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Recent experiments access the time-resolved photoelectron signal originating from plasmon satellites in
correlated materials and address their buildup and decay in real time. Motivated by these developments, we
present the Kadanoff-Baym formalism for the nonequilibrium time evolution of interacting fermions and bosons.
In contrast to the fermionic case, the bosons are described by second-order differential equations. Solution
of the bosonic Kadanoff-Baym equations—which is the central ingredient of this work—requires substantial
modification of the usual two-times electronic propagation scheme. The solution is quite general and can be
applied to a number of problems, such as the interaction of electrons with quantized photons, phonons, and other
bosonic excitations. Here the formalism is applied to the photoemission from a deep core hole accompanied by
plasmon excitation. We compute the time-resolved photoelectron spectra and discuss the effects of intrinsic and
extrinsic electron energy losses and their interference.
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I. INTRODUCTION

The impressive advances in the field of time-resolved
and, in particular, attosecond metrology [1–4] lead to new
insights into the transient electron dynamics in atomic [5],
molecular [6], and condensed [7] matter. The attosecond
streaking technique, in particular, captures the time-resolved
photoelectron spectra and thus allows for tracing the pathway
of, e.g., plasmon-accompanied photoemission in the time
domain [8–10].

Generally, photoemission is an involved process [11] in
which several factors are important: the density of states
of the unperturbed system, the electron scattering following
photoabsorption, and the formation of electron scattering
states which are subsequently observed in the detector. The
corresponding three stages are known as the classical model
of photoemission due to Berglund and Spicer [12]. The
last stage is complicated by the presence of long-range
Coulomb interaction between the emitted particle and the
target. Fortunately, in many cases calculations of the scattering
states can be decoupled from the treatment of the many-body
effects, which is the main topic of this work.

A deep core hole is created due to the interaction with
an XUV photon. The liberated electron interacts with the
particle-hole excitations in the conduction band and may
also excite collective charge density fluctuations (plasmons).
The separation between these scattering mechanisms is only
possible in the long wave-length limit where particle-hole
excitations shape the threshold profile. The plasmons, by
acting as massive bosonic particles, reshape the satellites’
features in the spectrum [13]. The latter effect, which is in-
herently nonequilibrium and known as extrinsic losses, should
be distinguished from the intrinsic losses manifested as, e.g.,
plasmonic satellites (PSs) in the equilibrium spectral function.
The occurrence of quantum interference between these two
channels is essential for obtaining accurate photoemission
spectra in the vicinity of PSs [14]. A microscopic theory
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accounting for intrinsic and extrinsic losses is a challenge
even in standard steady-state photoemission theory [15–18],
while a time-dependent description is still lacking.

In this work we focus on the time-dependent aspects of
photoemission for electronic systems in the case where the
interaction is solely mediated by the bosonic excitations.
Typical examples are processes involving electron-phonon or
electron-photon interactions. Also in pure electronic systems
the interaction can often be written in this form: For deep
core photoemission the photoelectron at high energies can
be treated as a distinguishable particle interacting with the
density fluctuations of the system [19]. At metallic densities
fluctuations are dominated by plasmonic excitations. This
gives rise to the S-model originally proposed by Lundqvist [20]
and solved by Langreth [13]. Keeping in mind the distinguisha-
bility aspect of such a reduction the model can also be applied
to more general scenarios such as homogeneous electron gas
at metallic densities [21] or solids treated in the plasmon-pole
approximation [22]. A sequence of PSs accompanying the
main quasiparticle (QP) peak is a generic feature of the density
of states of the electron-boson Hamiltonian [23].

A powerful method to deal with time-dependent processes
in many body systems is the nonequilibrium Green’s function
(NEGF) approach. This method provides a link to standard
many-body perturbation theory, allowing so for systematic
approximation schemes, and also to classical kinetics [24,25].
One important application of the NEGF formalism is the
prediction and the interpretation of time- and angular-resolved
photoemission spectra (tr-ARPES) [26], a technique that has
been employed in recent experiments on ultrafast dynamics of
electronic [27] or phononic [28] band structures of correlated
materials. Further recent time-resolved experiments such as
transient absorption in atoms [5] and transient THz transmis-
sion in semiconductors [29,30] are within the scope of the
NEGF approach [31–34] as well.

The method relies on solving the equations of motion
(EOM) for the Green’s functions on the Keldysh time con-
tour [35–37]—the Kadanoff-Baym equations (KBEs)—with
a proper choice of the self-energy [38–40], which, in turn,
determines the form of the collision integrals. This work
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is devoted to the extension of this formalism to coupled
electron-boson Hamiltonians (Sec. II A) and formulation of
the bosonic EOM as a second-order equation for massive
particles (Sec. II B). The formalism is kept general and is thus
applicable to related problems such as pseudoparticles [41],
electron-phonon coupling in the steady state [42–46], and
time domain [31,47,48], electron-vibron [49,50] or electron-
photon [51], or plasmonic nanojunctions [52,53]. In this study
we go beyond the frozen boson scheme as often employed
for electron-phonon relaxation [31,33,54–56] and treat density
oscillations in the system quantum mechanically. Our time-
dependent numerical approach (Sec. III) makes it possible to
disentangle intrinsic from extrinsic losses in photoemission
in a natural way and it complements the steady-state regime
studies that have been performed previously [16,17,57–71].

We apply the theory to the time-resolved photoemission
from the magnesium 2p core state and discuss the influence
of the intrinsic and extrinsic electron-plasmon couplings
(Sec. IV). Atomic units are used unless stated otherwise.

II. THEORY

Our goal is the description of a system of electrons
interacting with bosonic QPs that can be emitted or absorbed
(sometimes also referred to as quasibosons [14]) and thus
mediate an effective electron-electron interaction. As a conse-
quence, the boson propagators must have spectral features that
are quite different from (nonrelativistic) electrons: Instead of
one QP peak at energy E, a bosonic mode with frequency �

is represented by two peaks at ±� in the spectral function
B̂(ω), corresponding to emission or absorption of the QP,
respectively. More generally, this is reflected by the antisym-
metry of the boson spectral function B̂(ω) = −B̂T(−ω). This
is different from that of real bosonic particles (such as atoms
with integer nuclear spin) that are not considered here.

The idea of describing the electron-electron interaction in
metals by an effective Hamiltonian comprising electronic and
bosonic degrees of freedom goes back to Pines and Bohm [72],
where it was shown that the collective (long-wavelength)
charge density fluctuations (approximately) behave as a
harmonic oscillator. Diagrammatically, the long-wavelength
regime is captured by the random-phase approximation. For
other scenarios other classes of diagrams are relevant (see
Ref. [39] for a comparative study).

Second quantization of the density oscillations then leads
to the type of electron-boson Hamiltonian discussed be-
low [14,19,73]. Equivalently, the Hamiltonian can be derived
from the coupling of electrons to the quantized electromagnetic
field [25] within the long-wavelength limit [74] . For nonzero
momentum transfer the transversal response as encoded in
the correlator of the vector potential function [25] or in the
current-current correlation function [75] become important.

A. Generic Hamiltonian

Let us consider a system characterized by a set of electronic
single-particle (SP) states with energies {Ei} and possessing
a number of bosonic modes with corresponding frequencies
{�ν}. The respective annihilation operators of the electrons
(bosons) are denoted by ĉi (âν).

For the electrons we have the noninteracting Hamiltonian

Ĥel =
∑

i

Ei ĉ
†
i ĉi , (1)

while

Ĥbos =
∑

ν

�ν â†
ν âν = 1

2

∑
ν

�ν

(
P̂ 2

ν + Q̂2
ν

)
(2)

represents the boson Hamiltonian. Instead of working with
the bosonic creation or annihilation operators, the coordinate-
momentum representation,

Q̂ν = 1√
2

(âν + â†
ν), P̂ν = 1√

2i
(âν − â†

ν), (3)

is preferred here. Note that electrons and bosons (besides
their coupling) are considered as noninteracting here for the
sake of clarity. However, additional correlation effects for both
subsystems can, in principle, be included without conceptional
obstacles.

