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Schottky effect in the i-Zn-Ag-Sc-Tm icosahedral quasicrystal and its 1/1 Zn-Sc-Tm approximant
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The analysis of low-temperature specific heat of rare-earth (RE)-containing quasicrystals and periodic
approximants and consequent interpretation of their electronic properties in the T → 0 limit is frequently
hampered by the Schottky effect, where crystalline electric fields lift the degeneracy of the RE-ion Hund’s rule
ground state and introduce additional contribution to the specific heat. In this paper we study the low-temperature
specific heat of a thulium-containing i-Zn-Ag-Sc-Tm icosahedral quasicrystal and its 1/1 Zn-Sc-Tm approximant,
both being classified as “Schottky” systems. We have derived the crystal-field Hamiltonian for pentagonal
symmetry of the crystalline electric field, pertinent to the class of Tsai-type icosahedral quasicrystals and their
approximants, where the RE ions are located on fivefold axes of the icosahedral atomic cluster. Using the
leading term of this Hamiltonian, we have calculated analytically the Schottky specific heat in the presence of an
external magnetic field and made comparison to the experimental specific heat of the investigated quasicrystal and
approximant. When the low-temperature specific heat C is analyzed in a C/T versus T 2 scale (as it is customarily
done for metallic specimens), the Schottky specific heat yields an upturn in the T → 0 limit that cannot be easily
distinguished from a similar upturn produced by the electron-electron interactions in exchange-enhanced systems
and strongly correlated systems. Our results show that extraction of the electronic properties of RE-containing
quasicrystals from their low-temperature specific heat may be uncertain in the presence of the Schottky effect.
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I. INTRODUCTION

When studying fundamental physics of solid materials
containing rare-earth (RE) elements, there is a drawback
which often hampers the interpretation of low-temperature
experimental data, namely the crystal-field (CF) splitting of the
Hund’s rule ground state [1]. In a solid, the highly anisotropic
4f charge cloud of a RE ion interacts with the crystalline
electric field and lifts the (2J + 1)-fold degeneracy of the

RE-ion ground state with the total angular momentum �

⇀

J ,
producing a set of discrete energy levels (here gadolinium is
an exception, because its charge cloud is spherically symmetric
and the CF interaction is zero). Specific heat of a system with
discrete energy levels possesses an additional contribution that
becomes dominant at low temperatures, known as the Schottky
effect [2]. The Schottky specific heat CSch is characterized by
a broad peak, appearing at a temperature that is a fraction of
the energy difference �ε/kB (in temperature units) between
the CF-split energy levels. For small CF splittings, the peak
may appear in the Kelvin or sub-Kelvin temperature range,
where it obscures the electronic specific heat of a metallic
specimen. Precise determination of the electronic specific
heat coefficient γ may thus be difficult and uncertain for
metallic samples containing RE elements. In addition, when
the low-temperature total specific heat of a RE-containing
metallic alloy is presented in a C/T versus T 2 scale (as it
is customary done), the Schottky specific heat term yields an
upturn in the T → 0 limit that cannot be easily distinguished
from a similar upturn produced by the electron-electron inter-
actions in exchange-enhanced systems and strongly correlated
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systems. The low-temperature magnetic susceptibility can also
be affected by the CF effects [1,3,4]. The CF-split energy level
scheme of some RE ions contains a nonmagnetic ground state,
whereas higher levels are magnetic. In the T → 0 limit, the
weight of the nonmagnetic state in the electronic magnetization
increases, so that the magnetic susceptibility χ decreases. In a
χ−1 versus T diagram, a Curie-Weiss-like deviation from the
linear χ−1 ∝ T Curie behavior is observed at low temperatures
and an effective Curie-Weiss temperature may be defined.
However, both the CF-induced Curie-Weiss behavior of the
susceptibility and the Schottky specific heat are single-ion
properties, depending on the distribution of electric charges
around the RE ion, but are not related to the interactions
within the electronic system. Special care should be taken
when analyzing the electronic and magnetic properties of a
metallic system containing RE elements on the basis of its
low-temperature specific heat and magnetic susceptibility.

