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Quantum antiferromagnets have proven to be some of the cleanest realizations available for theoretical,
numerical, and experimental studies of quantum fluctuation effects. At finite temperatures, however, the additional
effects of thermal fluctuations in the restricted phase space of a low-dimensional system have received much
less attention, particularly the situation in frustrated quantum magnets, where the excitations may be complex
collective (bound or even fractionalized) modes. We investigate this problem by studying the thermodynamic
properties of the frustrated two-leg S = 1

2 spin ladder, with particular emphasis on the fully frustrated case. We
present numerical results for the magnetic specific heat and susceptibility, obtained from exact diagonalization and
quantum Monte Carlo studies, which we show can be rendered free of the sign problem even in a strongly frustrated
system and which allow us to reach unprecedented sizes of L = 200 ladder rungs. We find that frustration effects
cause an unconventional evolution of the thermodynamic response across the full parameter regime of the model.
However, close to the first-order transition they cause a highly anomalous reduction in temperature scales with
no concomitant changes in the gap; the specific heat shows a very narrow peak at very low energies and the
susceptibility rises abruptly at extremely low temperatures. Unusually, the two quantities have different gaps over
an extended region of the parameter space. We demonstrate that these results reflect the presence of large numbers
of multiparticle bound-state excitations, whose energies fall below the one-triplon gap in the transition region.
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I. INTRODUCTION

Quantum magnets rank among the simplest model systems
in condensed matter physics, but nonetheless exhibit some of
its most fundamental phenomena, including quantum phase
transitions, symmetry-breaking and restoration, collective and
fractionalized excitations, topological order, and complex en-
tanglement of the quantum wave function. From a theoretical
point of view, these phenomena arise even in models with only
the most elementary magnetic interaction, described by the
Heisenberg model [1], and depend crucially on the geometry
of the lattice. In low-dimensional systems, quantum fluctuation
effects are strong, and models in one spatial dimension provide
particularly good examples of exotic phenomena [2], not
least the gapped “Haldane” state of the nearest-neighbor
spin-1 chain [3] and the exactly dimerized ground state,
with fractional “spinon” excitations, of the frustrated spin- 1

2
J1-J2 chain [4–6]. In higher dimensions, models on bipartite
lattices tend to show semiclassical long-ranged magnetic order,
whereas geometrically frustrated lattices offer both analogs of
the unconventional ground states of quantum spin chains and
uniquely high-dimensional phases such as the quantum spin
liquid [7–10].

A frustrated two-dimensional system related to the J1-J2

chain is the Shastry-Sutherland model [11], which exhibits an
exact dimer-singlet ground state. The compound SrCu2(BO3)2,
based on S = 1

2 Cu2+ ions, provides not only a good realization

*Deceased.

of this model, but one that is believed to be located close
to a frustration-induced quantum phase transition out of the
dimer-singlet phase [12–15]. As a consequence, SrCu2(BO3)2

displays a number of exotic properties, including a magne-
tization curve that exhibits many plateaus [13,16–19]. The
origin of this unusual behavior lies in the strong suppression
of kinetic energy contributions from the triplet excitations, due
to the almost perfectly frustrated coupling of the dimers in the
Shastry-Sutherland model [20]. When magnetic excitations
become highly localized in this way, the related phenomenon
of bound-state formation appears. In two-leg spin- 1

2 ladders
with little or no frustration, bound states are present in the spec-
trum at higher energies [21,22], whereas in strongly frustrated
systems they can occur at low energies, particularly close to a
quantum phase transition as in the Shastry-Sutherland model
[20,23].

The presence of additional low-energy states in the spec-
trum of a system is expected to have a clear signature in its
physical properties. Despite the fact that the thermodynamic
properties are frequently used as one of the first experimental
characterizations of any new material, their computation
actually constitutes a major challenge for theory. Exact results
for the finite-temperature properties of truly quantum models
are scarce, being restricted to integrable systems such as the
nearest-neighbor spin- 1

2 Heisenberg chain [24–29], which can
be solved by generalizations of the Bethe ansatz [30,31].

Among the numerical approaches to this problem, one of
the first to be used was the full exact diagonalization (ED) of
the Hamiltonian in the exponentially large Hilbert space [32].
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FIG. 1. Representation of superexchange interactions in a frus-
trated spin ladder. Each ladder site (spheres) hosts an S = 1

2 quantum
spin and the Heisenberg couplings between spins are specified by the
parameters J⊥ for the ladder rungs, J‖ for the ladder legs, and J×
for the cross-plaquette couplings, which we take to be symmetrical.
Ellipsoids represent singlet states of the two-rung spins and their
absence a rung triplet.

Although this method can be extended as far as 24 spin- 1
2 sites

with current technology [33], standard applications are limited
to approximately 20 S = 1

2 sites [12], a size with restricted
applicability in two and higher dimensions. Another classic
approach is the use of high-temperature series expansions
[34–36], but frustrated systems such as the Shastry-Sutherland
model [37] illustrate the difficulties suffered by this method
in accessing the low-temperature regime. Finite-temperature
variants of the density-matrix renormalization group (DMRG)
technique [38] such as a quantum transfer-matrix formulation
[39,40], imaginary-time evolution in an enlarged Hilbert space
[41], and minimally entangled typical thermal states [42] have
been developed into powerful tools for calculating the thermo-
dynamic properties of one-dimensional systems, but despite
the development of modern matrix-product-state formulations
[43], these methods have mostly remained limited to one
dimension. Quantum Monte Carlo (QMC) simulations provide
the most flexible approach in higher dimensions, and are able to
resolve the primary features of the thermodynamic quantities
for models that are at most weakly frustrated [44–46], but
these break down in more strongly frustrated systems due to
the notorious QMC sign problem.

As a consequence of these technical limitations, there has
been little systematic investigation of the finite-temperature
response of quantum spin systems with strong geometrical
frustration, and thus the influence both of bound states in
the excitation spectrum and of proximity to a quantum
critical point on the thermodynamic properties remains poorly
understood. Here, we provide a detailed analysis of these issues
using the model of the fully frustrated two-leg spin- 1

2 ladder,
which is shown in Fig. 1. A significant amount of information is
already available concerning the zero-temperature properties
of this precise model [47–54] and variants thereof [55–62].
Like the Shastry-Sutherland model, it exhibits a phase with a
dimer-singlet ground state, fully localized triplet excitations,
and a first-order phase transition [47,49]. The importance of
multitriplet bound-state excitations was also recognized in
early analytical studies of the fully frustrated ladder [47,49]
and observed in a DMRG calculation [52].

Building on these analytical properties, we perform and
interpret detailed numerical calculations of the magnetic
specific heat and susceptibility of the fully frustrated ladder.
With a view to a complete microscopic understanding of

the spectrum, and profiting from the very short correlation
length of the fully frustrated system, our tool of choice
for this investigation is ED rather than a finite-temperature
variant of DMRG. We will show that this model permits a
detailed analysis of the excitation spectrum, which shows a
highly unconventional emergence of multiparticle bound states
involving very many rungs near the quantum phase transition.
Because this feature exceeds the system-size limitations of
ED, we exploit the properties of the model to express the
spin Hamiltonian in the dimer basis and achieve the ability
to perform QMC simulations completely free of the sign
problem. These we employ to compute the numerically exact
specific heat and susceptibility for ladders of up to 400 spins,
which we show is well in the thermodynamic limit even for
systems arbitrarily close to the quantum phase transition.

The structure of this paper is as follows. In Sec. II, we
introduce the fully frustrated ladder model and highlight
some of its analytical properties. These allow us to review
the ground-state phase diagram, to discuss the nature of the
low-energy excitations in the two different phases, which
include exact and perfectly localized bound states, and to
highlight the appearance of many low-lying states near the
phase transition. We then use these properties in an analytical
discussion of a simple approximation to the thermodynamics
of the fully frustrated ladder in the rung-singlet phase and
compare its qualitative features with those of unfrustrated
ladders. Because a systematic analysis of thermodynamic
properties, particularly near the phase transition, requires exact
numerical results, in Sec. III we explain how the specific
properties of the fully frustrated ladder may be exploited to
perform maximally efficient ED calculations and, despite the
frustration, sign-problem-free QMC simulations. Section IV
presents and compares the results we obtain from these
numerical calculations for the magnetic specific heat and
susceptibility over the full range of temperatures, for a
selection of fully frustrated ladders with different coupling
ratios. In Sec. V, we provide some analytical interpretations
of our results, by comparing them with small- and large-
cluster approximations, and by discussing the different energy
scales characterizing the dramatic effects occurring near the
phase transition. Our conclusions concerning the key role
of low-lying multitriplet bound states in determining the
thermodynamic properties are summarized briefly in Sec. VI.

II. FULLY FRUSTRATED LADDER

The frustrated Heisenberg spin ladder we consider is
represented schematically in Fig. 1. In addition to the “rung”
interaction J⊥ defining the fundamental dimer unit, and the
“leg” interaction J‖ defining the two chains, we include a
symmetrical cross-plaquette coupling J×, which frustrates J‖.
The Hamiltonian of the model for any spin quantum number
S and for a ladder of L rungs is

H =
∑

i

J⊥ �S1
i · �S2

i +
∑

i,m=1,2

(
J‖ �Sm

i · �Sm
i+1 + J× �Sm

i · �Sm̄
i+1

)
,

(1)
where i is the rung index, m = 1 and 2 denote the two chains of
the ladder, and m̄ is the chain opposite to m. In our numerical
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calculations, we will impose periodic boundary conditions,
such that i + L ≡ i.

The primary focus of our investigation is the fully frustrated
case J× = J‖. In this situation, the Hamiltonian (1) can be
reexpressed in the form [49,53]

H = J‖
L∑

i=1

�Ti · �Ti+1 + J⊥
L∑

i=1

(
1

2
�T 2
i − S (S + 1)

)
, (2)

where �Ti = �S1
i + �S2

i is the total spin of rung i and S is the
spin quantum number at each site. This expression makes
clear that, for J× = J‖, the Hamiltonian (1) has L purely local
conservation laws, namely, the total rung spin �T 2

i , which we
may encode in additional quantum numbers Ti .

Although the form of Eq. (2) is valid for all S, we restrict
our considerations henceforth exclusively to the case S = 1

2 .
Thus, Ti takes the values 0 (a rung singlet, indicated by the
ellipsoids in Fig. 1) or 1 (a rung triplet, represented by the
two parallel rung spins in Fig. 1). For a given configuration
{Ti}, the first term of Eq. (2) is finite only for groups of n

neighboring rung triplets (Ti = 1) with n � 2, in which case
the Hamiltonian for the triplet cluster is that of an open n-site
spin-1 chain. The second term in Eq. (2) is simply a number
operator penalizing the presence of these rung triplets relative
to rung singlets (Ti = 0).