The electron-boson interaction is taken as

Ĥel-bos =
∑

ν

∑
ij

�ν
ij ĉ

†
i ĉj Q̂ν . (4)

A coupling where the order of the fermionic operators is
interchanged (e.g., ĉi ĉ

†
j ) can be treated along the same lines by

employing the anticommutator relation ĉi ĉ
†
j = δij − ĉ

†
j ĉi . The

remaining term arising due to the Kronecker δ,
∑

ν,i �
ν
iiQ̂ν

can be removed by shifting bosonic coordinates.
Furthermore, we account for environmental effects such as

particle exchange and line broadening by including additional
baths. In analogy, we define the environment SP states by the
energies {εk}, whereas the bosonic bath is characterized by the
frequencies {ωα}:

ĤBel =
∑

k

εk d̂
†
k d̂k, ĤBbos = 1

2

∑
α

ωα

(
p̂2

α + q̂2
α

)
. (5)

The bosonic bath operators p̂α , q̂α are defined analogous
to Eq. (3), while d̂k denotes the annihilation operators with
respect to the electron bath. The coupling of the electron-boson
system to the environmental degrees of freedom is described
by the embedding Hamiltonians

Ĥel-em =
∑
i,k

(Vikĉ
†
i d̂k + H.c.) (6)

and

Ĥbos-em =
∑
α,ν

γα,νQ̂ν q̂α. (7)

The total static Hamiltonian thus reads

Ĥ0 = Ĥel + Ĥbos + Ĥel-bos + ĤBel + ĤBbos + Ĥel-em + Ĥbos-em.

(8)

For later convenience we also introduce

Ĥ ′
0(t) = Ĥel + Ĥbos + s(t)Ĥint, (9)

where Ĥint comprises all the interacting contributions from
Eq. (8). The modified Hamiltonian (9) makes it possible, by
choosing a suitable functional form for the scaling factor s(t),
to “switch on” the interaction adiabatically in order to obtain
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FIG. 1. The general contour C consisting of the forward branch
C− on the real axis, the backward branch C+, and the imaginary
branch Cim. The arrows indicate the direction of the contour ordering.
β denotes the inverse temperature.

fully correlated eigenstates of Ĥ0, while s ≡ 1 retrieves the
static case.

To account for the light-matter interaction, we introduce

Ĥel-L(t) =
∑
ij

Fij (t)ĉ†i ĉj + H.c., (10)

where Fij (t) comprise the transition matrix elements and the
time-dependent field. There is no direct coupling of light to
bosonic excitations in the minimal coupling scheme. The total
time-dependent Hamiltonian is then given by

Ĥ (t) = Ĥ ′
0(t) + Ĥel-L(t). (11)

B. Equations of motion

To treat photoemission for the system described by
the Hamiltonian (11), we proceed in a standard way by
considering the one-particle fermionic and bosonic Green’s
functions [18,76]. Transient optical absorption requires the use
of more complicated two-particle Green’s functions [34,77,78]
and is outside of the scope of this paper.

Thus, let us introduce the electron GF:

Gij (z1,z2) = −i〈Tĉi(z1)ĉ†j (z2)〉. (12)

Here z1 and z2 are time arguments on the general contourC [79]
(sketched in Fig. 1), while T represents the corresponding
contour-ordering operator. All operators are represented in a
contour Heisenberg picture. The average 〈· · · 〉 refers to an
initial ensemble of eigenstates of the Hamiltonian Ĥ M. Typical
choices here are (i) Ĥ M = Ĥ0 − μn̂el (n̂el is the electron
number operator) or (ii) Ĥ M = Ĥel + Ĥbos − μn̂el. Case (i)
prepares the system in an ensemble with initial correlation,
whereas in (ii) the noninteracting and thus known basis is used
as a reference. Adiabatic switching can then be employed to
obtain a correlated state by turning on the interaction along
the real time axis [37]. Note that the chemical potential for
the bosons is assumed to be zero as, in principle, an infinite
number of them can be created.

Next we define the bosonic GF—the coordinate-coordinate
correlator—according to

Dμν(z1,z2) = −i[〈TQ̂μ(z1)Q̂ν(z2)〉 − 〈Q̂μ(z1)〉〈Q̂ν(z2)〉]
= −i〈�Q̂μ(z1)�Q̂ν(z2)〉, (13)

with the fluctuation operator �Q̂ν(z) = Q̂ν(z) − 〈Q̂ν(z)〉.
Likewise, the momentum-coordinate,

DPQ
μν (z1,z2) = −i[〈TP̂μ(z1)Q̂ν(z2)〉 − 〈P̂μ(z1)〉〈Q̂ν(z2)〉],

(14)

and momentum-momentum correlators,

DPP
μν (z1,z2) = −i[〈TP̂μ(z1)P̂ν(z2)〉 − 〈P̂μ(z1)〉〈P̂ν(z2)〉],

(15)

can be defined. We demonstrate below that they are not
required for the propagation of Dμν(z1,z2), but are necessary
if one is interested in observables such as the boson occupation
number.

In order to elucidate the features of the respective self-
energies related to the explicit time dependence, we have
rederived the EOM using the source-field method [80]. The full
derivation is presented in Appendix A . Here we recapitulate
the key points.

The electron GF (represented as matrix) obeys, as usual,[
i

∂

∂z1
I − hMF(z1)

]
G(z1,z2)

= Iδ(z1,z2) +
∫
C

dz3�(z1,z3)G(z3,z2). (16)

The self-energy, comprising many-body effects due to the
electron-boson interaction and the coupling to the environ-
ment, appears as a mean-field (MF) contribution incorporated
into the MF Hamiltonian hMF,

hMF
ik (z) = Eiδik + Fik(z) + s(z)

∑
ν

�ν
ik〈Q̂ν(z)〉, (17)

and as the time nonlocal correlation self-energy.
The EOM for the boson propagator Dμν(z1,z2) can be

derived (details in Appendix A) from the Heisenberg EOM
for position and momentum operators:

d

dz
Q̂ν(z) = �νP̂ν(z), (18)

d

dz
P̂ν(z) = −�νQ̂ν(z) − s(z)

∑
ij

�ν
ij ĉ

†
i (z)ĉj (z)

− s(z)
∑

α

γα,ν q̂α(z). (19)

They show that the first-order equation for Dμν(z1,z2) involves
momentum-position correlators DPQ

μν and can only be closed
as a second-order equation. The notion of the (bosonic) self-
energy μν(z1,z2), in the same spirit as for electronic GFs,
results from closing the EOM. Gathering environmental and
polarization effects into μν(z1,z2), the contour EOM for the
boson GF reads

− 1

�ν

(
∂2

∂z2
1

+ �2
ν

)
Dμν(z1,z2)

= δμνδ(z1,z2) +
∑

ξ

∫
C

dz3μξ (z1,z3)Dξν(z3,z2). (20)

In contrast to the electron case (16), the boson propagators are
subject to a second-order EOM.

For examining the spectral properties, we define the dif-
ferent Keldysh components depending on which branch of the
contour (Fig. 1) the arguments (z1,z2) are located (we adopt the
conventions from Ref. [79]). For example, the greater/lesser
boson GF D

≷
μν(t1,t2) corresponds to Dμν(z1,z2) with z1 =
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t1 ∈ C± and z2 = t2 ∈ C∓. In equilibrium, D
≷
μν(t1,t2) depends

on t1 − t2 only, allowing to perform the Fourier transforma-
tion D

≷
μν(ω) = ∫ ∞

−∞ dt eiωtD
≷
μν(t). For instance, the resulting

spectral function for the noninteracting case μν = 0 reads
bμν(ω) = πδμν[δ(ω − �ν) − δ(ω + �ν)]. The appearance of
the two peaks is a consequence of the second-order EOM
Eq. (20). Further properties of the boson propagators are
summarized in Appendix B.

