ(α)

q

)
. (11)

Here α,β = 1, . . . ,n are replica indices, and we introduced
the replicated Green’s function

[G̃(0)(q,q ′,λ)]−1
ij,αβ = [G(0)(q,q ′,λ)]−1

ij δαβ + g

n
δij , (12)

which is the tensor product of a 3 × 3 matrix in real space and
an n × n matrix in replica space. The role of the pinning field
ψ(r) is to break the symmetry of the replicas and to introduce
a coupling between them. After a change of variable (with
Jacobian one) the Hamiltonian (11) is conveniently rewritten
as follows:

H̃[m,λ]=
∑
q,q ′

∑
α,β

∑
i,j

mi,α
q [G̃(0)(q,q ′,λ)]−1

ij,αβm
j,β

−q ′

+
∑
q,q ′

∑
i,j

hi,α
q G̃

(0)
ij,αα(q,q ′,λ)hj,α

−q ′ −
∑
q,α

λ(α)
q . (13)

We now briefly summarize the calculation. More details
are given in what follows. We split λq = λ̄δq,0 + λ̃q , where
λ̄ is the mean-field part of the slave field and λ̃q is its
fluctuating part. λ̄ is determined by requiring the equality
|m(r)|2 = 1 to be satisfied (on average). The fluctuating part of
the slave field introduces higher-order couplings between the
components of the magnetization. Assuming the fluctuations
to be small, and expanding to second order in λ̃q , we obtain an
effective fourth-order coupling between the components of the
magnetization which is mediated by the propagator 〈λ̃q λ̃−q〉.
The latter is nothing but the inverse of the polarizability
[see Fig. 1(b)]. The fourth-order coupling in turn induces
self-energy corrections to the full Green’s function G̃ij,αβ(q).
When the number of components of m(r) is large, the diagram
of Fig. 1(a) is responsible for the dominant contribution
to the self-energy. In what follows we only calculate this

FIG. 1. (a) The self-energy 	̃ij,αβ (q) in the self-consistent screen-
ing approximation. The straight oriented line is the full Green’s
function G̃ij,αβ (q), while the wavy line represents the screened
interaction D̃αβ (q). (b) The screened interaction as the inverse of
the polarizability 
̃αβ (q). The equations of (a) and (b) are solved
self-consistently until convergence is reached.

contribution. In a self-consistent fashion, the new Green’s
function is used to recalculate the polarizability (i.e., the
propagator of the interaction) and the mean field λ̄. These two
quantities are then used to start a new cycle, until convergence
is reached. This procedure, called the self-consistent screening
approximation (SCSA) [44], is summarized in Fig. 1. Finally,
the configurational entropy is calculated according to Eq. (9).

In more detail, we observe that the Hamiltonian (13)
is quadratic in the magnetization field. Therefore, we can
integrate out the vector field m(r) and obtain an effective
action for the slave field λ(r). We get

S[λ] = −1

2
Tr ln

{
[G̃(0)(q,q ′,λ̄)]−1

ij,αβ + λ̃
(α)
q−q ′δij δαβ

}

−β

2

⎡
⎣∑

q,q ′
hi,α

q G̃
(0)
ij,αα(q,q ′,λ)hj,α

−q ′ −
∑
q,α

λ(α)
q

⎤
⎦. (14)

In Eq. (14) the trace is on magnetization-direction, momentum,
and replica indices. The mean-field λ̄ is determined by
expanding the right-hand side of Eq. (14) in powers of λ̃q ,
and setting the first-order term to zero. This procedure leads
to the following self-consistent equation [45–47]:

δS[λ]

δλ

∣∣∣∣
λ̃=0

= 0, (15)

which is explicitly rewritten as

∑
q,i

G̃
(0)
ii,αα(q)+ 1

T

∑
q,i,j

hi,α
q G̃

(0)
ij,αα(q)hj,α

q G̃
(0)
ji,αα(q)= 1

T
, (16)

where we used that G̃
(0)
ij,αβ(q,q ′,λ̄) ≡ G̃

(0)
ij,αβ(q)δq,q ′ . No sum

over α is understood in Eq. (16), which defines λ̄ as a function
of both the in-plane magnetic field and the temperature.