A. Spectrum

1. Ground state

As noted first in Ref. [47], the Hamiltonian (2) of the
fully frustrated S = 1

2 ladder [i.e., the model of Eq. (1) with
J× = J‖] possesses a first-order quantum phase transition as
a function of the coupling ratio J⊥/J‖ [49,53]. This transition
separates a rung-singlet phase for strong J⊥ from a rung-triplet,
or Haldane [3], phase at weak J⊥. These two states have been
found to dominate the phase diagrams of different generalized
tetrahedral cluster models [50,52,54–62]. In the formulation
of Eq. (2), the ground states are characterized by all Ti = 0
(n = 0, rung-singlet phase) when J⊥ is dominant or all Ti = 1
(n = L, Haldane phase) when the combination of J‖ and J×
forces the creation of rung triplets to satisfy all of the inter-rung
bonds. The ground-state energies are simply En=0 = − 3

4 J⊥ L

for the rung-singlet state and En=L = 1
4 J⊥ L + ES=1(L) for

the rung-triplet state, where ES=1(L) is the ground-state energy
of an L-site spin-1 chain with coupling constant J‖. By using
literature estimates [63,64] for e∞ = limL→∞ ES=1(L)/L, the
thermodynamic limit for the ground-state energy density of the
spin-1 chain, one may conclude [47,49,53,54] that the critical
coupling constant for the quantum phase transition is

J⊥,c = −e∞ ≈ 1.401 484 J‖. (3)

With a view to discussing the thermodynamic properties of
the fully frustrated ladder, in the remainder of this section we
analyze the spin excitations above the two different ground
states.

1 1.2 1.4 1.6 1.8 2
J⊥/J

||

0

0.5

1

1.5

2

 ~ E
n i /J

||

S=0
S=1
S=2

n=14

n=
14n=

0

n=1

n=2

n=
3

n=
4

n=14

FIG. 2. Low-energy excited levels Ẽi
n of a 14-rung fully frustrated

spin- 1
2 ladder, shown as a function of J⊥/J‖. All excitations are

classified according to their total spin quantum number S and some
by an additional label for the number n of consecutive rungs in the
triplet state.

2. Excited states of the fully frustrated ladder
and of open spin-1 chains

The fundamental excitation of the rung-singlet state is a
single rung triplet, represented schematically in Fig. 1. In
conventional one-dimensional (1D) systems, this is a collective
mode involving all rungs, and for clarity we refer to it
henceforth as the triplon. In the fully frustrated ladder, the
triplon is a nondispersive mode with a flat band at energy
ωk = J⊥. Further, it has been shown that the n-triplet clusters
within the rung-singlet state form exact bound states [49],
which are fully localized objects [47], and therefore are
also nondispersive. Thus, one obtains an entirely discrete
spectrum composed of the levels of n-site open Haldane
chains, separated by an additional constant for the total n

of the cluster; the case n = 2 is discussed in Ref. [49]. In
the rung-triplet phase, the ground state of the Haldane chain
is known to be a total singlet with complex, system-scale
spin entanglement quantified by the string-order parameter
and dispersive triplet excitations with a gap � = 0.4105J‖
[63,64]. These collective modes can be expected in the fully
frustrated ladder to be accompanied by local excitations due
to clusters of rung singlets in the triplet background.

We begin a quantitative discussion of the excitations by
showing in Fig. 2 the complete low-energy spectrum of a
fully frustrated 14-rung ladder, with J× = J‖ = 1 as the unit
of energy and J⊥ as the variable parameter. This figure was
obtained from a full diagonalization, which is described in
detail in Sec. III A. Here, the rung-triplet phase is on the left
side, the rung-singlet one is on the right, and the excitation
energies Ẽi

n are the energy differences with respect to the
corresponding ground state. We classify all the states in Fig. 2
by their total spin S and find only states with S � 2 in the
energy range covered by the figure, of which just three, all
at high energies, are S = 2. We also label some of the states
by the number n of consecutive triplet rungs (Ti = 1) and
comment that those states containing a single cluster with
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TABLE I. Energies Ei
S=1(n) of open, length-n, spin-1 chains with

exchange constant J‖, classified by their total spin S, and labeled by
their different levels i, in ascending order of energy. The value listed
for n = L is an extrapolation to the thermodynamic limit, where the
boundary conditions of the calculation are irrelevant.

n Spin S Ei
S=1(n)/J‖ n Spin S Ei

S=1(n)/J‖

1 1 0 7 1 −8.634532
2 0 −2 0 −8.303576

1 −1 8 0 −10.124637
2 1 1 −9.922759

3 1 −3 9 1 −11.432932
0 −2 0 −11.220229
1 −1 10 0 −12.894560
2 −1 1 −12.756229
1 0 11 1 −14.230359
2 1 0 −14.088587
3 2 12 0 −15.674010

4 0 −4.645751 1 −15.576869
1 −4.136582 13 1 −17.028266

5 1 −5.830213 0 −16.931557
0 −5.283567 14 0 −18.459853

6 0 −7.370275 1 −18.390687
1 −7.062489 L 0 (−1.401484 . . .) L

n < L consecutive rung triplets are L-fold degenerate because
they may be placed on the ladder in L possible ways.

For the interpretation of Fig. 2, in Table I we show the
energies of various multiplets found in the spectrum of open,
n-site, spin-1 chains for all values of n up to 14. The table is
complete up to n = 3, beyond which we quote only the lowest
states i = 1 and 2. Some of this information has been obtained
in a number of previous studies, specifically the spectrum
for n � 2 [49], energy differences between the lowest two
levels [65], and the lowest energy for each n [66]. Using the
Hamiltonian in the form of Eq. (2), the energy of a single
n-site, spin-1 cluster embedded in a fully frustrated L-rung
ladder is

Ei
n = Ei

S=1(n) + (
n − 3

4L
)
J⊥, (4)

from which it is clear that many (but not all) of the lines in
Fig. 2 may be identified by their slope and from the data of
Table I.

Inspection of Table I reveals that the lowest states of open
spin-1 chains have total spins S = 0 and 1; when n is odd, the
lowest-energy state is S = 1, whereas for n even, it has S = 0.
This result may be understood in terms of the valence-bond-
solid picture [67] of the Haldane phase, where the open chain
ends give rise to effective S = 1

2 spins unable to form valence
bonds. These end spins experience an effective interaction,
mediated by the “bulk” of the chain, which depends on the
Hamiltonian and, for the Heisenberg chain, is such that the
singlet state of the two end spins is lower in energy for n even,
i.e., their effective interaction is antiferromagnetic, whereas
for n odd the triplet is lower and the interaction ferromagnetic
[65]. To display this result in a different perspective, in Fig. 3
we show for n � 20 the energies Ei

S=1(n) − n e∞ of the two
lowest states of an open, n-site, spin-1 Heisenberg chain
relative to the energy of the corresponding segment of an

0 5 10 15 20
n

0.8

1

1.2

1.4

1.6

1.8

2

2.2

E
 i s=

1(n
) 

- 
ne

∞

S=0
S=1

FIG. 3. Energies of the two lowest states of an open, n-site, spin-1
Heisenberg chain relative to that of an n-site segment of an infinite
chain, shown as a function of n and in units of J‖. Red circles denote
total singlets (S = 0) and open blue squares total triplets (S = 1).

infinite chain (cf. Ref. [66]). For the fully frustrated ladder,
this quantity gives the excitation energy of a length-n triplet
segment in a background of rung singlets at the transition
point J⊥,c (3) and one observes many of the levels of the
discrete spectrum making the most important contributions to
the physical properties of the system.

Figure 3 also displays the valuable information that the cost
of breaking one bond in an infinite spin-1 Heisenberg chain is

Ebond = lim
n→∞

[
Ei

S=1(n) − n e∞
] ≈ 1.208 J‖, (5)

but that interactions between the two effective end spins lead
to significant lowering of this energy when the chain segment
(triplet cluster) is short.

3. Excitations in the rung-singlet phase

The information contained in Figs. 2 and 3 and in Table I
may be used to provide a complete discussion of the low-
energy excitations of the rung-singlet regime J⊥ � J⊥,c. First,
we comment that the lowest-lying state visible in Fig. 2 on
this side of the transition, the S = 0 state with n = 14 = L,
is in fact a finite-size effect. This is the Haldane ground state
at J⊥ � J⊥,c, which has an energy proportional both to the
distance from the transition point and to the system size. In
the thermodynamic limit, its energy for any value J⊥ in the
rung-singlet phase is infinite and it has no effect on the physical
properties.

The energies of all the other states in Fig. 2 depend not
on the system size but the cluster size, and these remain
low-energy excitations in the thermodynamic limit. For J⊥ >

2 J‖, the lowest excitation is a single-rung triplet (n = 1),
which has energy J⊥, can be created on any rung, and creates
the nondispersive one-triplon band. At J⊥ � 2 J‖ (the right
boundary of Fig. 2), the S = 0 branch of the two-triplon bound
state (n = 2), with a relative energy obtained from Eq. (4) of
Ẽ1

2 = E1
2 + 3

4J⊥L = 2J⊥ − 2J‖, lies lowest, and remains so
until the transition, where its gap is approximately 0.803 J‖
(cf. Ref. [49]). In this regime of J⊥, the total singlet (S = 0)
of the (n = 4)-triplon bound state crosses the one-triplon state
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at J⊥ 	 1.55 J‖, as may also be observed in Fig. 2. Next, the
total triplet (S = 1) level of the 3-triplon bound state, which
is the lowest branch of this cluster (Fig. 3 and Table I) crosses
at J⊥ 	 1.5 J‖, on its way to an energy Ẽ1

3 	 1.204 J‖ at the
transition. In fact, the lowest magnetic excitation at J⊥ = J⊥,c

is the S = 1 branch of the n = 5 bound state, which has a gap
Ẽ1

5 	 1.18 J‖ there. Thus, the triplet gap is almost 50% larger
than the singlet gap at the transition.

From the standpoint of discussing thermodynamic proper-
ties close to the quantum phase transition, the most important
point in Fig. 2 is the fact that many further states with S = 0
and 1 fall below the one-triplon gap as J⊥ → J⊥,c. These are
the lowest-lying states of n-triplon clusters with all higher
values of n, and their energies exactly at J⊥ = J⊥,c are shown
in Fig. 3. As n → ∞, these energies converge to the value
Ebond ≈ 1.208 J‖ discussed in Eq. (5). The rung-singlet phase
in the regime close to the transition is therefore characterized
by a very large number of states, of many-triplon origin, whose
energies lie close to Ebond, accompanied by some few-triplon
bound states providing levels, predominantly singlets, at lower
energies.

4. Excitations in the rung-triplet phase

In the rung-triplet (Haldane) phase at J⊥ � J⊥,c, again the
ground state of the rung-singlet phase appears in Fig. 2 as a
finite-size effect when J⊥ → J⊥,c. This total singlet, labeled
with S = 0 and n = 0, again has a slope proportional to L

and should be discounted in discussing the infinite system.
Horizontal lines in Fig. 2 are states with all n = L = 14 rungs
in a spin triplet, and it is clear that not many such states with
energies below 2 J‖ exist for this system size. The lowest
of these lines, located at Ẽ1

14 = E1
14 − 1

4J⊥L 	 0.46 J‖, is a
total-spin triplet (S = 1) and corresponds to the “one-magnon”
Haldane gap [3] for L = 14; as noted above, the value of this
gap in the thermodynamic limit is � 	 0.4105 J‖ [63,64]. The
Haldane chain is also known to have two-magnon scattering
states with total spins S = 0, 1, and 2, which set in above
the threshold energy 2 � 	 0.821 J‖. However, the lowest
S = 2 state for L = 14 (Fig. 2) is found at Ẽ2

14 	 1.23 J‖
and the lowest S = 0 state at Ẽ5

14 	 1.63 J‖, showing that
these extended (collective) features of the spectrum in the
rung-triplet phase are subject to significant finite-size effects.