As detailed in Appendix A, the expression for the electron
self-energy due to the electron-boson interaction is given by

�el-bos
ij (z1,z2)

= i s(z1)
∑
μν

∑
nk

∑
ab

�
μ

ik�
ν
ab

∫
C

d(z3z5)Gkn(z1,z3)

×�njab(z3,z2; z5)Dμν(z5,z
+
1 )s(z5), (21)

where �njab denotes the three-point vertex function obeying
the standard Bethe-Salpeter equation (BSE) with the four-
point kernel Kabcd (z1,z2; z3,z4) = δ�el-bos(z1,z2)/δGcd (z3,z4)
obtained from the functional derivative of the self-energy
with respect to the electron GF (details in Appendix A). The
bosonic self-energy is determined by the electron (irreducible)
polarization,

Pabcd (z1,z2)

= −i
∑
pq

∫
C

d(z3z4)Gap(z1,z3)Gqb(z4,z
+
1 )�pqcd (z3,z4; z2),

(22)

by

p
μν(z1,z2) = s(z1)s(z2)

∑
abcd

�
μ

baPabcd (z1,z2)�ν
cd . (23)

The simplest possible conserving approximation [81] emerges
from invoking the zeroth-order approximation to the vertex
function, that is,

�abcd (z1,z2; z3) = δacδbdδ(z1,z2)δ(z1,z3). (24)

Analogously to Hedin’s equations for electronic systems
(Fig. 2), we designate the resulting second-order (in �)
approximations to both the electron and the boson self-energy
as GW approximation:

�(2)(z1,z2) = i s(z1)s(z2)
∑
μν

�μG(z1,z2)�νDμν(z1,z2),

(25a)
(2)

μν(z1,z2) = −i s(z1)s(z2)Tr[�μG(z1,z2)�νG(z2,z1)].

(25b)

The contribution to the respective self-energies arising from
the environmental coupling (embedding self-energies) are
expressed in the standard way in terms of the bath propagators
for electrons,

�em
ij (z1,z2) = s(z1)s(z2)

∑
k

VikV
∗
kj g
B
k (z1,z2), (26)

FIG. 2. Approximations for the fermionic (a) and bosonic (b)
self-energy operators employed in this work. All self-energies are of
the second order in �μ and are expressed in terms of full electronic
G and bare dμν and full Dμν boson propagators. The first term in the
fermionic self-energy is local in time and therefore is included [see
Eq. (17)] in MF Hamiltonian hMF.

and for bosons

em
ν (z1,z2) = s(z1)s(z2)

∑
α

|γα,ν |2dBα (z1,z2). (27)

Here gBk and dBα are the bare GFs of the respective baths.
It should be noted that here the bosonic embedding self-
energy is labeled by a single mode index ν. In general,
nondiagonal terms can occur due to indirect coupling via the
bath. Thus, Eq. (27) relies on the assumption that such effects
can be neglected. As usual, the full self-energy is obtained
by summing the system and the bath contributions, that is,
� = �el−bos + �em and μν = 

p
μν + em

μν , respectively.
Equation (20) for the coordinate-coordinate correlator

Dμν(z1,z2) is not sufficient to fully describe the bosonic
dynamics, as the MF Hamiltonian (17) explicitly depends on
〈Q̂ν(z)〉 [this quantity cannot be inferred from Dμν(z1,z2)]. An
additional EOM is therefore required and can be derived from
Eqs. (18) and (19). Eliminating the bath amplitudes q̂α(z) by
the standard embedding technique, one obtains

− 1

�ν

(
∂2

∂z2
+ �2

ν

)
〈Q̂ν(z)〉

= −i Tr[�νG(z,z+)] +
∫
C

dz̄ em
ν (z,z̄)〈Q̂ν(z̄)〉. (28)

The EOM (16), (20), (28) for the quantities on the contour
is to be solved together with the Kubo-Martin-Schwinger
(KMS) boundary conditions [82]. For Eq. (28) this implies
that the solution is separated into a boundary-value problem for
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z = −iτ ∈ Cim, as 〈Q̂ν(0)〉 = 〈Q̂ν(−iβ)〉, whereas for z ∈ C±
Eq. (28) represents an initial-value problem.

In the absence of environmental coupling (i.e., em
ν = 0),

Eq. (28) can be solved in terms of the noninteracting boson
propagators dν(z1,z2), yielding

〈Q̂ν(z)〉 = −i

∫
C

dz̄ dν(z,z̄)Tr[�νG(z̄,z̄+)]. (29)

Substituting Eq. (29) back into the MF Hamiltonian (17),
we obtain the first diagram depicted in Fig. 2(a). Thus, the
first-order (in �ν) MF expression has been transformed to a
(formally) second-order self-energy, which is often referred to
as Hartree term [44,83]. We stress that this transition is not
possible in the presence of a bosonic bath (em

ν �= 0). The MF
part is hence kept in the more general form Eq. (17). This is
analogous to Ref. [84].

Furthermore, propagating the boson amplitude 〈Q̂ν(z)〉 is
necessary for computing the boson occupation number Nν :

Nν(z) = 〈â†
ν(z)âν(z)〉 = 1

2
[〈P̂ν(z)2〉 + 〈Q̂ν(z)2〉 − 1]

= i

2

[
Dνν(z,z+) + DPP

νν (z,z+)
]

+ 1

2
[〈P̂ν(z)〉2 + 〈Q̂ν(z)〉2 − 1]. (30)

III. NUMERICAL IMPLEMENTATION

In this section we revisit the formulation of the KBE from
the contour EOM. Since the general solution strategy in the
case of the electron GFs is quite established [35–37], we keep
the discussion brief and rather focus on the modifications to
be made for calculating the bosonic time evolution.

Together with the corresponding adjoint EOM, Eqs. (16)
and (20) represent the KBEs for the coupled electron-boson
system that needs to be solved along with Eq. (28). For a
numerical approach, the general complex contour arguments
are mapped onto observable times by splitting the general GFs
into their respective Keldysh components. Let us introduce the
convolution operations

[f · g](t,t ′) ≡
∫ ∞

t0

dt̄ f (t,t̄)g(t̄ ,t ′), (31)

[f � g](t,t ′) ≡ −i

∫ β

0
dτ̄ f (t,τ̄ )g(τ̄ ,t ′). (32)

Applying the Langreth rules [79], the KBEs for the
greater/lesser electron GF become

i
∂

∂t1
G≷(t1,t2) = hMF(t1)G≷(t1,t2) + X≷

L (t1,t2), (33a)

−i
∂

∂t2
G≷(t1,t2) = G≷(t1,t2)hMF(t2) + X≷

R (t1,t2), (33b)

i
∂

∂t
G�(t,τ ) = hMF(t)G�(t,τ ) + X�

L(t,τ ), (33c)

with the standard collision integrals

X≷
L (t1,t2) = [�R · G≷ + �≷ · GA + �� � G](t1,t2), (34a)

X≷
R (t1,t2) = [GR · �≷ + G≷ · �A + G� � �](t1,t2), (34b)

X�
L(t,τ ) = [�R · G� + �� � GM](t,τ ). (34c)

Similarly to Eq. (33), one finds the KBEs for the boson
propagators,

− 1

�μ

(
∂2

∂t2
1

+ �2
μ

)
D≷

μν(t1,t2) = Y
≷
L,μν(t1,t2), (35a)

− 1

�ν

(
∂2

∂t2
2

+ �2
ν

)
D≷

μν(t1,t2) = Y
≷
R,μν(t1,t2), (35b)

− 1

�μ

(
∂2

∂t2
+ �2

μ

)
D�

μν(t,τ ) = Y
�
L,μν(t,τ ), (35c)

where the collision integrals are obtained by applying the
Langreth rules analogously as in Eq. (34). The symmetry
properties of the GFs (and of the respective self-energies) lead
to similar relations for the collision integrals:

X≷
L (t1,t2) = −[

X≷
R (t2,t1)

]†
, Y

≷
L,μν(t1,t2) = −[

Y
≷
R,νμ(t2,t1)

]∗
.