The difficulty in ascertaining the CF splitting is twofold.
First, a proper CF Hamiltonian has to be evaluated, and second,
the CF parameters, which parametrize the CF Hamiltonian,
have to be determined either by appropriate models or by
experiment. In metallic compounds, the CF parameters have to
be supplied solely by the experiment, because the conduction
electrons make significant contribution to the CF splitting, for
which no predictive models exist and the point-charge model
does not apply. The CF splitting schemes have been derived
for certain crystal symmetries by group-theoretical methods
and the introduction of Stevens’ equivalent operators Om

n ,
tabulated by various authors [5,6]. For cubic [7] and hexagonal
[8–12] symmetries, the CF-split energy-level schemes have
been published for all RE ions.

The case of icosahedral symmetry has been considered
by Walter [13,14]. Icosahedral symmetry represents the
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highest point symmetry in three dimensions and is found in
icosahedral quasicrystals (i-QCs), where icosahedral atomic
clusters represent the basic building block of the structure.
Icosahedral nearest-neighbor coordination is also considered
to exist in metallic glasses, giving rise to a maximum local
mass density. The CF-split energy level schemes for all RE
ions were published for a special case where the RE ion
feels the electrostatic potential of ideal icosahedral symmetry
[13], i.e., the RE ion is located in the center of a regular
icosahedron with equal charges at its 12 vertices. In real
i-QCs, this highly symmetric case has never been encountered.
Most of the so-far known RE-containing i-QCs belong to the
class of Tsai-type quasicrystals, possessing the structure of the
i-Cd5.7Yb parent compound that can be described as a pack-
ing of interpenetrating rhombic triacontahedral, or Tsai-type
atomic clusters [15–17]. A rhombic triacontahedral cluster
contains inside a three-shell icosahedral cluster, consisting of
an inner dodecahedron, a middle icosahedron, and an outer
icosidodecahedron. The RE atoms are located at the vertices
of the middle icosahedron and their first coordination shell
does not possess icosahedral symmetry, so that the published
CF schemes in an icosahedral field do not apply. However, the
local near-neighbor atomic environment of these RE atoms
possesses fivefold symmetry, as a consequence of the fact that
the RE atoms are located on fivefold axes of the icosahedron.
In this paper we first elaborate theoretically the CF effects for
the electrostatic potential of pentagonal (fivefold) rotational
symmetry, applicable to the class of Tsai-type i-QCs and
their periodic approximants that contain the same three-shell
icosahedral cluster as a backbone of the structure (here it
should be noted that the Cd6Yb-type approximants possess
an additional small tetrahedron in the center of the three-
shell cluster that breaks its overall icosahedral symmetry
[17]). Experimentally we demonstrate the CF effects for the
i-Zn-Ag-Sc-Tm Tsai-type icosahedral quasicrystal and its 1/1
Zn-Sc-Tm cubic approximant. We show that the CF-split
energy levels of thulium ions introduce Schottky contribution
to the specific heat that exhibits a broad maximum at a
temperature around 1 K and the maximum is shifted to higher
temperatures by the application of an external magnetic field.
In addition, we demonstrate that the nuclear Schottky effect,
being much weaker than the ionic Schottky effect, is also
observed experimentally in the specific heat of the i-Zn-Ag-
Sc-Tm and 1/1 Zn-Sc-Tm at sub-Kelvin temperatures. The
presence of Schottky effect greatly aggravates extraction of the
electronic properties of RE-containing quasicrystals and their
approximants in the T → 0 limit from the low-temperature
specific heat.