By contrast, the spectrum for J⊥ � J⊥,c also contains levels
with S = 0 or 1 and a nonzero slope in Fig. 2. These features
are the energy branches of rung-singlet clusters (Ti = 0) in a
background of rung triplets (Ti = 1). Here, the rung-singlet
number is L − n, with n rung triplets, and the dominant
features are those with small L − n (n approaching L = 14);
as n increases, the energies at J⊥,c follow exactly the size
dependence shown in Fig. 3, converging for large clusters
on the value Ebond (5). Thus, as on the rung-singlet side, the
rung-triplet phase in the regime near the transition is dominated
by a very large number of states appearing around a single,
fixed energy close to (but above) the gap.

5. Summary of the low-energy spectrum

A summary of the previous two subsections for the spec-
trum of the fully frustrated ladder in the thermodynamic limit
is provided in Fig. 4. In the rung-singlet phase (J⊥ > J⊥,c), the

1 1.2 1.4 1.6 1.8 2
J⊥/J||

0

0.5

1

1.5

2

 ~ E n i /J
||

S=0
S=1
S=2

n=1

n=2

n=
3

n=
4

S=1

S=0, 1, 2

S=0, ..., 3

S=0, .., 4

FIG. 4. Schematic overview of the low-energy excitations Ẽi
n of

the infinite, fully frustrated spin- 1
2 ladder, shown as a function of

J⊥/J‖ for a broad region around the quantum phase transition at
J⊥,c = 1.410 484 J‖. Excitations are classified according to their total
spin quantum number S. The additional label n for the rung-singlet
phase specifies the origin of excitations in the bound states of n-rung
triplets. Shaded regions in the rung-triplet phase denote single- and
multiple-magnon continua.

spectrum is purely discrete, with multiple low-energy branches
appearing well below the one-triplon gap as J⊥ → J⊥,c.
These have their origin in some of the shortest clusters, in
particular the S = 0 component of the two-triplon bound state,
which provides the lowest excited state over the entire region
J⊥,c < J⊥ < 2 J‖.

In the rung-triplet phase (J⊥ < J⊥,c), the lowest-lying
modes are the dispersive single-magnon and multimagnon
bands of the Haldane chain. The one-magnon band begins
at a threshold � and consists only of S = 1 excitations. The
two-magnon band has a threshold of 2 � and gives rise to
additional S = 0 and 2 excitations. Two further thresholds
fall within the energy range of Fig. 4 and are indicated by
thin horizontal lines; at the three-magnon threshold 3 �, the
first excitations with total spin S = 3 appear, and similarly at
4 �. The spectrum contains additional discrete (nondispersive)
energy levels due to excited rung singlets or rung-singlet
clusters; increasingly long clusters provide low-lying levels as
the transition is approached. As J⊥ → J⊥,c, all of the discrete
excitations converge with increasing n to a single energy Ebond

and are 4L-fold degenerate because the energies of the total
S = 0 and 1 states of the two effective end spins converge as
their interaction vanishes.

To understand the densities of excited states in Fig. 4, we
appeal again to finite ladders. Excitations arising from one
cluster of rung triplets (singlets) in a background of singlets
(triplets) are all L-fold degenerate for an L-rung system.
Because there are L such states, L2 excitations have energies
that converge to Ebond 	 1.208 J‖ at the critical point, and
this is identical to the finite-size properties of a two-particle
continuum. In the rung-triplet phase, the energy Ebond lies
just below the three-particle threshold. However, we comment
that the one-magnon band of the Haldane chain extends up
to an energy of approximately 6 � [63], which is beyond
the range of Fig. 4, and thus the two-magnon continuum,
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extending to 12 �, includes many states lying far above the
energies of the discrete levels close to J⊥,c. Thus, we expect
the discrete levels to provide important contributions to the
thermodynamic properties of the fully frustrated ladder for all
values of J⊥ falling within the range of Figs. 2 and 4, not
only on the rung-singlet side but also on the rung-triplet side,
even if they are not the lowest-energy excitations. We analyze
these contributions in Secs. II B and V A by considering
short clusters and in Sec. V B by considering a domain-wall
description.

B. Analytical thermodynamic approximations

To gain some initial insight into the effects of its unconven-
tional spectrum on the thermodynamic properties of the fully
frustrated ladder, in this section we consider a straightforward
analytical approximation. Based on the exact n-triplon bound
states of the rung-singlet phase (J⊥ > J⊥,c), we construct the
partition functions of n-rung clusters and use them to obtain the
magnetic specific heat, which we denote simply by C(T ), and
magnetic susceptibility χ (T ) for ladder segments of increasing
n. These results can also be compared with the analogous
quantities computed for an unfrustrated ladder (J× = 0) in
the regime of strong J⊥ to observe the wider implications of
strong frustration. For the purposes of this analysis, which we
apply only in the rung-singlet regime, it is convenient in this
section to normalize the energy scales of the system to the rung
coupling J⊥.

The partition function of a single rung Z1 reflects the
four available states, namely, the singlet and three-triplon
components. That for a pair of rungs Z2 contains in place
of the nine possible states of two separate triplons the nine
levels of the total S = 0, 1, and 2 branches of the two-triplon
bound state. By continuing in this way for the three-triplon
bound states of a three-rung cluster, one obtains

Z1(β) = 1 + 3e−βJ ,

Z2(β) = 1 + 6e−βJ +
∑

i

gi
2e

−βẼi
2 , (6)

Z3(β) = 1 + 9e−βJ + 3
∑

i

gi
2e

−βẼi
2 +

∑
i

gi
3e

−βẼi
3 ,

where β = 1/T (we set kB = 1) and gi
2 and gi

3 are, respec-
tively, the degeneracies of the different multiplets of the two-
and three-triplon bound states, whose energies are Ẽi

2 and Ẽi
3 in

the notation of Sec. II A. Note that the combinatorial factor in
the expression for Z3 assumes that two-triplon bound states are
formed for all possible pairs of triplon locations, implying that
the boundary conditions of the three-rung cluster are periodic
rather than open, and we will not differentiate between these
cases for the approximate purposes of the current analysis. In
the presence of a magnetic field, h = gμBH , each multiplet
is split into all of its separate levels, replacing gi

n in Eq. (6)
by factors of the form 1 + 2 cosh(βh) + 2 cosh(2βh) + · · · .
The magnetic specific heat is obtained from the free energy
F = −β−1 ln Z, using the expression

C(T ) = −T

V

∂2F (T ,h)

∂T 2
= β2

V

∂2 ln Z(β)

∂β2
(7)

and the magnetic susceptibility using

χ (T ) = − lim
h→0

1

V

∂2F (T ,h)

∂h2
= lim

h→0

1

βV

∂2 ln Z(β,h)

∂h2
. (8)

V is the system volume and here we use the number of sites
V = 2L, quoting all our results per spin- 1

2 entity.
The construction of Eq. (6) forms a systematic basis for

adding the effects of four- and higher-rung triplon clusters to
investigate their contributions to the thermodynamic proper-
ties. We will also consider the thermodynamic quantities de-
rived from Z4, whose multiplet energies Ẽi

4 were obtained from
the spectrum of the four-site open Haldane chain (Table I).
This method is readily continued to larger values of n and
its efficacy will be compared with our numerical solutions in
Sec. IV.

Here, we focus on the qualitative properties of the specific
heat and susceptibility, specifically their shape and evolution
with the parameters of the ladder. We define the quantity
j ′ = J‖/J⊥ and consider fully frustrated ladders (J× = J‖)
for all values 0 � j ′ � 0.71 within the rung-singlet phase.
The thermodynamic properties of the frustrated ladder may
be benchmarked against those of the unfrustrated two-leg
spin ladder. These we also calculate by an approximate
method, using the bond-operator mean-field technique with
ansatz hard-core-boson triplet statistics and no higher-order
correlations, following Ref. [68]. This approach approximates
the shifts of spectral weight at finite temperatures by a single,
effective one-triplon band, which remains sharp rather than
including thermal broadening. As a result, it is known to
overestimate the thermal band-narrowing effect, hence the
neglect of further correlations (which exacerbate this effect).
This approximation has been found to give an excellent
account of the gap and bandwidth of the unfrustrated ladder
over the parameter range 0 � j ′ � 1, which exceeds the
regime of the current investigation.

Results for the specific heat of unfrustrated ladders and of
frustrated ladders computed using Z2, Z3 [Eq. (6)], and Z4 are
shown in Fig. 5 for a range of coupling ratios j ′ = J‖/J⊥ in
the rung-singlet phase. The common feature of every panel is
the curve for j ′ = 0, the specific heat (per spin) of an isolated
ladder rung,

Cr(T ) = 3 (βJ⊥)2e−βJ⊥

2 (1 + 3 e−βJ⊥ )2
, (9)

which shows an exponential increase at low temperature
characteristic of a gap � = J⊥, a maximum at T = 0.35J⊥,
and a power-law decay towards higher temperatures. The
results for the unfrustrated ladder in Fig. 5(a) show that, as the
leg coupling J‖ is increased, the increasing triplet bandwidth
causes a slow but continuous reduction of the gap and a
shift of weight to higher energies. The specific-heat maximum
displays a monotonic decrease in its height Cmax but an increase
in the temperature T C

max at which it occurs as j ′ increases.
We stress that this calculation shows only the contributions
of the one-triplon excitations, whose density of states is
concentrated between a gap �, which drops from J⊥ at j ′ = 0
to approximately J⊥/2 at j ′ = 1 [69,70], and an upper edge
close to J⊥ + 2J‖. However, because the maximum in C(T )
already increases with j ′ for the single-band contribution, we
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FIG. 5. Magnetic specific heat of (a) the unfrustrated ladder, (b)
two, (c) three, and (d) four fully frustrated rungs, shown as functions
of temperature for a range of values of the inter-rung coupling
j ′ = J‖/J⊥.

expect that multitriplon contributions, which appear at higher
temperatures, can only strengthen this effect.

In the fully frustrated ladder, the evolution of the specific
heat is quite different. For the two-rung approximation

[Fig. 5(b)], T C
max does not rise with the coupling but instead

is suppressed monotonically in temperature by increasing
j ′. This is not a consequence of changes in the gap, as �

begins to drop only beyond j ′ = 0.5 (Sec. II A). Cmax first
increases weakly with j ′, to a maximum value at j ′ = 0.5,
before falling somewhat more rapidly as j ′ → j ′

c. The three-
rung approximation, shown in Fig. 5(c), exaggerates these
tendencies, and the four-rung approximation exaggerates them
still further [Fig. 5(d)], meaning that the strongest alterations
visible due to including larger n-triplon clusters occur for the
coupling values closest to the transition.

We draw three conclusions from the specific heat. First,
its behavior as a function of j ′ in the fully frustrated ladder
is completely different from that of the unfrustrated ladder
over the whole range of j ′. Second, even the two-rung
approximation may already capture the basic phenomenology
of bound-state effects, although additional bound states are
responsible for strengthening these effects, which are most
pronounced close to the quantum phase transition at j ′

c. Third,
the peak of the specific heat becomes significantly smaller
(narrower as well as lower) as j → j ′

c, with very little weight
moving to lower energies due to the (weakly) decreasing gap;
clearly, most of the “missing” entropy caused by the peak
suppression near j ′

c is retrieved at higher temperatures, beyond
the apparent crossing point of the curves at T ≈ J⊥. Thus,
despite the fact that the one-triplon band is completely flat
and the leading effect of bound-state formation to produce
a sharper peak at lower energies, one overall effect of the
frustrated coupling is to push the available states to a higher
average energy.