Let us now assume that the Matsubara GF for both electrons
[GM(τ )] and bosons [DM

μν(τ )] has been determined by solving
the respective Matsubara Dyson equation. Note that the
solution has to be carried out self-consistently with the EOM
for the boson amplitude [Eq. (28)]. From the KMS conditions
one finds

1

�ν

(
d2

dτ 2
− �2

ν

)
QM

ν (τ )

= −i Tr[�νGM(0)] + [
em,M

ν � QM
ν

]
(τ ). (36)

Here QM
ν (τ ) = 〈Q̂ν(t0 − iτ )〉. Solving the imaginary trackCim

is straightforward if one discards initial correlations, as done
in the adiabatic switching method. Once the GFs at t0 have
been initialized from the Matsubara components, Eqs. (33)
and (35) can be propagated for real times together with the
boson amplitude,

− 1

�ν

(
d2

dt2
+ �2

ν

)
〈Q̂ν(t)〉

= −i Tr[�νG<(t,t)] + [
em,R

ν · 〈Q̂ν〉
]
(t). (37)

The KBEs (33) for the electrons can be solved by standard
techniques. Specifically, we implemented a predictor-corrector
Heun method similar to Ref. [85]. Equation (33a) is used for
propagating G>(t1,t2) for t1 > t2, while G<(t1,t2) is obtained
from Eq. (33b) for t1 < t2 [see Fig. 3(a)]. Equations (33) are
combined at t1 = t2 = t into the time-diagonal EOM,

i
d

dt
G<(t,t) = [hMF(t),G<(t,t)] + [X<

L (t,t) + H.c.]. (38)

For propagating the boson KBEs (35) we have chosen
the Numerov method, as it provides a fourth-order scheme
with minimal number of function evaluations for this spe-
cific type of differential equations. Generally, the method
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FIG. 3. Propagation scheme for solving the KBEs Eqs. (33)
and (35). The time coordinates are discretized into a uniform mesh
{tn}, such that discrete-difference approximations can be applied
to the derivatives. (a) Solution scheme for the electron KBEs.
G<(tk,tn+1) is computed from (33b) (orange arrows). Analogously,
G>(tn,tk) is obtained from Eq. (33a) in the lower part of the time plane.
Equation (38) is used for propagating on the time diagonal (green
arrows). (b) Propagation method for the boson KBEs: D>

μν(tn+1,tk),
k � n, is determined from D>

μν(tn−1,tk) and D>
μν(tn,tk), while the

diagonal points are obtained from the surrounding grid points by a
partial differential equation (see text). Symmetry relations between
of greater/lesser components are denoted by dashed arrows.

applies to [
d2

dt2
+ W (t)

]
F (t) = S(t), (39)

which is transformed (after equidistant discretization tn+1 −
tn = �t) into the recursive relation

F̃n+1 − UnF̃n + F̃n−1 = �t2

12
(Sn+1 + 10Sn + Sn−1). (40)

Here Sn = S(tn), F̃n = (1 − Tn)F (tn), Un = (2 + 10Tn)/(1 −
Tn) and Tn = −(�t2/12)W (tn). When applying the Numerov
method to the KBEs (35), S(t) plays the role of the collision
integral. From Eq. (40) we see that S(tn+1) required to perform
the step tn → tn+1 is unknown at this point (similar to the Heun
propagation scheme). However, as S(tn) carries the dominant
weight, we can substitute (Sn+1 + 10Sn + Sn−1) ≈ 12Sn when
executing tn → tn+1 for the first time. The precision of Eq. (40)
is thereby reduced from fourth to second order. Once the boson
propagators are known up to t1,t2 � tn+1, the new collision
integrals can be computed and the time step tn → tn+1 can be
carried out in fourth order according to Eq. (40). The analogous
strategy applies to Eq. (37). We combine this corrector step
with the one needed for propagating the electron GF, as the
electron (boson) self-energy depends on the boson (electron)
GF, and iterate until self-consistency at each time step is
achieved.

There is no need for computing D<
μν(t1,t2) for t1 < t2

from Eq. (35b), as D<
μν(t1,t2) = D>

νμ(t2,t1) = −[D>
μν(t1,t2)]∗

(cf. Appendix B). Therefore, the propagation scheme can be
restricted to the lower time half plane t2 � t1 for the greater
boson correlator [see Fig. 3(b)]. At variance with the electron
KBEs it is not possible to formulate the time-diagonal EOM in
the form of Eq. (38), as it relies on the notion of first derivatives.
We solve this issue by adding Eqs. (35a) and (35b) to obtain

the Poisson-type equation

− 1

�μ + �ν

(
∂2

∂t2
1

+ ∂2

∂t2
2

+ �2
μ + �2

ν

)
D>

μν(t1,t2) = Z>
μν(t1,t2),

(41)

(�μ + �ν) Z>
μν(t1,t2) = �μY>

L,μν(t1,t2) + �νY
>
R,μν(t1,t2).

(42)

Next we apply the two-dimensional extension of the Nu-
merov method (see Appendix C), expressing the Lapla-
cian ∇2

t1,t2
D>

μν(tn,tn) by the nine surrounding grid points
D>

μν(tn+i ,tn+j ), i,j = −1,0,1. The resulting equation can then
be solved for D>

μν(tn+1,tn+1) [sketched in Fig. 3(b)]. Similar to
the one-dimensional case, the right-hand side of Eq. (41) has
to be known at all these time points as well in order to achieve
fourth order. Analogously, we can approximate Z>

μν(tn+i ,tn+j )
(i,j = −1,0,1) by Z>

μν(tn,tn) when carrying out D>
μν(tn,tn) →

D>
μν(tn+1,tn+1) for the first time (predictor step) and apply

several corrector steps after computing Z>
μν(tn+1,tn+1).

Collision integrals are computed by either Durand’s rule
(even number of grid points) or Simpson’s rule (odd number
of points). The momentum-momentum correlator required for
calculating the boson occupation Eq. (30) is obtained from the
mixed derivative �μ�νD

PP,>
μν (t,t ′) = [∂t∂t ′D

>
μν(t,t ′)]

t=t ′ .

IV. APPLICATION TO PHOTOEMISSION FROM
MAGNESIUM 2 p CORE STATE

In order to illustrate our propagation method for coupled
electron-boson Hamiltonians and, furthermore, explore the
physics of such systems in the time domain, we apply the
theory developed in Sec. II to a typical process described by
the S-model: the photoemission from a deep core state.

In particular, we consider bulk Mg, a system where recent
attosecond streaking experiments [9] were able to measure the
time delay of photoemission between to the 2p core state
and the corresponding PS. The system is modeled by the
Hamiltonian (11) with the static part Eq. (8). We account for
the 2p state, Ei=2p and two virtual states Ei=k1,2 representing
photoelectrons, which is inspired by the the minimal treatment
of electronic states in the density matrix approach to time-
resolved two-photon photoemission [86]. We consider one bo-
son mode (bulk plasmon) with energy �pl � 10 eV (subscript
ν is dropped). This mode provides the dominant contribution to
the scattering channels for the emanating photoelectrons [87].
The excitation of surface plasmons on the other hand is
suppressed as the photoelectrons are generated relatively
deep within the sample for the energy scale considered here.
Furthermore, the energy and momentum conservation imposes
restrictions on the momentum q of density fluctuations from
which the photoelectrons may scatter [9]. For small q, the
plasmon dispersion can be neglected, reducing the excitation
channels to the incorporated bulk plasmon mode. For the
electron-plasmon interaction (4) we distinguish intrinsic (�in)
and extrinsic (�ex) mechanisms:

Ĥel-pl = �inĉ2pĉ
†
2pQ̂ +

∑
i,j �=2p

(�ex)ij ĉ
†
i ĉj Q̂. (43)
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FIG. 4. Sketch of the model system for photoemission from the
Mg 2p core state. Besides the core level |2p〉 the model comprises two
continuum states |k1,2〉 at fixed detector energy and the intrinsic and
extrinsic scattering channels upon plasmon generation. The energy
Ek1 is adjusted to the emission from the QP peak, while the energy
Ek2 selects the emission from the first plasmon satellite.

The latter accommodate postemission effects, that is inelastic
scattering of the emerging photoelectron from the electron sea
upon converting a part of their energy into a plasmon. The
ingredients to the model are illustrated in Fig. 4.

The S-model describes two phenomena: Upon x-ray ab-
sorption, an excited core electron loses a part of its energy and
excites a plasmon. This process is manifested as a sequence
of PSs in the spectral function occurring at lower energies.
For fixed detector energy, larger photon energy is needed to
produce a photoelectron from PS as compared to QP. In the
reciprocal process the core hole is filled upon emitting an x-ray
photon. This process can be again accompanied by creating
plasmons, such that the electron loses a part of its energy and
emits a photon with smaller energy when recombining. For
brevity we denote PSs at lower (higher) energies as PS− (PS+).
Furthermore, the position of the QP peak EQP is shifted by
�2

in/2�pl (correlation shift) [74] to larger energy with respect
to the noninteracting valueE2p when the core state is occupied,
whereas EQP = E2p − �2

in/2�pl for the empty core state. The
spectral functions for the two scenarios are shown in Fig. 5(a).