Expanding Eq. (14) to second order in the fluctuation λ̃q

we get

S[λ] =
∑
q,q ′

∑
i,j,α,β

λ̃
(α)
q−q ′G̃

(0)
ij,αβ(q)λ̃(β)

q ′−qG̃
(0)
ji,βα(q ′)

=
∑

q

∑
α,β


̃
(0)
αβ(q)λ̃(α)

q λ̃(β)
q , (17)

where we introduced the bare polarizability


̃
(0)
αβ(q) =

∑
p,i,j

G̃
(0)
ij,αβ(p)G̃(0)

ji,βα(| p + q|). (18)

The coupling between the magnetization and the slave field
induces, to the lowest order in the expansion in λ̃q , an effective
magnetization-magnetization interaction, whose propagator
is D

(0)
αβ (q) ≡ [
̃(0)(q)]−1

αβ . If the Green’s function is dressed
by self-energy insertions (subleading in the 1/N expansion),
the propagator of the interaction is also renormalized, i.e.,
Dαβ(q) ≡ [
̃(q)]−1

αβ , where [45–47]


̃αβ(q) =
∑
p,i,j

G̃ij,αβ(k)G̃ji,βα(| p + q|). (19)

Here G̃ij,αβ(q) is the full Green’s function. Note that in
Eq. (19) we have retained only self-energy corrections, and we
discarded the vertex ones. This approximation, which greatly
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simplifies our calculations, is at the heart of the SCSA [44].
Analogously, Eq. (16) is replaced by

∑
q,i

G̃ii,αα(q) + 1

T

∑
q,i,j

hi,α
q G̃ij,αα(q)hj,α

q G̃ji,αα(q) = 1

T
.

(20)

We assume the full Green’s function to have the following
one-step replica-symmetry-breaking form:

G̃ij,αβ(q) = [Gij (q) − Fij (q)]δαβ + Fij (q), (21)

where Fij (q) is the anomalous (off-diagonal in replica space)
part of the Green’s function, which is nonzero if the system
exhibits broken replica symmetry. Equation (20) then reads

∑
q,i

Gii(q) + 1

T

∑
q,i,j

hi
qGij (q)hj

qGji(q) = 1

T
. (22)

The polarizability matrix has the same replica structure,
namely 
̃αβ(q) = [
G(q) − 
F (q)]δαβ + 
F (q), where


G(q) =
∑
p,i,j

Gij ( p)Gji( p + q),

(23)

F (q) =

∑
p,i,j

Fij ( p)Fji( p + q).

The propagator of the magnetization-magnetization interac-
tion is D̃αβ(q) ≡ [
̃(q)]−1

αβ = [DG(q) − DF (q)]δαβ + DF (q),
where, in the limit n → 1,

DG(q) = 
−1
G (q),

(24)

DF (q) = − D2
G(q)
F (q)

1 − DG(q)
F (q)
.

The interaction DG(q), which extends in principle up to the
upper momentum �, needs to be cut off at momenta of the
order of 2q0 for our theory to produce meaningful results.
The qualitative behavior of Sc is only weakly affected by
this truncation procedure but we find that, if no cutoff is
introduced on the interaction, the self-consistent procedure
does not converge and the self-energy strongly depends
on �. Finally, the self-energy is 	̃ij,αβ(q) = [	G,ij (q) −
	F,ij (q)]δαβ + 	F,ij (q), where

	G,ij (q) = 2
∑

p

DG( p)Gij ( p + q),

(25)
	F,ij (q) = 2

∑
p

DF ( p)Fij ( p + q).