II. STRUCTURAL ANALYSIS

The i-Cd5.7Yb (or i-Cd85Yb15 in at. %) prototype structure
[17] of the Tsai-type i-QCs is realized in many alloy systems
by replacing the majority element cadmium with Zn or
combinations Zn-M (M = Mg, Cu, Pd, Ag, Pt, Au), Zn-T (T =
Mn, Fe, Co, Ni), Cu-Al, Cu-Ga, Cd-Mg, Ag-Al, Ag-In, Pd-Al,
Au-Al, Au-Ga, and Au-In, whereas the minor component can
be trivalent transition elements such as Sc, Y or lanthanides,
or divalent Ca or Yb [18–20]. In all cases, composition of
the minor component ranges from 12 to 16 at. %, and the

Tsai-type QCs satisfy an almost constant valence-electron
concentration per atom e/a, ranging from 2.00 to 2.15. Among
these, the following RE-containing i-QCs were reported:
i-Ag-In-(Gd,Yb) [21,22], i-Au-(Al,In)-Yb [20,23,24], i-Zn-
Fe-Sc-(Ho,Er,Tm) [25], i-Zn-Ag-Sc-Tm (this work), and the
newly discovered binary group i-Cd7.55RE with RE = Gd,
Tb, Dy, Ho, Er, and Tm [26]. The only known RE-containing
i-QCs that do not belong to the Tsai class are those from
the i-(Zn,Cd)-Mg-RE series [27,28], which are structurally
based on the Bergman type (or Frank-Kasper type) icosahedral
cluster. Periodic approximants of the Tsai-type i-QCs possess
the Zn17Sc3 (Zn85Sc15) body-centered cubic (bcc) structure
[29] and the reported RE-containing approximants include
1/1 Cd6Yb [30], 2/1 Cd5.8Yb [31], 1/1 (Ce,Gd)15Au65Sn20

[32,33], 1/1 Zn85.5Sc11Tm3.5 (this work), 1/1 Ag40In46Yb14

[34], and 2/1 Ag41In44Yb15 [35]. There is a slight difference
in the distribution of the RE atoms within the structures of
the i-QCs and their approximants. In the approximants, all
RE atoms are located exclusively on the middle icosahedron
of the basic three-shell cluster (i.e., there is only one RE
crystallographic site), while in the i-QCs, about 70% of RE
atoms are located on the icosahedra, whereas the remaining
30% are found in the glue that fills the gaps between the
clusters.

The local atomic coordination around the RE atom located
on the icosahedron of the three-shell cluster, which determines
its CF Hamiltonian, will be presented for the structural model
of the 1/1 Ce15Au65Sn20 bcc approximant (space group
Im3̄, a = 1.5190 nm, 161 atoms in the unit cell) [32] a
representative member of the Tsai-type approximants. The
reason why we have chosen the ternary 1/1 Ce15Au65Sn20

approximant for the analysis instead of the binary 1/1 Zn-Sc
approximant that is more closely related to the investigated 1/1
Zn-Sc-Tm (for which the structural model has not yet been
determined) is the fact that Ce15Au65Sn20 better illustrates
the distribution of three chemical elements and the associated
chemical disorder on the three-shell cluster, whereas in the case
of the 1/1 Zn-Sc no chemical disorder exists. The structure
of the 1/1 Ce15Au65Sn20 can be described by a periodic
arrangement of the three-shell icosahedral clusters, located
at the nodes of the bcc unit cell, as shown in Fig. 1(a). One
such cluster is shown in Fig. 1(b). The inner shell is a 20-atom
dodecahedron decorated by 12 Au and 8 Sn atoms at 0.39 nm
from the bcc nodes. The second shell is a perfect icosahedron
decorated by 12 Ce atoms at 0.54 nm. The third shell is an
icosidodecahedron decorated by 30 Au atoms at 0.61 nm. The
glue atoms, located between the clusters, are either gold or tin
atoms.