A. Time-dependent spectral function

It is now interesting to investigate the time evolution in
an intermediate case, where the initially occupied 2p state is
partially photoionized, in real time. The spectral function is
expected to reorganize transiently, showing (i) a shift of the
QP peak and (ii) appearance of plasmonic satellites (PS+). The
energetic position of these features in the spectral function
varies in time primarily reflecting changes in the core state
occupation and in the number of bosons in the system.

We solved the KBEs Eqs. (33) and (35) with the algorithm
from Sec. III. Instead of initializing with the interacting
Matsubara GFs, we switch on the interaction adiabatically
by defining s(t) = {1 + exp[α(tsw − t)]}−1 [s(z) = 0 for z ∈
Cim]. Hence, initial correlations can be disregarded (��, = 0,

FIG. 5. (a) Spectral function A−(E) [A+(E)] of occupied (empty)
core state, obtained by time propagation, along with A(Tp,E). (b)
Interacting plasmon spectral function Bpl(ω) and, for comparison,
the embedding density Jem(ω). (c) Electron spectral function A−

(n)(E)
(occupied core state) with fixed plasmon occupation Npl = 0,1,2.
(d) Dynamics of A(T ,E) for energy at the PSs and QP peak after
the excitation, E = EPS+ = −41.23 eV, E = EPS− = −61.44 eV, and
E = EQP = −51.76 eV.

�,
μν = 0), simplifying the propagation scheme. We only

consider intrinsic losses in this subsection, so �ex = 0.
Plasmons typically decay by exciting particle-hole (p-h)

pairs (Landau damping). Beside the states already incorporated
in our model, there might be other electronic transitions
limiting the plasmon lifetime. p-h excitations in the conduction
band in the case of metals are a typical mechanism. In order
to account for this plasmon decay channel in a simple way,
we add a bosonic bath. For the latter we assume that the bath
boson occupation number is zero, such that we obtain

em,≷(t1,t2) =
∑

α

|γα|2dB,≷
α (t1,t2)

= − i

2

∑
α

|γα|2e∓iωα (t1−t2)

≡ − i

2

∫ ∞

0
dω Jem(ω)e∓iω(t1−t2), (44)

where Jem(ω) denotes the spectral density of the bath (it
includes the coupling). For a simple Ohmic bath [88] adopted
here, Eq. (44) can be analytically integrated:

Jem(ω) = g0
ω

ω2
c

e−ω/ωc , em,≷(t1,t2) = ig0

2[ωc(t1 − t2) ∓ i]2
.

(45)

The transition ωc → ∞ represents the counterpart to the
wide-band limit approximation (WBLA) often encountered
for the electron embedding self-energy, as em,R(t1,t2) →
−π (g0/2ω2

c )δ′(t), turning the EOM (37) for the boson am-
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plitude into the equation for the ordinary damped driven
oscillator [similarly for the bosonic KBEs (35)], which
has no memory. Adiabatic switching is realized by g0 →
g0s(t1)s(t2).

We propagated the KBEs up to Tp = 15 fs (time step �t =
0.024 fs) with a switch-on time tsw = 5 fs and α = 0.1. The
inverse temperature is set to β = 50 a.u., simulating the zero-
temperature case. Initially, the electronic levels are occupied
according to the Fermi function with the chemical potential
μ = 0, while we assume for the plasmon occupation Npl(t =
0) = 0. The environmental coupling leads to a nonzero
steady-state boson number as a result of the broadening of
the spectral function. For g0 = 1 eV and ωc = 10 eV we
find Npl = 0.012 for t > tsw. This is in accordance with the
thermodynamical equilibrium value obtained from solving the
Matsubara Dyson equation for the plasmon mode (including
embedding only). The bosonic spectral function, calculated
analogously to Eq. (46), is shown together with the Ohmic
spectral density of the bath in Fig. 5(b).

To simulate the ultrafast photoionization dynamics, a laser
pulse of 0.5 fs length and frequency ωL = 55 eV (see Fig. 6, top
panel) is applied after the system is fully thermalized. For this
quasiresonant transition, we include one continuum state |k〉
at Ek = EQP + ωL, where EQP = −50 eV is the QP energy
for the no-hole ground state. The light-matter interaction
is simplified to F2p,k(t) = Fk,2p(t) ≡ F (t). Electron-plasmon
coupling is set to �in = 5 eV. We employ the self-energy
Eq. (25).

FIG. 6. (Top) Laser matrix element F (t). (Middle) Population
dynamics of the 2p and the photoelectron state along with the plasmon
occupation. (Bottom) Time-dependent spectral function A(T ,E) of
the core state. The Fourier transformation Eq. (46) was slightly
smoothed by including an exponential damping.

Once the solution of the KBEs has been obtained, the time-
resolved spectral function can be computed by

A(T ,E) = i

∫
dteiEt

[
G>

(
T + t

2
,T − t

2

)

− G<

(
T + t

2
,T − t

2

)]
. (46)

The laser-induced dynamics is presented in Fig. 6. The laser
pulse (Fig. 6, top panel) partially ionizes the core state [the am-
plitude of F (t) has been chosen to maximize the depopulation]
upon inducing plasmonic dynamics (Fig. 6, middle panel). The
creation of the core hole is faster than the plasmon time scale
τpl = 2π/�pl, indicating a strongly nonadiabatic limit [19]
of intrinsic plasmon excitation. The sudden change in the
plasmon population is followed then by oscillations in the plas-
mon occupation. This nonequilibrium dynamics also becomes
manifest in the time-resolved spectral function A(T ,E) ≡
A2p,2p(T ,E) (Fig. 6, bottom panel). The QP peak shifts
transiently in about 1.5 fs from the initial configuration (QP
peak at E = EQP, PS− at EPS− = 60.3 eV [89]) to the new QP
position atE = −51.76 eV. The shift is less than expected from
the equilibrium spectral function for the completely empty
core state [A+(E), Fig. 5(a)]. The spectral density quenches
transiently into the new equilibrium position. In this way the
PS− splits into a branch coalescing in the QP and a second one
merging with the shifted PS− after the pulse. A PS above the
QP appears (PS+) as expected. Furthermore, the strength of
the PS± oscillates in time. In order to understand this behavior,
one needs to take the bosonic occupation into account as well.
Revisiting the equilibrium case, Fig. 5(c) depicts the spectral
function of the occupied core state with fixed integer plasmon
number Npl = n, A−

(n)(E). The presence of a plasmon gives
rise to a PS on the right-hand side of the QP peak, describing
plasmon-assisted photoemission (i.e., a plasmon can be ab-
sorbed, transferring its energy to the photoelectron). Increasing
n leads to stronger bosonic fluctuations (cf. Appendix B) and
hence enhances the magnitude of the imaginary part of the
self-energy, leading to broadened spectral features. This is
consistent with the broadening observed in Fig. 5(c). Returning
to the time-dependent scenario, these features are indeed
manifested in A(T ,E) (Fig. 6): The spectral strength of the PS±

displays oscillations in phase with the time-dependent plasmon
occupation Npl(t). Furthermore, the weight of the QP peak is
suppressed antiphasewise to the variations of the PSs weight,
as apparent from cuts of A(T ,E) at the characteristic energies
[Fig. 5(d)]. Hence, the spectral function exhibits an oscillatory
transfer of spectral weight from the QP peak to the PSs. The
enhanced broadening expected from Fig. 5(c) is clearly visible
in the spectral function at the end of the propagation A(Tp,E),
as compared to the equilibrium spectra A±(E) in Fig. 5(a).