Since G̃−1
ij,αβ(q) = [G(0)(q)]−1

ij,αβ + 	̃ij,αβ(q), when n → 1

G(q) = {[G(0)(q)]−1 + λ̄1 + 	G(q)}−1
ij ,

(26)
F(q) = −G(q)	F (q)G(q)[1 − 	F (q)G(q)]−1,

where the matrix product on the spin indices is understood.
The configurational entropy is determined from the deriva-

tive of the free energy [48]

Fn

T
= 1

2n

(
Tr ln G̃−1 + Tr(	̃G̃) − �[G̃] − Tr(hG̃h)

2T

)

(27)

with respect to n. Here the trace is over momentum, spin, and
replica indices, while the Luttinger-Ward functional [48] �[G̃]
is determined by the choice of the self-energy and by the fact
that

δ�[G̃]

δG̃ij,αβ(q)
= 	̃ij,αβ(q), (28)

which leads to �[G̃] = Tr lnD−1. The entropy is then given
by [13]

Sc(T )

V
= −1

2

∑
q

{
Tr(ln[1 − G−1(q)F(q)]

+G−1(q)F(q)) − ln

[
1 − 
F (q)


G(q)

]
− 
F (q)


G(q)

}

− 1

4T

∑
q,i,j

hi
−qFij (q)hj

q . (29)

Here the trace is on the three magnetization directions. Note
that the term in the last line involves the anomalous Green’s
function in the direction of the external magnetic field. If
the latter is parallel to the plane of the 2D system the
configurational entropy does not depend explicitly of hq , since
the in-plane components of the anomalous Green’s function
vanish.

As in the conventional theory of phase transitions [49], the
coupling g → 0+ can lead to the breaking of the replica sym-
metry. Such a scenario is encoded in the self-energy 	αβ(q).
The starting point of the self-consistent calculation outlined
in Fig. 1 is a Green’s function which has small off-diagonal
components in replica space. At the end of the self-consistent
loop, the self-energy can have finite off-diagonal components.
This is, however, not sufficient to say that the system is a
stripe glass. It is necessary to calculate the configurational
entropy according to Eq. (29) and, if Sc > 0, we say that for
the chosen parameters (temperature and magnetic field) the
system is in the glass phase. Conversely, a negative Sc shows
that our theory breaks down and cannot properly describe
the glassy state. It would probably be necessary to consider
the full-replica-symmetry-breaking solution to get the correct
value of the configurational entropy, but this task is beyond
the scope of the present work. Here we focus on the transition
between the ordered stripe phase and the glassy state. We
identify TK, i.e., the temperature at which the configuration
entropy vanishes linearly, as the transition temperature.

III. RESULTS

To perform the numerical calculations we rescale all
energies in units of J , and all lengths in units of the inverse
of the upper cutoff of the momentum integration (�). Typical
values of the exchange coupling and out-of-plane anisotropy
are given in Refs. [39,40] for the case of Fe81Ni19/Co(001)
multilayers, i.e., J ∼ 2 × 10−11 J/m and K ∼ 2.7 × 104 J/m3

(for the 9/9 multilayers of Ref. [40]). Note that K is the sum
of the out-of-plane, interface, and shape anisotropies [40].
Once converted to two-dimensional units (i.e., using that the
height of a bilayer is ∼4 nm), we get J ∼ 0.5 eV and K ∼
7 × 10−4 eV/nm2. The inverse of the cutoff �−1 is of the order
of the thickness of domain walls (DW = √

J/K ∼ 30 nm).
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FIG. 2. (a) The Green’s functions Gzz(q) and Fzz(q) at the
Kauzmann temperature TK in units of 1/J , plotted as a function of the
momentum q (in units of the upper momentum cutoff �). In this plot
we set h = 0, K/(J�2) = 0.2, d� = 20, and Q/(J�3) = 0.02. Both
the functions are peaked at q0 ∼ 0.2�, which is the modulus of the
wave vector of the striped phase. (b) The configurational entropy for
a 2D Heisenberg ferromagnet subject to a long-range dipole-dipole
interaction. The parameters of this plot are the same as in (a).

Approximating domain walls with dimensionless lines we
implicitly coarse-grain our system in cells of lateral size ∼DW.
Therefore, its properties depend on the ratio between such scale
and the pattern wavelength [50,51].