The corresponding susceptibilities per spin are presented in
Fig. 6, where we show only the four-rung approximation for
the fully frustrated ladder. Again, the two panels are anchored
by the j ′ = 0 result, the susceptibility

χr(T ) = βe−βJ⊥

(1 + 3 e−βJ⊥ )
(10)

of an isolated spin- 1
2 dimer with coupling constant J⊥ [71–73],

which is activated at low T by the gap � = J⊥, has a broad
peak at approximately T = 0.62J⊥, and falls very slowly
to high temperatures. The susceptibility of the unfrustrated
ladder [Fig. 6(a)] has the same basic features as the specific
heat [Fig. 5(a)], namely, that the gap determining the low-T
response decreases steadily with j ′ but the peak position T

χ
max

increases, although its height χmax falls. The two quantities C

and χ are always characterized by the same gap.
The susceptibility of the fully frustrated ladder [Fig. 6(b)]

is again quite different from the unfrustrated case, but not
particularly similar to the specific heat [Fig. 5(d)]. T χ

max barely
moves with j ′ until j ′ > 0.3, then moves increasingly rapidly
to lower temperatures; χmax does fall with j ′ but then changes
very little as j ′ approaches j ′

c. We remind the reader that, while
C is the response due to all excited states, χ is the response
due only to all excited magnetic states, and thus the gap to
triplet and higher-spin excitations is constant (�χ = J⊥) for all
values of j ′ except for a small drop over the range 2

3 � j ′ � j ′
c,

ending at �
χ
c = 0.857J⊥. Thus, we have the situation that χ is

not characterized by the same gap as C, which is quite unusual
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FIG. 6. Magnetic susceptibility of (a) the unfrustrated ladder and
(b) the four-rung approximation to the fully frustrated ladder, shown
as functions of temperature for a range of values of the inter-rung
coupling j ′ = J‖/J⊥.

in magnetic systems and is another consequence of the strong
frustration.

The susceptibilities calculated using Z2 and Z3 (not shown
here, but presented for selected j ′ values in Sec. V A) display
the same trend towards the features of the Z4 result as do
the cruder approximations to the specific heat (Fig. 5). Again,
one may conclude that very small numbers of bound states
are sufficient to capture all the features of the thermodynamic
response when j ′ is far from j ′

c in the rung-singlet phase.
We will quantify this statement by comparison with our
numerical results in Sec. V, where we will find that the four-
rung approximation of Figs. 5(d) and 6(b) already achieves
quantitative accuracy for j ′ � 0.5, i.e., contributions from
n-triplon clusters with n > 4 are negligible in this regime. The
crucial effects of bound-state formation in the fully frustrated
ladder that we wish to investigate with our advanced numerical
techniques are those occurring in the vicinity of the quantum
phase transition, and thus in Secs. III and IV we will focus on
the parameter range 0.5 � j ′ � 1 shown in Figs. 2 and 4.

III. NUMERICAL METHODS

The Hamiltonian of the fully frustrated ladder expressed
in the rung basis of Eq. (2) is particularly valuable from a
numerical standpoint. In this section, we explain the methods
we apply both to extend ED calculations to larger system
sizes and to perform sign-problem-free QMC simulations even
for a highly frustrated system. Readers not interested in the
technical details of these approaches may continue directly to
the results presented in Sec. IV.

A. Exact diagonalization

The model specified in the form (2) has a large number of
sectors classified by the fixed set of rung quantum numbers
{Ti},i = 1, . . . , L, and each sector may be diagonalized
separately. Further, as explained in Sec. II A, every sector can
be characterized entirely by either the spectrum of a periodic,
L-site, spin-1 chain (if all rungs are in a triplet state) or
the spectrum of open, n-site, spin-1 chains for all n-triplon
clusters with n < L. The complete spectrum is constructed by
considering the combinatorial factors obtained by embedding
all such open chain segments into the ladder and counting the
(discrete) energy levels that appear with their corresponding
multiplicities.

For the two cases where Ti = 0 for all i (rung-singlet
phase) or Ti = 1 for all i (rung-triplet), there is only one
such possibility. Single-chain segments, of any n, may be
embedded at L places and therefore the energies (4) are L-fold
degenerate (Sec. II). For general numbers of chain segments, of
different lengths and positions on the ladder, the combinatorial
factors are enumerated by computer. The key physical property
allowing such a straightforward approach is that the interaction
between any two neighboring singlet and triplet rungs (and
indeed between two singlet rungs) is precisely zero, so that
rung and cluster states need only be placed side by side in all
possible combinations. This type of strategy has been applied
previously [74–76] to models with local conservation laws
[66,77–81], including to the fully frustrated ladder [74], where
the calculations were restricted to systems up to L = 12 (24
spins). Here, we extend this treatment to L = 14, a value that
we note lies beyond the limit of 24 S = 1

2 spins accessible
in conventional full-diagonalization calculations, even for
systems with high spatial symmetry [33].

In the calculations presented here, we exploit spatial
reflection symmetry and also translational symmetry for the
periodic L-site S = 1 system. We make use of the conservation
of total Sz, of spin inversion symmetry, and of SU(2) symmetry
in order to reconstruct the Sz = 1 sector from the other sectors.
The most demanding computation is the diagonalization of the
open spin-1 chain with n = L − 1 sites. For the L = 14 ladder,
the open spin-1 chain with n = 13 sites (representing the con-
tribution of 13-triplon clusters) has a vector-space dimension
up to 85 616 for Sz = 2. Results for the periodic L = 14 spin-1
chain are in fact available from a previous investigation [45].
Beyond these full-diagonalization procedures, we have also
computed the ground-state energies of open spin-1 chains with
14 � n � 20 sites using the Lanczos algorithm [82,83]; these
results are included in Fig. 3, and also in Table I for n = 14.

B. Quantum Monte Carlo

Calculations for the thermodynamic properties of all sys-
tems larger than those accessible by ED require a different
numerical method. In 1D, the primary options for general
models are finite-temperature variants of the DMRG method
(Sec. I) and QMC. Here we employ the latter.

QMC simulations of frustrated spin systems are well
known to suffer from the notorious “sign problem,” where
the statistical weights of the effective classical system may
become negative. As an example, we consider a conventional
simulation of the fully frustrated ladder in the single-site
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FIG. 7. Comparison of the magnetic susceptibility χ obtained for
a fully frustrated ladder with J⊥ = 2 and J‖ = J× = 1, between QMC
results for a system of L = 20 rungs and ED results for L = 14. QMC
simulations were performed in both the single-site basis and the rung
basis.

basis of Eq. (1) using the stochastic series expansion (SSE)
representation with directed loop updates [84]. Results for the
susceptibility χ of an L = 20 ladder with J⊥ = 2 J‖ are shown
by the open (blue) circles in Fig. 7, where they are compared
with ED results obtained for L = 14, a system size large
enough to be considered representative of the thermodynamic
limit for these parameters (as we show explicitly in Sec. IV).
Clearly, the QMC results obtained in the single-site basis are
accurate only at high temperatures, but break down even on ap-
proaching the maximum of χ at T ≈ J‖; specifically, the error
bars become so large that the maximum cannot be resolved.

This manifestation of the sign problem (Fig. 7) is presented
in Fig. 8 in the form of the average sign (〈sign〉) of the statistical
weight obtained at different temperatures. At high T this is
close to 1, whereas for temperatures T < 2J‖, and particularly
T < J‖, it falls rapidly towards zero (note the logarithmic
scale in Fig. 8). Only for T � 1.5 J‖ can accurate data be
obtained, at a high cost in CPU time, but for temperatures
T � J‖ the positive and negative contributions are so close
in absolute value that the error in their difference can no
longer be controlled. We comment that L = 20 (Figs. 7 and 8)
remains a comparatively small system, while the sign problem
is known to scale exponentially in both system size and inverse
temperature (β = 1/T ) [85].

However, the nature and severity of the sign problem depend
on the basis in which the simulation is constructed. The fully
frustrated ladder presents a particularly clear example where
the Hamiltonian can be expressed not in the site basis of Eq. (1),
but in the spin-dimer (rung) basis of Eq. (2). For a given rung
i, we consider the local basis states

|S〉i = 1√
2

(|↑↓〉i − |↓↑〉i),

|0〉i = 1√
2

(|↑↓〉i + |↓↑〉i),

|+〉i = |↑↑〉i ,
|−〉i = |↓↓〉i . (11)

The idea of performing QMC simulations in a spin-dimer basis
was suggested by Nakamura [86], who considered a different
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FIG. 8. Average sign obtained during QMC simulations in the
single-site basis of the L = 20 ladder with J⊥ = 2 and J× = J‖ = 1.

basis, symmetric under spin reflection, which allowed him to
simulate the J1-J2 Heisenberg spin chain over an extended
parameter region. Here, however, the basis of Eq. (11) is more
suitable because it makes the total dimer spin operators T z

i

diagonal and thus quantities such as the susceptibility are
readily accessible.

The change of computational basis requires the simulation
of composite-spin operators, i.e., updates of both quantum
numbers Ti and T z

i . The off-diagonal part of the Hamiltonian
in the rung basis (2) can be decoupled in terms of the
total-spin raising and lowering operators T ±

i and the SSE
QMC method implemented with the standard diagonal update
scheme [84]. Directed loop updates are implemented by
employing the linear programming approach of Ref. [87]
to solve the directed loop equations numerically in order to
minimize bounces during the operator loop construction. We
considered in particular the set of nontrivial permutations of
the four spin-dimer basis states as local operators that are
applied during the directed loop update. For this one may
employ both the total-spin raising and lowering operators T ±

i

and the raising and lowering operators D±
i , constructed from

the spin-difference operator �Di = �S1
i − �S2

i , combined with the
local Dz

i operators. The latter are not diagonal in the spin-dimer
basis. The action of the different operators on the local dimer
basis states is shown in Table II.

When QMC simulations are performed in the spin-dimer
basis, the sign problem is completely absent for an even
number L of rungs. One may verify that the average sign
computed in Fig. 8 is now identically equal to 1. This occurs
because the chain of rung “supersites” forms a bipartite lattice
on which the exchange interactions between nearest-neighbor

TABLE II. Action of local total-spin and spin-difference oper-
ators on the local spin-dimer basis states. Because �T 2

i and T z
i are

diagonal in this basis, we give only the eigenvalues for these operators.

�T 2
i T z

i T +
i T −

i Dz
i D+

i D−
i

|S〉i 0 0 0 0 |0〉i −√
2|+〉i

√
2|−〉i

|0〉i 2 0
√

2|+〉i

√
2|−〉i |S〉i 0 0

|+〉i 2 1 0
√

2|0〉i 0 0 −√
2|S〉i

|−〉i 2 −1
√

2|0〉i 0 0
√

2|S〉i 0
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total spins ( �Ti) are bilinear (2). By using a similar amount of
CPU time for simulations in the dimer basis as for the single-
site basis, we now obtain the data shown by the open (green)
squares in Fig. 7. The results resolve not only the maximum of
χ , but also the complete low-temperature behavior all the way
to T = 0. However, here we find a different consequence of the
extensive number of local conservation laws in Eq. (2), namely,
that these hinder an effective mixing of the local spin states. As
a result, the autocorrelation and thermalization times become
very large at low temperatures and close to the quantum
phase transition [Eq. (3)], requiring further modification of
our approach.