B. Time-resolved photoelectron spectra

After analyzing the intrinsic effects upon removing the
electron from the core level, we proceed by incorporating
extrinsic effects into the electron-plasmon coupling (43).
Extrinsic plasmon losses are postemission, or, in other words,
scattering effects. This goes beyond the standard treatment
of (time-resolved) photoemission in terms of the lesser GF
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restricted to bound states. Extrinsic effects can be incorpo-
rated by explicitly including (at least) two states |k1〉, |k2〉
representing photoelectrons and assign the plasmonic matrix
element �ex ≡ (�ex)k1k2 = (�ex)k2k1 (diagonal elements are set
to zero). As photoelectrons propagate to infinity, the system
is treated as open in their subspace. This is accomplished by
including embedding self-energies. Because the continuum
of photoelectron states describes electron propagating outside
the sample, a noninteracting basis can be chosen. Defining
the coupling density Uij (E) = ∑

k Vi,kV
∗
k,j δ(E− εk), the con-

tinuum embedding self-energy can be expressed in spectral
representation as

�em,≷(t1,t2) =
∫ ∞

0

dE
2π

�em,≷(E)e−iE(t1−t2), (47)

with

�em,<(E) = i U(E)NF (E− μ), (48)

�em,>(E) = −i U(E)[1 − NF (E− μ)], (49)

where NF (E) denotes the Fermi distribution function. U(E)
accommodates the density of continuum states (e.g., propor-
tional to

√
E for free particles) and matrix element effects.

We simplify the expressions by approximating U(E) ≈ U0I
as a constant (WBLA). The retarded embedding self-energy
attains �em,R(t1,t2) = −(i/2)U0Iδ(t1 − t2) in this case. In
accordance with the physical picture, we furthermore assume
that no electrons can return from the continuum, leading
to �em,<(E) ≈ 0. The WBLA has an advantage that all
states, regardless of their energy, are damped uniformly. Such
structureless embedding does not introduce any additional
energy-dependent time delays.

The embedding self-energy for continuum states further-
more allows for computing the photocurrent (the number of
electrons emitted per unit of time) J (E,t) = dn(E,t)/dt by
the transient Meir-Wingreen formula [36,90] often used in
transport calculations. The Meir-Wingreen expression for the
total electron current flowing out of system reads

dn(t)

dt
=4Re{Trk[�em,R · G<+�em,< · GA+�em,� � G](t,t)}.

(50)

Here Trk stands for the partial trace over the photoelectron
states |k1,2〉. Equation (50) is simplified in our case as �em,� =
0 due to the adiabatic switching procedure and �em,< = 0 by
the assumptions above. If we further resolve with respect to
the photoelectron energies E, we obtain

J (E,t) = 4U0Im
∫ t

0
dt̄e−iE(t−t̄)Trk[G<(t̄ ,t)]. (51)

We solved the KBEs Eqs. (33) and (35) for the three-
level system as in Sec. IV A (with the additional embedding
self-energy included). In order to reflect the experimental
situation [9], the photoelectron states are assigned energies
Ek1 = 68 eV and Ek2 = 58 eV (Ek1 − Ek2 = �pl). The laser
frequency is chosen ωL = 118 eV, corresponding to the
transition |2p〉 → |k1〉. The pulse length is set to τp = 1.2 fs,
corresponding to the full width at half maximum of 450 as
as in the experiment. The laser field amplitude is adjusted to

FIG. 7. Laser-induced KBE dynamics for the three-level system
(see sketch on the right-hand side). (Top panels) Envelope of the
laser pulse. (Middle panels) Population dynamics of |k1,2〉 and the
plasmon occupation. (Bottom panels) Time-resolved photocurrent
J (E,t). The electron-plasmon interaction is set to (a) �in = �ex = 0,
(b) �in = 5 eV, �ex = 0, (c) �in = 0, �ex = 1 eV, and (d) �in = 5 eV,
�ex = 1 eV.

perform a complete population transfer in a noninteracting
reference system.

Both intrinsic and extrinsic losses can result in the
population of |k2〉 continuum state with a lower energy,
which translates to a peak of J (E,t) around E ∼ 58 eV (see
illustration in Fig. 7). The interplay between the two channels
can be studied by turning either �in or �ex on or off (Fig. 7).
In the case that the electron-plasmon interaction is switched
off completely, |k2〉 acquires only a negligible occupation,
while the transient photoelectron spectrum J (E,t) converges
to a dominant peak aroundE ∼ 68 eV [Fig. 7(a)]. The plasmon
number Npl stays, of course, constant. When including intrinsic
losses [Fig. 7(b)], J (E,t) displays a peak originating from the
emission from PS−. Note that the Npl(t) exhibits only small
onset oscillations as compared to Fig. 6 because of the slower
ionization process due to the increased laser pulse duration.
Pure extrinsic electron-plasmon interaction [Fig. 7(c)] gives
rise to similar spectral features, the occurrence of a peak in the
time-resolved spectra, however, is delayed with respect to the
intrinsic case. This is clear since |k2〉 can only be populated
as a result of an additional scattering of |k1〉 involving the
creation of a plasmon. This transition rate is set by (i) �ex,
(ii) the plasmon frequency, and (iii) the population of |k1〉.
Turning to the case of comparable intrinsic and extrinsic
losses [Fig. 6(d)] the total number of photoelectrons detectable
around E ∼ 56 eV increases beyond the previous cases.
Interestingly, the bump in the population of |k2〉 due to extrinsic
losses is less pronounced as in Fig. 7(c) and delayed by
∼ 120 as. On the other hand, the photocurrent extends over a
longer period of time before approaching zero. Both factors
are expected to influence the observed streaking time delay [9].
Moreover, the extrinsic process is weakened by the presence of
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intrinsic losses. This is evidenced by that the maximum in the
population of |k2〉 is slightly less pronounced when comparing
Figs. 7(c) and 7(d). The intrinsic channel is already creating a
plasmon, which acts as driving against extrinsic losses. This is
a manifestation of quantum interference between intrinsic and
extrinsic losses, analogous to Ref. [14]. The plasmon dynamics
is quite different in the intrinsic and extrinsic cases as well.
For intrinsic coupling only, the plasmon occupation quickly
rises and is weakly damped due to the bosonic embedding
self-energy. At variance, the plasmon creation is delayed in
the extrinsic case and the plasmon occupation vanishes rapidly.
The dynamics is governed by a dynamical balance |k1〉 → |k2〉
upon creating plasmons and by the inverse process (visible in,
e.g., the nonmonotonic behavior of the population of the upper
continuum state for t > 2 fs). As both continuum states are
subject to environmental coupling, the transition |k2〉 → |k1〉
due to plasmon absorption leads to an effective plasmon
damping.

V. CONCLUSIONS

In this work we developed a formalism for simultaneous
propagation of the coupled fermionic and bosonic KBEs. The
marked feature of our scheme is the treatment of bosonic
correlators: Coupled first-order EOMs for 〈�Q̂μ(z)�Q̂ν(z′)〉,
〈�Q̂μ(z)�P̂ν(z′)〉, and 〈�P̂μ(z)�P̂ν(z′)〉 correlators are re-
formulated as a second-order equation of motion for the
coordinate-coordinate correlator and is efficiently propagated
using the two-dimensional Numerov formula. The two-times
nonequilibrium Green’s functions, which are the solutions of
these equations, completely describe the transient spectral
density of both subsystems and make it possible to obtain
the time-resolved photoemission spectra. Several competing
scattering mechanisms result in a photoelectron arriving at the
detector with a lower energy and time delay as compared to
the unscattered one. In our calculations of the photoemission
from the 2p core state of bulk Mg we put apart scattering
processes taking place before the photon interaction with the
material and after the photoionization event on the electron’s
way to the detector. The time delay between the unscattered
and scattered electrons is determined by the strength of the
electron-plasmon interaction, which is the dominant scattering
mechanism for electrons excited by XUV photons as in the
experiment [9]. Interference between these two scattering
pathways has already been theoretically predicted to modify
the spectral strength of PSs. Here we demonstrate that the
interference has also profound impact on the time dependence
of the photoelectron current.