In Fig. 2(a) we show the form factor of the magnetization
along the ẑ directionGzz(q) = 〈mz

qm
z
−q〉. In this plot we set h =

0, K/(J�2) = 0.2 (which implies that � � 14 nm), d� =
20, and Q/(J�3) = 0.02. In our calculation we set 	G(q) =
0, i.e., Gij is diagonal in the spin indices and it is equal to
the noninteracting Green’s function. This approximation is
justified by the fact that 	G(q) is very small and only weakly
dependent on q. For a sufficiently large value of the out-of-
plane anisotropy, Gii(q) is maximum at q = 0 for i = x,y,
and Gzz(q) is peaked at q0 � [Q/(2J )]1/3 �= 0. For our choice
of the parameters, q0 ∼ 0.2�. The finite value of q0 makes
it possible to form a low-temperature striped phase. For our
choice of the parameters, the period of the striped phase is
Lth = 2π/q0 � 440 nm, which is to be compared with the
experimentally measured one [38], Lexpt � 460 nm. Since the
Hamiltonian is rotationally invariant in momentum space, a
stripe glass can emerge at sufficiently high temperature [13].
Note that no glass (or striped phase) emerges ifGzz(q) is peaked
at q = 0, i.e., when the out-of-plane anisotropy is too small.

In Fig. 2(b) we show the configurational entropy for a 2D
Heisenberg ferromagnet subject to a long-range dipole-dipole
interaction. The parameters are the same as in Fig. 2(a). At
large temperature, the system is in a liquid (or paramagnetic)
state, in which the magnetization is completely randomized.
The anomalous part of the Green’s function Fij (q) vanishes,
and so does the configurational entropy. At the temperature
TA, Sc jumps from zero to a finite positive value. Below the

temperature TA the system is found in a glassy state. The con-
figurational entropy decreases with decreasing temperature,
and vanishes at the Kauzmann temperature TK < TA. Below
this temperature, the theory predicts an unphysically negative
Sc. Such a behavior shows that the ansatz for the Green’s
function is not correct for T < TK. Below TK the system is
believed to be able to still form a glass but with an extremely
long time scale [13–16]. Such a regime is not only beyond
the scope of our work, but we also believe that, as observed
experimentally [38–40], below TK the system forms a striped
phase by spontaneously breaking the rotational symmetry.

Below the temperature TA, the anomalous Green’s function
Fii(q) = 0 for i = x,y, while Fzz(q) is nonzero and peaked at
q = q0 [see Fig. 2(a)]. We recall [13,14] that Gij (q) [Fij (q)]
contains the information about the short-time (long-time)
correlations of the system. Both functions are maximized
by the perfect stripe arrangement, and the widths of their
peaks define two length scales, ξG and ξF [14]. The former
is interpreted as the correlation function of the stripe phase,
which diverges at zero temperature, while the latter is the
length scale over which defects can wander. Note that Fzz(q)
decays faster than Gzz(q), when q is moved away from
q0. Long-time correlations of nonperfect stripe phases are
suppressed with respect to the instantaneous ones since
defects can wander and destroy them [14]. At the Kauzmann
temperature, ξG ∼ 7 μm and ξF ∼ 2 μm. Samples of lateral
size smaller than ξG are therefore expected to exhibit an almost
striped phase, with an average interdefect distance of the order
of ξF . Indeed, two defects that are at the distance smaller than
ξF can wander and annihilate each other.

It is interesting to study the effect of a uniform in-plane
magnetic field, for example along the ŷ direction, i.e.,
hq = δq,0h ŷ, which directly contributes to the configurational
entropy though the term on the last line of Eq. (29). Since
Fyy = 0, there is no direct effect of the magnetic field on
the configurational entropy. This does not mean that there is
no effect at all. The phase diagram of the system (Fig. 3) is
completely determined by the value of λ̄, which depends on
both the temperature and magnetic field via Eq. (22).