To perform QMC simulations for suitably large system sizes
under these circumstances, we employed a standard parallel
tempering protocol [88–90] over a set of 64 temperatures,
although 32 values were found to be sufficient at coupling
ratios far from the phase transition. Each replica was passed
through an initial annealing phase, where it was heated
slowly from an appropriate low-temperature state to its target
temperature. The simulations were initialized by taking as the
SSE base state (with an empty operator string) a rung-singlet
product state for J⊥ within the rung-singlet phase (J⊥ > J⊥,c)
and an antiferromagnetic Néel state for J⊥ within the rung-
triplet phase (J⊥ < J⊥,c). The parallel tempering swap rates
were adapted to allow for sufficient autocorrelation of the
replicas between swaps.

We comment here that a dimer-basis description appears
natural for quantum magnets with a dimerization in their
interaction geometry. The QMC simulation scheme presented
here can be extended to the case of arbitrary spin systems
whose interactions are bilinear when reexpressed in the basis
of spin-dimer singlet and triplet states. In addition to interdimer
exchange couplings based on �Ti operators, which we denote
as T T -type terms, the most general case would also include
couplings of DD, T D, and DT types. For models with
T T terms only, and for which the dimer supersites form
a bipartite lattice, the QMC sign problem is completely
eliminated, as in the fully frustrated spin ladder. In fact, all
such models are strongly constrained by local conservation
laws on every spin dimer, but any additional interaction terms
break these laws explicitly. Local transitions then become
possible between the singlet and triplet sectors, allowing for
a more efficient mixing of states within QMC simulations,
but at the price that such additional interaction terms lead
generically to a QMC sign problem (even in the spin-dimer
basis).

In Table II, we find that (i) the �Ti operators do not
create transitions between singlet and triplet sectors and (ii)
the Dz

i operators do swap local |S〉 and |0〉 states. In a
model containing only T T and DzDz terms, and with a
bipartite structure of couplings between dimers on different
sublattices only, again the sign problem is completely absent
because the periodic boundary conditions in the discrete
imaginary-time propagation direction mandate that only even
numbers of interdimer DzDz terms can create allowed QMC
configurations. All allowed configurations then contribute to
the quantum partition function with positive weight (this is
a straightforward generalization of the reason that no sign
problem plagues world-line simulations of the antiferromag-
netic Heisenberg model on a bipartite lattice) [91]. However,

we note that in such a model SU(2) symmetry is broken
explicitly.

These considerations highlight that special cases exist for
particular subsets of interaction terms, which can be handled
by QMC without generating a sign problem at all. For more
general systems with dimerized ground states [66,74–81], the
possibility arises that, even when nonpositive QMC weights
can occur, a simulation may have only a mild QMC sign
problem because the ground state is a direct product state
(of dimer singlets). Further analysis to assess the full potential
of the spin-dimer-based approaches to QMC lies beyond the
scope of this study. We highlight only one further extension
of these ideas, to consider the construction of more general
computational bases, formed from larger lattice units, or sim-
plices, such as triangles [53] or four-site plaquettes [92]. The
development of simplex-QMC methods to explore geometries
and interactions providing sign-problem-free or sign-problem-
suppressed simulations can be expected to provide valuable
progress in frustrated quantum magnetism.

IV. THERMODYNAMIC PROPERTIES:
NUMERICAL RESULTS

In this section, we present our numerical results for the
thermodynamic properties of the fully frustrated ladder and of
some unfrustrated comparison cases. We begin by ensuring the
accuracy and reliability of our calculations by comparing the
results from ED and QMC, primarily to verify that finite-size
effects are under control throughout the phase diagram, includ-
ing in the vicinity of the critical point [Eq. (3)]. We present
the basic phenomenology of the magnetic specific heat C and
susceptibility χ in terms of the physical features emerging as
the interaction parameters are changed in two directions, from
rung-singlet to rung-triplet ladders and from fully frustrated to
unfrustrated ladders. Following the results of Sec. II B, we
focus on the parameter regime 1 � J⊥/J‖ � 2 around the
phase transition. We defer to Sec. V a deeper analysis of our
results and of their interpretation using the information about
the spectrum presented in Sec. II A. However, for the most
elementary understanding of the response functions it is worth
recalling that the specific heat is a consequence of all states
and therefore reflects primarily the singlet bound states in the
vicinity of J⊥,c, whereas the susceptibility is a consequence
of all magnetic states and therefore reflects primarily triplet
bound states.

A. Finite-size convergence: Comparison of ED and QMC

With a view to benchmarking the quality of our numerical
calculations, Fig. 9 compares ED and QMC results for the spe-
cific heat and susceptibility of fully frustrated ladders with four
different values of the ratio J⊥/J‖, selected in the rung-singlet
phase far from J⊥,c, in the rung-singlet phase close to J⊥,c, and
similarly in the rung-triplet phase. Every panel shows ED re-
sults calculated for ladders of 10, 12, and 14 rungs, along with
QMC data for 100-rung ladders and additional QMC results
from 200-rung ladders when J⊥ is close to J⊥,c. Quite gener-
ally, all the susceptibility curves are nearly indistinguishable,
meaning that finite-size effects in χ are extremely small, and
we focus most of our comments on the specific-heat results.
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FIG. 9. Specific heat C (left column) and susceptibility χ (right column) per spin for fully frustrated ladders with inter-rung couplings
J× = J‖ = 1 and rung couplings J⊥ = 2, 1.42, 1.38, and 1 (from top to bottom). Each panel compares ED results for system sizes of L = 10,
12, and 14 rungs with QMC results obtained for L = 100 rungs. In panels (a) and (e) we include the results (9) and (10) for isolated dimers of
rung coupling J⊥ = 2 J‖. In panels (d) and (h) we include QMC results for a spin-1 chain of L = 60 sites [45], normalized to twice the number
of spins in the chain.
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The fact that identical curves are obtained for the specific
heat of the J⊥/J‖ = 2 ladder (top) indicates that a system with
L = 10 rungs can be considered as a good approximation to
the thermodynamic limit. By contrast, finite-size effects are
significantly more important at J⊥/J‖ = 1.42, where there
is a systematic shift of the peak to the left from L = 10 to
12 to 14, and none of the ED calculations capture the peak
position of the QMC results. Although this type of shift could
be interpreted as reflecting the importance of longer clusters,
in the same way as observed in Fig. 5, it may seem surprising
that clusters of more than 10 rungs could make a discernible
difference at |J⊥ − J⊥,c|/J‖ ≈ 0.02, given that the ground
state is still a simple product of rung singlets. However, we
recall that in systems of the sizes accessible by ED, the lowest
excitation in this regime is actually the “intruder” state, which
is the ground state on the rung-triplet side of the transition,
as shown in Fig. 2 and discussed in Sec. II A, and this causes
differences in the thermodynamic response. Here, we also
include QMC results for a ladder of L = 200 rungs, and these
make clear that all finite-size phenomena are thoroughly
suppressed in our L = 100 data.

Turning to the rung-triplet side of the transition, the same
finite-size effects are visible at J⊥/J‖ = 1.38 as at 1.42; in fact
they are slightly more pronounced, to the extent that they are
visible in the corresponding curve for the susceptibility, where
we draw attention to the different temperatures at the center of
the rapid rise. Thus, it is clear that the thermodynamic response
of the Haldane phase close to the critical point is significantly
affected by the intruding rung-singlet ground state. Whether
large clusters (of rung singlets) or the one-magnon band of the
Haldane chain play a role here is unclear. Moving well into the
Haldane phase, at J⊥/J‖ = 1 we observe finite-size effects not
in the position of the specific-heat peak at T ≈ 0.5 J‖ but in
its height. This type of size effect can be found in calculations
of the Haldane (spin-1 Heisenberg) chain [45], and thus its
appearance in the rung-triplet phase of the ladder suggests that
it is due to long spin-1 chain segments separated by excited
rung singlets. From our results and also from those for the
Haldane chain, the QMC data for L = 100 can be considered
as fully converged to the thermodynamic limit for this choice of
parameters. For thermodynamic purposes, we take finite-size
effects to be negligible in the fully frustrated ladder of L = 100
rungs for all values of J⊥.

B. Dependence of C and χ on J⊥

We turn now to a discussion of how the thermodynamic
response of the fully frustrated ladder depends on the rung
coupling ratio J⊥/J‖, continuing with accurate numerical data
from near the transition the investigation begun in the rung-
singlet phase in Sec. II B. Considering again the sequence of
panels in Fig. 9, at the top is the case J⊥ = 2 J‖, representative
of strong rung coupling. As in Sec. II B, we compare the
specific heat and susceptibility with the results (9) and (10)
for decoupled dimers (J⊥ � J‖), illustrated here for a bond
strength J⊥ = 2. We observe again that, despite the formation
of bound states at and above the one-triplon energy (Sec. II A),
the leading effect of frustration is to push the maximum of the
specific heat to a lower temperature and to make its peak higher
and narrower than that of one dimer. The maximum of the
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FIG. 10. Exact diagonalization results for the specific heat C (a)
and susceptibility χ (b) of the fully frustrated ladder (J× = J‖ = 1)
with L = 14 rungs, shown for the full range of J⊥/J‖ ratios around
the transition. Black lines mark the positions T C

max and T χ
max of the

peaks in both quantities. White lines mark the temperatures T C
half and

T
χ

half , where they have reached half of the peak height, and for C(T )
the temperature T C

u , where the peak has fallen again to half of the peak
height as T continues to increase. Red-yellow dashed lines mark 1

4 of
the gaps relevant for each quantity, which for C(T ) is the minimum
gap �s and for χ (T ) the triplet gap �t (Sec. II A).

susceptibility is also pushed to lower temperatures, although
here the dominant effect is the suppression of the peak height
compared with a single dimer (Sec. II B).

On proceeding towards the critical point (3), the maximum
of the specific heat becomes progressively lower and narrower,
developing a remarkably sharp profile close to J⊥,c, as
illustrated by the cases J⊥/J‖ = 1.42 and 1.38 in Fig. 9. We
observe that the peak position falls by a factor of 3 from
J⊥/J‖ = 2 to 1.42, while the gap, which is to the singlet branch
of the two-triplon bound state, falls by a factor of 2.5 in units of
J‖ (Sec. II A and Fig. 4). This change of effective temperature
scale is apparent also in the rise of the susceptibility, which
we characterize by the temperature T

χ

half , where it has gained
half of its peak height. In this case, T

χ

half falls by a factor of
2.5 from J⊥/J‖ = 2 to 1.42 while the triplet gap falls only by
30%.