Future studies will focus on including the short-range part
of the Coulomb interaction as well. This will allow for a
many-body description of recent experiments such as the
time-resolved Auger effect [91], where plasmonic effects are
expected to play an important role [87,92].
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APPENDIX A: SOURCE-FIELD METHOD FOR DERIVING
THE EQUATIONS OF MOTION

Let us assume that our system is initially prepared in some
canonical ensemble set by the inverse temperature β. Using
the contour-evolution operator, we can express the expectation
value of any operator Ô by

〈Ô(z)〉 = Tr
{
T exp

[−i
∫
C dz̄Ĥ (z̄)

]
Ô(z)

}
Tr

{
T exp

[−i
∫
C dz̄Ĥ (z̄)

]} . (A1)

Since embedding contributions to the self-energy are additive
and straightforward to construct, we can focus on the electron-
boson part, described by the general Hamiltonian

Ĥ0(z) =
∑
ij

hij (z)ĉ†i ĉj +
∑

ν

∑
ij

�ν
ij (z)ĉ†i ĉj Q̂ν

+
∑

ν

�ν(z)

2

(
P̂ 2

ν + Q̂2
ν

)
. (A2)

The Hamiltonian is now modified by adding time-dependent
fields coupled to the bosons; that is,

Ĥξ (z) = Ĥ0(z) +
∑

ν

ξν(z)Q̂ν. (A3)

The Heisenberg representation of all operators is now to be
understood with respect to Ĥξ (z). The way the source field
couples to the system, the bosonic propagators can directly be
obtained by

Dμν(z1,z2) = δ〈Q̂μ(z1)〉
δξν(z2)

∣∣∣∣
ξν=0

, (A4)

showing again that the boson GF describes the fluctuation
of the amplitude 〈Q̂ν(z1)〉. In the following, all functional
derivatives with respect to ξν(z) are understood to be taken at
ξν = 0.

1. Fermionic Green’s function and self-energy

With the help of the Heisenberg EOM, we obtain the
fermion GF,[

i
∂

∂z1
− h(z1)

]
G(z1,z2)

= Iδ(z1,z2) +
∑

ν

�ν(z1)ϒν(z1,z
+
1 ,z2), (A5)

with the higher-order correlator ϒν
kj (z1,z2,z3) = −i〈Tĉk(z1)

Q̂ν(z2)c†j (z3)〉. The superscript + denotes an infinitesimal shift
to later times. It is straightforward to see that it can obtained
by varying the fermionic GF with respect to the source field:

ϒν(z1,z3,z2) = i
δG(z1,z2)

δξν(z3)
+ 〈Q̂ν(z3)〉G(z1,z2). (A6)

Formally, we can identify the correlator term on the right-hand
side of Eq. (A5) with the self-energy term; i.e.,∑

ν

�ν(z1)ϒν(z1,z
+
1 ,z2) =

∫
C

dz3�(z1,z3)G(z3,z2).
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In order to access the self-energy directly, we need the inverse
GF. In particular, let us define the right inverse by∫

C
dz3G(z1,z3)

←−
G −1(z3,z2) = I δ(z1,z2). (A7)

Multiplying by
←−
G −1(z3,z2) and integrating over z3 yields for

the self-energy

�(z1,z2) =
∑

ν

�ν(z1)
∫
C

d(z3z4)ϒν(z1,z4,z3)
←−
G −1(z3,z2)

× δ(z+
1 ,z4).

Equation (A6) suggests a separation of the self-energy into two
terms. For reasons that become clear below, this distinction
amounts to splitting the self-energy into a MF and correlation
(c) part. The MF part gives

�MF(z1,z2) = δ(z1,z2)
∑

ν

�ν(z1)〈Q̂ν(z1)〉.

The correlation part of the self-energy so far reads

�c(z1,z2)

= i
∑

ν

�ν

∫
C

d(z3z4)
δG(z1,z3)

δξν(z4)
←−
G −1

nj (z3,z2)δ(z+
1 ,z4).

Let us introduce the new source field,

ζab(z) =
∑

ν

�ν
ab(z)〈Q̂ν(z)〉, (A8)

which is exactly the MF contribution to the fermionic self-
energy. This is analogous to the case of Hedin’s equations,
where the original source field (coupling to the density) is
replaced by the total electronic energy. The reasons for the
modification is to carry out the variation of the fermionic GF
with respect to fermionic quantities only. Using the chain rule
for functional derivatives, we obtain

�c
ij (z1,z2) = i

∑
ν

∑
nk

∑
ab

�ν
ik(z1)

∫
C

d(z3z4z5)
δGkn(z1,z3)

δζab(z5)

× ←−
G −1

nj (z3,z2)
δζab(z5)

δξν(z4)
δ(z+

1 ,z4).

Invoking the functional variation analog of integration
by parts, we can transfer the variation with respect to
ζab(z5) to the inverse GF. Noting further δζab(z5)/δξν(z4) =
�

μ

ab(z5)Dμν(z5,z4) one arrives at

�c
ij (z1,z2) = i

∑
μν

∑
nk

∑
ab

∫
C

d(z3z5)�μ

ab(z5)Gkn(z1,z3)

× �njab(z3,z2; z5)Dμν(z5,z
+
1 )�ν

ik(z1),

where we have introduced the three-point vertex

�abcd (z1,z2; z3) = −δ
←−
G −1

ab (z1,z2)

δζcd (z3)
. (A9)

2. Vertex function and Bethe-Salpeter equation

The definition of the vertex function Eq. (A9) is completely
analogous to the derivation of Hedin’s equations by the source-
field method. Beside this correspondence, treating the object

�abcd (z1,z2; z3) as the usual vertex function is justified as it
obeys the BSE. In order to show this property, we first realize
that

←−
G −1

ab (z1,z2) =
(

−i

←−
∂

∂z1
δab − ζab(z1)

)
δ(z1,z2)

− εaδab − �c
ab(z1,z2)

and thus

�abcd (z1,z2; z3) = δacδbdδ(z1,z2)δ(z1,z3) + δ�c
ab(z1,z2)

δζcd (z3)
.

(A10)

Similar to the strategy above, we employ the chain rule for
functional variation for the second term in Eq. (A10) to
transform

δ�c
ab(z1,z2)

δζcd (z3)
=

∑
mn

∫
C

d(z4z5)
δ�c

ab(z1,z2)

δGmn(z4,z5)

δGmn(z4,z5)

δζcd (z3)
.

As usual, we introduce the four-point kernel for BSE as

Kabcd (z1,z2; z3,z4) = δ�c
ab(z1,z2)

δGcd (z3,z4)
. (A11)

Next we would like to express the variation
δGmn(z4,z5)/δζcd (z3) by the inverse GF in order to
close the equation. This can be achieved by inserting the unity
relation Eq. (A7). We thus obtain

δ�c
ab(z1,z2)

δζcd (z3)
=

∑
mn

∑
p

∫
C

d(z4z5z6)Kabmn(z1,z2; z4,z5)

× δGmp(z4,z6)

δζcd (z3)
δpnδ(z5,z6)

=
∑
mn

∑
pq

∫
C

d(z4z5z6z7)Kabmn(z1,z2; z4,z5)

× δGmp(z4,z6)

δζcd (z3)
Gpq(z5,z7)

←−
G −1

qn (z7,z6).

Now we apply the variation to
←−
G −1

qn (z7,z6), which then
amounts to �qncd (z7,z6; z3). Finally, we obtain the BSE

�abcd (z1,z2; z3)

= δacδbdδ(z1,z2)δ(z1,z3)

+
∑
mn

∑
pq

∫
C

d(z4z5z6z7)Kabmn(z1,z2; z4,z5)

×Gmp(z4,z6)Gpq(z5,z7)�qncd (z7,z6; z3). (A12)

3. Boson Green’s function and polarization

By differentiating the position-position correlator twice
using EOM for position (18) and momentum (19) operators
we arrive at the second-order differential equation

− 1

�μ(z1)

[
∂2

∂z2
1

+ �2
μ(z1)

]
Dμν(z1,z2)

= δμνδ(z1,z2) + Tr

[
�μ(z1)

i δG(z1,z
+
1 )

δξν(z2)

]
.
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Here we omit the terms originating from the bath bosonic
coordinates. They can be added straightforwardly. In order to
close the EOM, we introduce the irreducible polarization

Pabcd (z1,z2) = −i
δGab(z1,z

+
1 )

δζcd (z2)
. (A13)

Like for the fermion GF we introduce the (right) inverse boson
GF according to

∑
ξ

∫
C

dz3Dμξ (z1,z3)[
←−
D −1]ξν(z3,z2) = δμνδ(z1,z2). (A14)

Hence, we can express the polarization part of self-energy


p
μν(z1,z2) for the bosons, implicitly defined by

Tr

[
�μ(z1) i

δG(z1,z
+
1 )

δξν(z2)