FIG. 3. The phase diagram of the magnetic system described by
the action (2). Note that the temperature of the glass transition shifts
to lower temperatures as the in-plane magnetic field is increased.
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Note that the stripe-glass phase shifts to lower temperatures
when h is increased. This can be qualitatively understood by
noting that the ẑ component of the magnetization is the one that
matters for the formation of both ordered and glassy phases.
The corresponding Green’s function is indeed peaked at q0 �= 0
for sufficiently large values of the out-of-plane anisotropy.
By tilting the magnetization in the in-plane direction, the
magnetic fields lowers the (spin-flip) barrier that needs to be
overcome for the formation of the glassy phase. Therefore,
the temperature at which the system starts to form defects
decreases with the applied magnetic field.

Starting from the ordered striped phase and by applying
an in-plane magnetic field, defects can be introduced into the
system and a glass can be formed. It is interesting to note that
a similar behavior has been observed experimentally [38,42]
for the case of Fe81Ni19/Co(001) multilayers, in which an in-
plane magnetic field induces a chaotization of the domain-wall
structure. Such a behavior is compatible with the self-induced
glassiness discussed in this paper. The value of the critical
magnetic field to enter the glass phase at room temperature
(T/J � 0.1) can be extracted from Fig. 3 and reads h/K ∼
0.25. We recall that h = H‖M/2, where M = m̄Nat/a

2
0 is the

saturation magnetization density. Here m̄ is of the order of
∼2μB/atom (μB � 5.79 × 10−5 eV/T is the Bohr magneton)
[38], a0 � 0.28 nm is the lattice constant, and Nat = 4 is the
number of atoms per unit cell [52]. The magnetic field is then
determined by the formula

H‖ = h

K

2Ja2
0

m̄Nat
2
DW

. (30)

Plugging the experimentally determined numbers into this
formula, we find H‖ ∼ 50 mT, whose order of magnitude is in
good agreement with that reported in Ref. [38].

IV. CONCLUSIONS

In this paper we have discussed the emergence of self-
induced glassiness in two-dimensional magnetic thin-film
multilayers. These systems have attracted a great deal of
interest in recent years because of the intriguing behavior of
the domain-wall structure [18–41]. Due to the many possible
applications in everyday life, it is fundamental to improve our
understanding of their properties.

At low temperature, the out-of-plane anisotropy and the
competition between the short-range ferromagnetic coupling
and long-range dipole-dipole interactions leads to the forma-
tion of an ordered phase [5–11]. The spins are mainly oriented
out of the film plane and their direction switches periodically
from up to down, thus forming a stripe domain pattern. The
modulation wavelength of the pattern is due to the different
scales of interactions, while the stripe direction emerges as a
result of the spontaneous breaking of the rotational symmetry.

The equivalence of the in-plane directions is responsible
for the formation of a stripe glass [13–16]. As the temperature
increases, the striped phase starts to melt and defects wander
[13,14]. Eventually, a glass is formed. This phase is charac-
terized by the appearance of many metastable states, whose
number compensates for their small statistical weight. The
system is then trapped in one of the minima for a long time,
and its behavior becomes nonergodic. This is reflected in the
finite configurational entropy (Sc).

The glass is formed in a quite narrow range of temperatures,
between the Kauzmann temperature [2] TK and the melting
temperature [13] TA, above which the system is found in a
paramagnetic state. At TA the configurational entropy jumps
from zero to a finite value [13–16], therefore signaling a first-
order glass transition. The entropy then vanishes linearly, as
the temperature is decreased, at TK. Below TK the system is in
the ordered phase.

The application of an in-plane magnetic field shifts the
glassy phase towards lower temperatures. Interestingly, exper-
iments [38] have observed a chaotization of the domain-wall
pattern in layered structures when an in-plane magnetic field is
applied. Our theory is compatible with the observed behavior:
the system forms a glass when TK becomes equal to the
experimental temperature. At room temperature, the magnetic
field that leads to the transition is H‖ ∼ 50 mT, which is in
good agreement with that reported in experiments [38].
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