To study this evolution of the specific heat and susceptibility
in more detail, Fig. 10 presents data for both quantities in
contour form as a function of the coupling ratio 1 � J⊥/J‖ � 2
and temperature T . These results were obtained by exact
diagonalization of a 14-rung ladder, where we recall
(Sec. IV A) that finite-size effects due to the intruder states
(Fig. 2) occur near J⊥,c. Indeed, a very weak V-shaped feature
is discernible in the specific heat at the lowest temperatures
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FIG. 11. QMC results for the specific heat C (a) and susceptibility
χ (b) of the fully frustrated ladder (J× = J‖ = 1) for a range of values
of J⊥/J‖.

near J⊥ = 1.4 J⊥, but these effects remain so small for L = 14
that the qualitative behavior is not affected. The quantum phase
transition (3) is clearly visible as a dip in both thermodynamic
quantities as a function of J⊥/J‖. This dip is more apparent,
and more symmetrical, in the specific heat than in the
susceptibility. The energy and temperature scales marked by
the lines in Fig. 10 as an aid to characterizing the positions
and widths of the peaks in C and χ are discussed in detail
in Sec. V.

For a fully quantitative investigation of the thermodynamic
response in the regime around J⊥,c, in Fig. 11 we show
QMC data for ladders of L = 100 rungs, focusing on the
low-temperature region and adding the parameters J⊥/J‖ =
1.5, 1.45, 1.4, 1.35, and 1.3 to those already shown in Fig. 9.
Clearly, the development (and disappearance) of the narrow
specific-heat peak is very rapid, being concentrated largely into
the region 1.3 � J⊥/J‖ � 1.5. The behavior of the specific
heat is asymptotically completely symmetrical in the distance
from the transition, as demonstrated by the fact that the
results for J⊥/J‖ = 1.38 and 1.42 are difficult to distinguish.
The case J⊥/J‖ = 1.4 lies almost exactly at the transition,
where we observe that the low-temperature peak structure is
suppressed, leaving only a shoulder feature. Over the same
range, the susceptibility exhibits rather little change in its
broad maximum χmax as a function of the ratio J⊥/J‖, but

a quite dramatic drop in the position T
χ

half of the half-height
temperature, which falls by 40% from J⊥/J‖ = 1.5 to 1.4. As
Fig. 10 also makes clear, the evolution of this quantity on the
rung-triplet side of the transition is not symmetrical. Again,
we defer to Sec. V a discussion of how these effects arise in
the absence of strong changes to the gap.

We conclude this part of the presentation by returning to
Figs. 9(d) and 9(h), which represent a coupling ratio (J⊥ = J‖)
deep in the rung-triplet, or Haldane, phase of the ladder. Here,
we include results for the specific heat and susceptibility of a
spin-1 Heisenberg chain [40,41,93], which were obtained by
QMC simulations for chains of 60 sites and are taken from
Ref. [45]. Because two S = 1

2 spins on a rung correspond to
one spin S = 1, we have divided by twice the number of spins
in the chain for a consistent normalization. The results for the
J⊥ = J‖ (= J×) ladder and the spin-1 chain match completely
in their low-temperature asymptotic behavior, reflecting the
fact that the low-energy spectra of the two models are identical.
However, the maxima of both C and χ appear lower in
temperature by a factor of 2 for the ladder than for the spin-1
chain, and the maximum of C for the ladder is very much
higher and sharper. Thus, it is clear that those parts of the
ladder Hilbert space with rung spins Ti = 0 remain strongly
relevant to the thermodynamic response at all but the lowest
temperatures for parameters around J⊥ = J‖, and we return
to these contributions in Sec. V. As J⊥ is decreased further,
states including Ti = 0 rungs are pushed to successively higher
energies until the spin-1 Heisenberg chain is recovered from
the ladder in the limit J⊥ → −∞.

C. Frustration effects

Following Sec. II B, we use our numerically exact QMC
data also to assess the effects of frustration. For this we
alter the diagonal (frustrating) coupling J× in Eq. (1) from
1 to 0 in units of J‖, i.e., we consider only the comparison
with the unfrustrated ladder but, for reasons of space, avoid
a systematic investigation of the crossover between these
limits. The unfrustrated S = 1

2 two-leg ladder has been studied
in considerable detail [44,69,94,95], including by QMC
simulations to obtain the susceptibility [44,69]. Here, we have
nevertheless generated our own data for both C and χ , using
the SSE QMC technique [84], and the comparison between the
two types of ladder is shown in Fig. 12. We restrict our attention
again to the coupling region close to the phase transition (the
discussion for weaker interdimer coupling may be found in
Sec. II B) and focus only on the rung-singlet regime of the
frustrated ladder J⊥ � 1.4 J‖ as a comparison is not otherwise
meaningful.

The temperature unit in Fig. 12 is the ladder leg coupling
J‖, and thus the results offer a different perspective from that
of Sec. II B, where J⊥ was used. In these units, the specific-
heat peak of the unfrustrated ladder moves slowly to lower
temperatures as the coupling ratio is reduced. Still, the features
of Fig. 5 remain clear at J⊥ = 2 J‖, in that the specific heat
of the fully frustrated ladder has a significantly narrower and
lower-lying maximum than that of the frustrated ladder. As
the critical point (3) is approached, the peak for the frustrated
system shifts rapidly to lower temperatures, falling in height
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FIG. 12. Comparison between the specific heat C (a) and suscep-
tibility χ (b) of a fully frustrated ladder (J‖ = J× = 1, closed symbols
and crosses) and an unfrustrated ladder (J‖ = 1, J× = 0, open and
plus symbols) for a range of values of J⊥/J‖. Shown are QMC results
for ladders of L = 100 rungs. Error bars on the unfrustrated ladder
data are much smaller than the symbol sizes and are omitted.

but becoming very much narrower. In the unfrustrated case,
by contrast, the specific heat changes very little, as expected
for such small variations of the parameters far from a phase
transition, and thus stands as a constant benchmark of gap,
peak, and broadening effects (Sec. V).

The susceptibilities of the two cases show broadly similar
qualitative features, with the positions (T χ

max) of the maxima
lying consistently lower in the frustrated than in the unfrus-
trated system. Dramatic shifts in temperature scales are less
apparent in T

χ
max than in the half-height temperatures T

χ

half , with
the curves for frustrated ladders moving strongly downward
as J⊥ = 1.4 J‖ is approached, but no comparable behavior
for unfrustrated ladders. The heights (χmax) of the χ peaks
are quite consistent between the two cases, and notably lower
than the decoupled-dimer result (10) shown for comparison
with J⊥ = 2 J‖ in Fig. 9(e), indicating that the effects on χmax

of spectral-weight redistribution away from a single energy J⊥
are similar whether this occurs by the opening of a continuous
triplon band or of many discrete bound states.

We conclude that the anomalous behavior of both C and χ

in the fully frustrated ladder close to J⊥,c is indeed a signature
of the many bound states emerging at low energies close to the
frustration-induced first-order transition (Sec. II A).

V. INTERPRETATION OF NUMERICAL RESULTS

In this section, we compare the numerical results of Sec. IV
with different analytical ones to gain further insight into
the roles of frustration, of bound states, and of the large
numbers of many-triplon bound states at low energies near
the phase transition. We first consider the cluster description
of Sec. II B to observe how much of the thermodynamic
response is captured by short clusters of different lengths
n. We then consider a large-n description based on the
statistical mechanics of unbound domain walls (between
singlet and triplet rungs) to capture the unconventional effects
of the high density of many-triplon excited states on the
specific heat and susceptibility. We conclude by discussing the
experimental consequences of, and possibilities suggested by,
our conclusions, emphasizing that, in contrast to conventional
gapped quantum magnets, C(T ) and χ (T ) are characterized by
different gaps and by anomalous effective peak energy scales.

A. Small-cluster analysis

A preliminary interpretation of the numerical results pre-
sented in Sec. IV may be obtained by using the cluster
approximation of Sec. II B to examine the extent to which
the exact thermodynamic response functions are reproduced
by considering only multitriplon bound states up to a given
size n. As in Sec. IV, we focus on the region around the phase
transition, and of necessity on J⊥ � J⊥,c, because the cluster
approximation is applicable only in the rung-singlet regime. A
comparison between the numerically exact results of Fig. 11
and the analytical approximations of Sec. II B is presented in
Fig. 13 for clusters of two, three, and four rungs and for four
different values of J⊥/J‖. For reference, we have also included
a curve for the “1-cluster,” which is simply the response of the
isolated dimer [Eqs. (9) and (10)].

The cluster approximations for the specific heat (Fig. 13)
quantify the results in Figs. 5(b)–5(d), showing how longer
clusters better capture the number of available low-lying states,
thereby pushing the peak position T C

max systematically to lower
values. The exact results demonstrate that the simple analytical
approach is already accurate at the percent level for J⊥ = 2 J‖
when a cluster of four rungs is used [Fig. 13(a)], and by
extension it is more accurate still for all values J⊥ > 2 J‖.
This result can be regarded as a consequence of the very short
correlation length of the fully frustrated ladder for most values
of J⊥ away from the transition region. On closer inspection,
the four-rung approximation actually underestimates T C

max,
while the three-rung one overestimates it, illustrating the
thermodynamic consequences of the low-lying energy levels
shown in Fig. 3 and Table I.

Clearly, at J⊥ = 2 J‖ the correction due to longer segments
is actually towards energies above the lowest singlet of the
four-rung case. However, as J⊥ is further reduced, the trend
of the cluster approximations is primarily to change the peak
heights Cmax rather than their positions, whereas the peak in
the exact data continues to move to lower T C

max. This is a clear
indication of the importance of the lowest levels in the spectra
of ever-longer clusters moving below the one-triplon gap as
J⊥ approaches J⊥,c. At J⊥ = 1.5 J‖ [Fig. 13(b)], the four-rung
cluster is clearly no longer quantitatively adequate, and we
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FIG. 13. Specific heat C (left column) and susceptibility χ (right column) of fully frustrated ladders (J× = J‖ = 1) with rung coupling
ratios J⊥/J‖ = 2, 1.5, 1.42, 1.40, and 1.38. QMC results for ladders of L = 100 rungs are compared with approximate calculations based on
clusters of two, three, and four rungs (Sec. II B) and on noninteracting domain walls (Sec. V B).
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comment that not only are extra bound states appearing at
lower temperatures (around 0.3 J‖), but also at higher ones over
a range around 0.75 J‖. The cluster approximations change
rather little in the critical regime [Figs. 13(b)–13(d)] and the
results for J⊥ = 1.42 J‖ [Fig. 13(c)] show clearly the effects of
missing the very large numbers of low-lying states illustrated
in Figs. 2 and 4, which cause the strong suppression of both
T C

max and Cmax. We draw attention again to the fact that these
changes in the thermodynamic response are not brought about
by changes in the gap, which is captured very well by the
smallest cluster (n = 2, Sec. II A); the differences at low
temperatures visible below J⊥ = 1.5 J‖ are the consequence
of increasing densities of states lying just above the gap.

For the susceptibility, it is clear at J⊥ = 2 J‖ [Fig. 13(f)]
that all clusters provide an excellent description of χ (T )
up to the half-height temperature T

χ

half . Above this value,
the dominant effect of longer clusters is to reduce the peak
height χmax and the three- and four-rung approximations begin
to show a reduction in T

χ
max. In fact, it is the three-rung

approximation that provides the best account of the exact
data, with the four-rung one causing too much suppression,
which serves as a reminder that odd-n clusters yield the lowest-
lying triplets that govern χ (T ). At J⊥ = 1.5 J‖ [Fig. 13(g)],
the gaps do begin to differ due to new lowest-lying triplet
excitations (Sec. II A), and neither the three- nor the four-rung
approximation provides a good reproduction of the data,
presumably reflecting the importance at this coupling ratio
of the n = 5 triplet. At J⊥ = 1.42 J‖ [Fig. 13(h)], the peak
is by chance rather well described by the n = 4 cluster, but
the situation at low T , where the T

χ

half temperatures now differ
strongly, illustrates the effects of large numbers of magnetic
states whose origin lies in multitriplon clusters with n � 5.