]
=

∑
ζ

∫
C

dz3
p
μζ (z1,z3)Dζν(z3,z2),

(A15)
as

p
μν(z1,z2) = Tr

{
�μ(z1)

∫
C

dz3
iδG(z1,z

+
1 )

δξζ (z3)
[
←−
D −1]ζν(z3,z2)

}

=
∑
mn

∑
ij

�
μ

ij (z1)
∫
C

d(z3z4)
iδGji(z1,z

+
1 )

δζmn(z4)

× δζmn(z4)

δξζ (z3)
[
←−
D −1]ζν(z3,z2)

and thus

p
μν(z1,z2) =

∑
mn

∑
ij

�
μ

ij (z1)�ν
mn(z2)Pjimn(z1,z2). (A16)

Finally, we investigate how the polarization Pabcd (z1,z2) can
be correlated to the fermionic GF. For this purpose we invoke
the rule

δGab(z1,z2)

δζcd (z5)
= −

∑
pq

∫
C

d(z3z4)Gap(z1,z3)

× δ
←−
G −1

pq (z3,z4)

δζcd (z5)
Gqb(z4,z2), (A17)

from which we obtain

Pabcd (z1,z2)

= −i
∑
pq

∫
C

d(z3z4)Gap(z1,z3)Gqb(z4,z
+
1 )�pqcd (z3,z4; z2).

(A18)

APPENDIX B: BASIC PROPERTIES OF
THE BOSON PROPAGATOR

From the definition Eq. (13) one infers Dμν(z1,z2) =
Dνμ(z2,z1). This implies for the greater/lesser Keldysh com-
ponents

D≷
μν(t1,t2) = D≶

νμ(t2,t1), (B1)

such that the retarded boson propagator becomes a real
function:

DR
μν(t1,t2) = θ (t1 − t2)[D>

μν(t1,t2) − D<
μν(t1,t2)]

= 2θ (t1 − t2)Re[D>
μν(t1,t2)]. (B2)

Similarly, one obtains DA
μν(t1,t2) = [DR

νμ(t2,t1)]∗ =DR
νμ(t2,t1)

for the advanced GF. For the Matsubara component, on
the other hand, DM

μν(τ1 − τ2) = Dμν(t0 − iτ1,t0 − iτ2), the
symmetry

DM
μν(τ ) = DM

νμ(−τ ) (B3)

holds. Hence, as compared to fermions or bosons with a
single peak in a spectral function representing one QP, there
is no discontinuity in the diagonal Matsubara function for the
transition τ = 0− to τ = 0+.

In equilibrium one can, as usual, assume that the
greater/lesser propagators (and thus the retarded and advanced,
as well) depend on the time difference t1 − t2 only. Therefore,
we can switch to frequency space D

≷
ν (ω) = ∫

dt eiωtD
≷
ν (t).

The symmetry relation Eq. (B1) implies

D≷
μν(ω) = D≶

νμ(−ω). (B4)

The spectral function is obtained from

Bμν(ω) = i[D>
μν(ω) − D<

μν(ω)], (B5)

which, in turn, makes it possible to characterize the
greater/lesser boson GF by the fluctuation-dissipation theorem

D<
μν(ω) = −iNB(ω)Bμν(ω), (B6a)

D>
μν(ω) = −i[NB(ω) + 1]Bμν(ω), (B6b)

where NB(ω) is the Bose distribution function. For illustration,
let us consider the noninteraction case. From the definition
Eq. (13) the bare boson GF follows as

d≷
ν (t1,t2) = − i

2
[(Nν + 1)e∓i�ν (t1−t2) + Nνe

±i�ν (t1−t2)]

= ∓1

2
sin[�ν(t1 − t2)]

−i

(
Nν + 1

2

)
cos[�ν(t1 − t2)] (B7)

[in thermal equilibrium Nν = NB(�ν)] and

dR
ν (t1,t2) = −θ (t1 − t2) sin[�ν(t1 − t2)]. (B8)

Fourier transforming Eq. (B7) yields

d≷
ν (ω) = −iπ [(Nν + 1)δ(ω ∓ �ν) + Nνδ(ω ± �ν)], (B9)

from which the spectral function follows as

bμν(ω) = πδμν[δ(ω − �ν) − δ(ω + �ν)]. (B10)

Using the property NB(−ω) = −[NB(ω) + 1] the normaliza-
tion of the spectral function can be verified:∫ ∞

−∞

dω

2π
NB(ω)bμν(ω) = δμνNB(�ν) + 1

2
. (B11)

The retarded GF reads

dR
ν (ω) = �ν

(ω + iη)2 − �2
ν

, (B12)
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where η is a positive infinitesimal. By complex continuation
one finds, analogously to Eq. (B7), the noninteracting boson
Matsubara function as

dM
ν (τ ) = − i

2
[(Nν + 1)e−�ν |τ | + Nνe

�ν |τ |]

= i

2
sinh(�ν |τ |) − i

(
Nν + 1

2

)
cosh(�ντ ). (B13)

APPENDIX C: TWO-DIMENSIONAL
NUMEROV FORMULA

Consider the differential equation(
∂2

∂t2
1

+ ∂2

∂t2
2

)
F (t1,t2) + S(t1,t2) = 0, (C1)

which we would like to solve numerically on a uniform two-
dimensional mesh up to the fourth order in the grid spacing �t .

This can be achieved by applying the Numerov discretization
method, which can be summarized in a compact way [93] by

1∑
i=−1

1∑
j=−1

[(�t)2(AiBj + AjBi)F (t1 + i�t,t2 + j�t)

+(�t)4BiBjS(t1 + i�t,t2 + j�t)] = 0. (C2)

The coefficients are defined by

A−1 = 12, A0 = −24, A1 = 12, (C3a)

B−1 = 1, B0 = 10, B1 = 1. (C3b)

For our numerical scheme we need F (t1 + �t,t2 + �t).
A corresponding fourth-order forward recursion formula is
derived by solving Eq. (C2):

−F1,1 = F−1,−1 + F−1,1 + F1,−1 + 6(F−1,0 + F0,−1 + F0,1 + F1,0) + 20F0,0

+ (�t)2

24
[S−1,−1 + S1,1 + 10(S−1,0 + S0,−1 + S1,0 + S0,1) + 100S0,0], (C4)

where we abbreviated Fi,j = F (t1 + i�t,t2 + j�t) and Si,j = S(t1 + i�t,t2 + j�t). In case the source term S is not known at
t1 + �t , t2 + �t , Eq. (C4) can be reduced to a second-order recursing by replacing the term in the square brackets in Eq. (C4)
with 144S0,0.
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[36] P. Myöhänen, A. Stan, G. Stefanucci, and R. van Leeuwen, Phys.

Rev. B 80, 115107 (2009).
[37] K. Balzer and M. Bonitz, Nonequilibrium Green’s Functions

Approach to Inhomogeneous Systems (Springer, Berlin, 2012).
[38] M. P. von Friesen, C. Verdozzi, and C.-O. Almbladh, Phys. Rev.

Lett. 103, 176404 (2009).
[39] M. Puig von Friesen, C. Verdozzi, and C.-O. Almbladh, Phys.

Rev. B 82, 155108 (2010).
[40] C. Verdozzi, D. Karlsson, M. Puig von Friesen, C. O. Almbladh,

and U. von Barth, Chem. Phys. 391, 37 (2011).
[41] A. J. White and M. Galperin, Phys. Chem. Chem. Phys. 14,

13809 (2012).
[42] G. D. Mahan, Many-Particle Physics (Springer Science &

Business Media, Berlin, 2000).
[43] M. Galperin, M. A. Ratner, and A. Nitzan, Nano Lett. 4, 1605

(2004).
[44] L. K. Dash, H. Ness, and R. W. Godby, J. Chem. Phys. 132,

104113 (2010).
[45] M. Sukharev and M. Galperin, Phys. Rev. B 81, 165307 (2010).
[46] H. Ness and L. K. Dash, Phys. Rev. B 84, 235428 (2011).
[47] S. W. Koch, Microscopic Theory of Semiconductors: Quantum

Kinetics, Confinement and Lasers (World Scientific, Singapore,
1996).

[48] Y. Murakami, P. Werner, N. Tsuji, and H. Aoki, Phys. Rev. B
91, 045128 (2015).
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