In summary, comparisons between cluster approximations
and the exact data show that only small clusters are perfectly
sufficient to explain the response of the fully frustrated ladder
over much of the rung-singlet regime. However, as the phase
transition is approached, large numbers of bound states are
moved below the one-triplon excitation energy and their effects
are to reduce both the peak energy and the peak height in both
C and χ . This demonstration of the importance of many-
triplet excitations, and hence of the fact that large clusters
(n � 4) must be considered when calculating thermodynamic
properties, even when the system remains gapped, is the
fundamental qualitative conclusion of the cluster analysis.

B. Large-cluster analysis

With a view to capturing the rapid changes in thermody-
namic response upon approaching J⊥,c, and the underlying
proliferation of low-lying excited states (Fig. 4), we consider
a different type of picture based on the predominance of
large-n (many-triplon) clusters in the transition regime. This
approximation takes clusters to be long and thus the domain
walls separating rung singlets (Ti = 0) and triplets (Ti = 1)
to be sparse, such that they may be treated as noninteracting.
Although the full spectra of large-n clusters are not known
exactly, it is known (Sec. II A and Fig. 3) that all many-triplon
bound states have a low-lying level whose energy approaches
the value Ebond [Eq. (5)]. A transfer-matrix formulation may
be used to sum over the contributions from these levels of

all large-n clusters, providing a suitably size-extensive result
expected to be at least qualitatively accurate in a regime
where many-triplet bound states dominate the thermodynamic
properties.

This treatment is based on the following specific assump-
tions. (i) Each rung in the state Ti = 0 contributes 0 to the
total energy. (ii) Each rung in the state Ti = 1 contributes
e∞ + J⊥ to the total energy. (iii) Each pair of domain walls
contributes an energy Ebond to the total energy (each domain
wall contributes Ebond/2). (iv) Each domain wall contributes
a free spin- 1

2 , i.e., a twofold degeneracy. (v) There are no
interactions between the domain walls. In the parameter regime
for which this analysis is designed (J⊥ → J⊥,c from either
side), the approximation is clearly not appropriate for small
n because the neglected binding effects are responsible for
the low-energy levels visible on the left side of Fig. 3, but
becomes systematically better for larger n, where many such
states accumulate at energies around Ebond. We comment that
this treatment does allow for the occurrence of an odd number
of domain walls, although these always appear in pairs on
a ladder with periodic boundary conditions, and we expect
this to be a legitimate approximation in the region close to
the transition, where a finite concentration of domain walls is
present.

The gas of noninteracting domain walls can be treated using
the standard tools of statistical mechanics [31,96,97]. The
partition function of the gas of domain walls, whose energetic
properties are specified as above, can be computed with the
aid of the 2×2 transfer matrix

T =
( 1 t(J⊥,β,h)

t(J⊥,β,h) e−β (e∞+J⊥)

)
, (12)

where the first basis vector of the matrix corresponds to Ti = 0
and the second to Ti = 1, and

t(J⊥,β,h) = 2 e−β (e∞+J⊥+Ebond)/2 cosh(β h/2) . (13)

The arguments of the exponential functions in Eqs. (12) and
(13) correspond to the bond energy between rungs i and
i + 1 of the ladder, and thus the quantity ZL = TrT L is
the sum over the exponentials of the total energies of all
such states for a ladder of L rungs. Because the positions
of the domain walls are arbitrary, the state degeneracies are
accounted for automatically. The partition function at large
L converges to ZL ≈ λL

+, where λ+ is the larger of the two
eigenvalues, λ±, of T . The expression for λ+ is lengthy
and will not be presented here, but we comment that, in
the high-temperature limit limβ→0 λ+ = 3, demonstrating that
the domain-wall approximation retains on average three of
the four states per rung. By analogy with Eqs. (7) and (8), the
specific heat and susceptibility per physical spin are given by

C = β2

2

∂2

∂β2
ln λ+

∣∣∣∣
h=0

, (14)

χ = 1

2 β

∂2

∂h2
ln λ+

∣∣∣∣
h=0

(15)

in the thermodynamic limit (L → ∞).
By inserting the values of e∞ [Eq. (3)] and Ebond [Eq. (5)],

we calculate the specific heat and susceptibility for the values
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of J⊥/J‖ shown in Fig. 13. We find that the domain-wall ap-
proximation reproduces the evolution of the low-temperature
features near J⊥,c very much better than is possible using
the short clusters of Sec. V A. In both the specific heat
[Figs. 13(c)–13(e)] and the susceptibility [Figs. 13(h)–13(j)]
the exact response given by the QMC data is reproduced with
remarkable accuracy up to a temperature of order Thalf . Given
that the domain-wall approximation neglects both higher-lying
excitations and binding effects, it is not surprising that its
accuracy is restricted for high temperatures and far from the
transition. However, results for the specific heat in Fig. 13
indicate that the domain-wall description provides an excellent
estimate of T C

max, although it does overestimate the number
of states contributing to Cmax. Because the maximum of the
susceptibility appears at higher temperatures, the domain-wall
picture is less well suited to describe this feature.

The qualitative and quantitative nature of our results
confirms, most importantly, that at the transition a macroscopic
number of excitations becomes relevant to the low-temperature
thermodynamics of the fully frustrated ladder. Further, these
states are well described by noninteracting domain walls
between local segments of the ground states on both sides
of the transition. We note that J⊥,c + e∞ = 0 at the transition,
and therefore the only remaining energy scale is Ebond, or more
precisely Ebond/2 ≈ 0.6 J‖, which corresponds to the energy
cost of a single domain wall. This explains the appearance of
the low-T maximum in C(T ) at T ≈ 0.2 J‖ when J⊥ ≈ J⊥,c,
where a factor of 3 between the intrinsic energy scale and
the position of the maximum is typical (cf. Fig. 5). We also
comment that, although the domain-wall energy (Ebond/2 ≈
0.6 J‖) is larger than the Haldane gap (� ≈ 0.4 J‖), the domain
wall is nondispersive whereas the magnon of the spin-1 chain
has a large bandwidth, and thus domain walls dominate the
thermodynamics close to the transition even in the rung-triplet
phase [Figs. 13(e) and 13(j)].

C. Characteristic energy scales of C(T ) and χ (T )

One may seek to understand the form of the thermodynamic
response by extracting the characteristic energy and temper-
ature scales of C(T ) and χ (T ). This conventional approach
to the response of many low-dimensional models has been
discussed in detail in Ref. [44]. It may involve scaling the
temperature axis by quantities such as Tmax or the gap �,
extracted from the low-temperature data, or the y axes by the
peak heights Cmax and χmax, to seek similarities and differences
between specific aspects of the data sets.

In Fig. 12(a), we compared the specific heats of unfrustrated
and frustrated ladders with different coupling ratios. We found
that for unfrustrated ladders, where the (one-triplon) gap �t

falls monotonically with decreasing coupling ratio due to both
J⊥ (band center) and J‖ (band width), the peak position T C

max
decreases only slowly in units of J‖. By contrast, for frustrated
ladders in the rung-singlet regime, the gap (�t = J⊥) is
locked to the coupling ratio for J⊥ � 2 and then becomes
the singlet gap �s = 2 (J⊥ − J‖) of the two-triplon bound
state as J⊥ falls towards J⊥,c, but T C

max decreases significantly
over this range. This contrast in behavior, in that the gap-
to-peak ratio is much larger for frustrated ladders, is clearly
visible in Figs. 5(a)–5(d). If the exponential factor e−�/T

is divided out of the low-temperature data, the remaining
prefactor for unfrustrated ladders decreases when scaled to J⊥,
showing a decreasing density of low-lying states as the relative
bandwidth grows. For the frustrated ladders, the increasing
prefactor shows the rising density of states close to, but just
above, the gap as the quantum phase transition is approached
(Sec. II A).

In the rung-triplet regime, the gap energy scale becomes the
Haldane gap, which remains constant as J⊥ is further reduced
and appears quite unconnected to the increase in both T C

max and
Cmax visible in Fig. 11(a). We have already observed that the
Haldane chain does not give a good account of the specific-heat
response, except in the very low-temperature limit [Fig. 9(d)].
As at J⊥ > J⊥,c, the characteristic features of the specific heat
for J⊥ < J⊥,c at intermediate temperatures are dominated by
short clusters, this time of rung singlets in a background of
rung triplets, which are responsible for the same high density
of states near the transition. This conclusion is shown clearly
both by the fact (Sec. IV) that the peaks for the rung-singlet
and -triplet phases are almost completely symmetrical in their
separation from J⊥,c and by the fact that the domain-wall
analysis of Sec. V B reproduces the high density of states on
both sides of J⊥,c.

Clearly, the gap is not a particularly representative scale for
the behavior of the specific heat, as may already have been an-
ticipated from the red-yellow dashed lines in Fig. 10(a), which
for convenience of presentation show the normalized gap �/4.
Much more representative of the anomalous properties is T C

max,
shown in the same figure by the black line, which captures
the high density of bound states descending to low energies
around the transition (Sec. V B) and thus the corresponding
dip in the response temperature. For this reason, we do not
attempt to scale our numerical data to T C

max or Cmax because
the differences between parameter sets are compressed to very
small regions at low temperatures.

A further property of the specific heat is the width of its
single peak. It is clear in Figs. 9 and 11(a) that the peak
becomes very narrow as J⊥ → J⊥,c, but also that its height
falls quite abruptly near J⊥,c, leaving only a shoulder there
[Fig. 11(a)]. In Fig. 10(a), we marked with white lines the
temperatures T C

half and T C
u , where the specific heat has risen

to, and then fallen from, its maximum peak height as T is
increased. Taking their difference as a measure of the peak
width, outside the transition region the width does indeed scale
with T C

max, decreasing as the transition is approached. However,
in the region 1.3 � J⊥ � 1.5, T C

u shows a strong spike, which
makes the full-width at half-height of the peak rise abruptly.
This is a consequence of the rapid drop in peak height, visible
in Fig. 11(a) but not reproduced well in either of our analytical
approximations. We conclude that the narrowing of the peak
is a generic property of the increasing density of low-lying
states near the quantum phase transition due to descending
low-energy branches of large-n bound states for all n; we
suggest that the vanishing of the peak is a consequence of the
reduction in relative weight of these branches compared to the
very high multiplicity of states in each bound-state multiplet.

Turning to the susceptibility, in Fig. 12(b) we compared its
evolution with coupling ratio for unfrustrated and frustrated
ladders. As for the specific heat, in unfrustrated ladders
T

χ
max decreases only weakly as the coupling ratio and the
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gap (�t ) both fall. For frustrated ladders in the rung-singlet
regime, the relative fall in peak position is much stronger,
whereas the triplet gap is precisely J⊥ over most of the phase
diagram, dropping below this only when J⊥ � 1.5, as detailed
in Sec. II A, and therefore has a very limited effect on the
properties observed in Fig. 12(b). There is a small increase
in T

χ
max as J⊥,c is approached but, because the maximum of

the susceptibility is so broad, a clearer indication of incipient
critical behavior can be found from the rapid fall of the
half-height temperature T

χ

half as J⊥ → J⊥,c. Once again, the
low-temperature behavior of all curves in Fig. 12(b) is dictated
only by the prefactor of the exponential, which reflects the
rising density of triplets close to the gap energy as J⊥ → J⊥,c

(Sec. II A).
In the rung-triplet phase, where the lowest-lying (Haldane)

mode is a triplet and the gap is a constant, the peak position of
the susceptibility nevertheless moves to higher temperatures as
J⊥ decreases below J⊥,c. Although in this case the rung-singlet
and -triplet sides of the transition are not very symmetrical
[Fig. 10(b)], meaning that the relative effect of the Haldane
mode is stronger, its contribution still does not account for
much of the peak behavior, meaning away from the lowest
temperatures [Fig. 9(h)], and this should again be ascribed to
short clusters.

Once again, the gap is not a very representative scale
for the behavior of the susceptibility of the fully frustrated
ladder, as shown by the red-yellow dashed lines in Fig. 10(b)
marking 25% of the gap value. In this case, the quantity
most representative of the anomalous properties around the
transition appears to be T

χ

half , shown in the same figure by
the white line. Once again, what is required is to capture
the high density of triplet bound states descending to low
energies in the vicinity of J⊥,c (Sec. V B). In summary, the
gaps change rather slowly across the critical region and are
in general not the important quantities characterizing either
the specific heat or the susceptibility of the fully frustrated
ladder away from the low-T limit. Instead, the falling peak
positions are best captured by their temperature scales, which
can be related to the low-lying many-triplon bound states of
Sec. II A.

D. Experimental consequences

Despite the importance attached to the gap in low-
temperature measurements of thermodynamic quantities in
gapped quantum magnets, we have shown here that knowledge
of the gap alone does not give much predictive power for the
fully frustrated ladder. We draw attention again to the fact
that the gaps extracted from the low-temperature behavior of
the specific heat and of the susceptibility are not the same;
although many frustrated systems are known in theory where
low-lying singlet excitations may lie below the triplet gap, this
remains very unconventional behavior from the standpoint of
experimental observation. We reiterate that the specific heat
is a measure of all states in the spectrum and in a frustrated
system can be strongly affected by total-spin singlets (usually
the lowest-lying states in an antiferromagnet) of multiparticle
origin; this is very much the case in the fully frustrated ladder.
By contrast, the susceptibility is a measure of finite-spin
states only, and is usually dominated by total-spin triplets;

multiparticle triplets are also particularly low lying for odd-n
clusters in the fully frustrated ladder and the spin content of
all excitations can be understood from the discussion of the
spectrum in Sec. II A.

In the context of the gap, a further valuable experimental
quantity to discuss is the correlation length. This is not
straightforward to define, but in principle should reflect
the zero-range correlations between singlets and triplets on
neighboring rungs. Because correlations are developed due to
the presence of n-triplon bound states, the effective correlation
length of the system should be an average over the effective
cluster length and distribution. Although this average is
expected to remain small, close to the phase transition there
exist large but transient objects in the form of large-n cluster
bound states. We propose that 1/� remains an appropriate
measure of the effective correlation length, albeit with two
different quantities 1/�s and 1/�t , required to characterize,
respectively, nonmagnetic and magnetic correlations near J⊥,c

on the rung-singlet side.
Regarding the direct experimental relevance of our results,

we noted in Sec. I that the material SrCu2(BO3)2 shows a
number of anomalous features in its thermodynamic response.
The susceptibility has been found [13] to exhibit a sharp drop
at a temperature about one tenth of the dominant coupling
energy, whereas the specific heat [14,15] has a sharp maximum
near the same temperature. This system is thought to be a
good realization of the (spin- 1

2 ) Shastry-Sutherland model
[11,12], which is intrinsically two dimensional, but shares
two essential features of the fully frustrated ladder. One is
that the one-triplon band is nearly flat, dispersing perhaps due
primarily to higher-order Dzyaloshinskii-Moriya interactions.
The other is that the magnetic interaction parameters deduced
for this compound place it in a dimer-singlet phase, but very
close to a quantum phase transition to a different ground
state, thought to be a type of plaquette order [98]. Certainly,
the trends we observe for the thermodynamic properties of
the fully frustrated ladder in the rung-singlet phase close to the
transition are remarkably similar to SrCu2(BO3)2, at least for
the specific heat. The susceptibility of the ladder model is not
as close (Fig. 11), with the temperature scale remaining higher
and the maximum appearing more rounded. SrCu2(BO3)2 is
also known from two-magnon Raman [99,100] and inelastic
neutron scattering measurements [101,102] to show a highly
anomalous thermal evolution of the spectral weight, and this
may also be interpreted [103] on the basis of the spectrum
in Sec. II A. We speculate that the type of behavior we have
investigated here may arise in other frustrated spin systems
with quantum phase transitions.

In this context, it is worth considering the possibilities
for the creation of nonthermal transitions in low-dimensional
magnets. The most successful approach to date, applied in
a number of systems, is the use of a hydrostatic pressure to
alter the magnetic exchange interactions and thus to drive the
system towards a critical point. In the event that this can be
realized, strong changes can be expected in the spectrum that
bring many levels to low energies or even to zero. Thus, one
would have the possibility of observing the type of evolution
exhibited here for the fully frustrated ladder not only as a
function of temperature, but also as a function of pressure at a
fixed, low temperature.
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Finally, we comment that another prime possibility for the
creation of quantum phase transitions is the application of a
magnetic field. The field couples only to magnetic states, and
the effect would be to bring down one component of all the
triplets. In a model as rich as the fully frustrated ladder, with
significantly different singlet and triplet spectra, this would
cause very strong and inequivalent alterations to C and χ .
The phase diagram as a function of applied field and coupling
ratio was considered in Ref. [53] in the context of jumps and
plateaus in the magnetization curve, whose nature has also
been discussed in Ref. [54]. Deep in the rung-singlet regime
(specifically, J⊥ � 1.58J‖), the field-induced transition out
of the rung-singlet phase is expected to be first order, in
fact to a mixed rung-singlet/-triplet state with no threefold
degeneracy on each rung and with a finite gap. In the
rung-triplet phase (J⊥ < J⊥,c), the spectrum is continuous
beyond the one-magnon gap and therefore the applied field
causes a second-order transition to a gapless state. It was
shown in Ref. [53] that there exists an intermediate regime,
J⊥,c < J⊥ � 1.58J‖, where the field-induced transition is
first-order and also leads to a gapless state with triplets on
all rungs. The fully frustrated ladder in a magnetic field
offers a further set of unconventional phenomena related to
its exact bound states, flat bands, and high quasidegeneracies
of energy levels near the coupling-induced quantum phase
transition.

VI. SUMMARY

We have investigated the thermodynamic properties of the
fully frustrated two-leg spin- 1

2 ladder. This system exhibits
a first-order quantum phase transition between a rung-singlet
regime for strong rung coupling and a rung-triplet, or Haldane,
phase for weak rung coupling. For all values of the coupling
ratio, the system has a gap to all excitations, and the magnetic
specific heat and susceptibility are exponentially activated at
low temperatures, followed by a single peak. However, in
the vicinity of the transition point, the two quantities are
characterized by different gaps in the low-energy spectrum
on the rung-singlet side, and these gaps, the peaks, peak
widths, and peak heights all show a dependence on the
coupling constants quite different from reference systems such
as the unfrustrated ladder, the spin-1 Heisenberg chain, or the
frustrated S = 1

2J1–J2 chain.
The physics behind this anomalous behavior lies in the for-

mation of multiparticle bound states. Single-rung excitations
are localized objects, and so are their pairs, threesomes, and
all higher n-excitation clusters, which may then be treated
as open chains. On approaching the transition point, we
observe the formation of large numbers of low-energy states,
particularly singlets and triplets of the many-particle clusters,
which lead to strongly enhanced fluctuations in this regime.
These give rise to a sharp, and anomalously low-temperature,
maximum in the specific heat and to an abrupt fall in effective
response temperature of the susceptibility, results we show are
quite different from the response of unfrustrated ladders. We
comment that all of these effects may be expected to have a
corresponding signature in the dynamical response function of
the fully frustrated ladder at finite temperatures, which is the
topic of a companion investigation [103].

We have obtained extremely precise results by detailed
numerical calculations using two techniques, ED and QMC,
both of which work very well for this model. ED methods
are usually restricted to small system sizes, which here we
have extended to 28 sites by exploiting the exact relationship
between the states of the fully frustrated ladder and of open
and closed spin-1 chains. The very short correlation length of
the highly frustrated system is also advantageous for capturing
most of the physics using a small system. The Hamiltonian in
the rung basis (2) also ensures the complete absence of a sign
problem in QMC simulations, allowing us to obtain results for
ladders up to L = 200 rungs that are demonstrably far into
the thermodynamic limit. Elimination of the sign problem by
suitable choice of the basis is not new [86], but when applied
in models where the total spin of the dimer (or other simplex
unit) is conserved gives rise to the possibility of very powerful
QMC approaches to frustrated spin systems. Methodological
ideas and QMC results similar to ours for the fully frustrated
ladder are reported in Ref. [91]. The next natural steps in this
context are to test the performance of QMC simulations in the
rung basis when the sign problem is not completely eliminated
[for example, in the ladder model of Eq. (1) with J× �= J‖
[50–52,57,59–62]] and to seek other geometries, interactions,
and bases where the sign problem is absent.

Two very general aspects of our results are of direct
relevance to experimental studies of low-dimensional frus-
trated systems. One is the propensity of frustrated systems
to bound-state formation, leading to the possibility of high
densities of localized (narrow- or flat-band) excitations, which
have a strong effect on the physical properties of the system.
The other is the effect of proximity to a quantum phase
transition, which leads to strong changes in the spectrum and
may thus push high densities of states to low energies, with
dramatic effects on both the thermodynamic and the dynamical
response. Both features may already have been observed
in the two-dimensional compound SrCu2(BO3)2, a system
whose “Shastry-Sutherland” geometry is so frustrated that the
one-triplon band is almost completely flat and whose exchange
constants are believed to place it in the dimer-singlet phase (the
equivalent of the rung-singlet phase for the ladder), but very
near the quantum phase transition to a suspected plaquette
state. Indeed, the specific heat, susceptibility, and dynamical
structure factor measured for this material show some of the
anomalous properties we have observed in one dimension
in the fully frustrated ladder. The advances of this work,
both in analytical understanding and in numerical capabilities,
may be expected to assist in computing the thermodynamic
properties of a broad range of frustrated models in the near
future.

Note added in proof. We regret to announce that one of
our coauthors, Prof. Thomas Pruschke, passed away shortly
after the acceptance of this article. We would like to express
our gratitude for his unflagging support as a colleague and his
incisive contributions as a physicist.
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[68] B. Normand and Ch. Rüegg, Phys. Rev. B 83, 054415 (2011).
[69] B. Frischmuth, B. Ammon, and M. Troyer, Phys. Rev. B 54,

R3714 (1996).
[70] M. Greven, R. J. Birgeneau, and U.-J. Wiese, Phys. Rev. Lett.

77, 1865 (1996).
[71] B. Bleaney and K. D. Bowers, Proc. R. Soc. London, Ser. A

214, 451 (1952).
[72] D. C. Johnston, R. K. Kremer, M. Troyer, X. Wang,
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