The nearest-neighbor atomic coordination around a given
Ce atom, including atoms up to the maximum distance r =
0.35 nm, is shown as a side view in Fig. 1(c) and along the
fivefold axis in Fig. 1(d). The fivefold axis, passing from
the three-shell cluster center through the Ce atom, is marked
by a dashed line. Within this nearest-neighbor coordination
sphere, there are 16 atoms surrounding the central Ce atom,
15 of them forming three more or less regular pentagons,
whereas the 16th atom is located on the fivefold axis. The
atomic distribution around a Ce atom thus shows pentagonal
(fivefold) rotational symmetry. The bottom pentagon (the one
closest to the three-shell cluster center) is formed from atoms
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FIG. 1. (a) Unit cell of the Ce15Au65Sn20 Tsai-type 1/1 bcc approximant according to the structural model by Kenzari et al. [32]. The
structure can be described by a periodic arrangement of three-shell atomic clusters with icosahedral symmetry, located at the nodes of the
bcc unit cell. (b) A three-shell icosahedral cluster on an expanded scale. The inner shell is an (Sn, Au)20 dodecahedron (gray online), the
middle shell is a Ce12 icosahedron (blue online), and the outer shell is an Au30 icosidodecahedron (yellow). (c) The nearest-neighbor atomic
coordination shell around a given Ce atom, shown in a side view. The fivefold axis, passing from the three-shell cluster center through the Ce
atom, is marked by a dashed line. (d) A view of the nearest-neighbor coordination shell along the fivefold axis.

labeled 1–5, belonging to the inner dodecahedron (mixed Au
and Sn, yellow/gray-colored online). The middle pentagon is
formed from gold atoms (6–10, yellow) belonging to the outer
icosidodecahedron. The top pentagon is formed from gold
atoms (11–15, yellow) that belong to the icosidodecahedron
of the adjacent three-shell cluster and the glue atoms. Atom
16 is Sn (gray), located on a fivefold axis. The next-nearest
neighbor atoms (outside of the first coordination shell) are
located at distances >0.40 nm from the Ce atom, but again
form pentagons around the fivefold axis, with the exception
of two split atomic positions. The distance of the central Ce
atom to the nearest Ce neighbors on the icosahedral shell is
quite large, amounting to rCe−Ce ≈ 0.57 nm (the closest Ce
neighbors on the adjacent three-shell cluster are at about the
same distance).

III. THE CF HAMILTONIAN

The CF Hamiltonian will now be derived under the
assumption that the RE ion feels the electrostatic potential

of pentagonal (fivefold) rotational symmetry. Our derivation
follows the works of Hutchings [5] and Walter [13]. The
Hamiltonian of the RE ion in a crystal is of the form
H = H0 + VCF, where H0 is the Hamiltonian of the free ion
and VCF is the electrostatic potential energy of the ion in the
crystal electric field of the neighboring charges, which has the
symmetry of the local surroundings. The CF potential VCF can
be expanded in terms of tesseral (real) harmonics Znm(θ,φ)
(electrical multipoles) [5] which form an orthonormal set of
functions

VCF(r,θ,φ) =
6∑

n=0

n∑
m=0

rnγnmZnm(θ,φ), (1)

with n even and m a multiple of p, where p stands for the p-fold
symmetry (p = 5 in our case) along the z axis of an arbitrary
reference frame, and (r,θ,φ) denote polar coordinates. The
coefficients γnm are

γnm =
∑

j

4π

2n + 1
qj

Znm(θj ,φj )

Rn+1
j

, (2)
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where qj and (Rj ,θj ,φj ) are the charge and the location of the
j th atom with respect to the RE ion. For the fivefold-symmetric
distribution of charges around the RE ion, VCF can be written
as (by omitting the n = 0 term, which shifts the energy levels
but does not affect their CF splittings)

VCF(r,θ,φ) = r2γ20Z20(θ,φ) + r4γ40Z40(θ,φ)

+ r6γ60Z60(θ,φ) + r6γ65Z65(θ,φ). (3)

The following tesseral harmonics appear in Eq. (3):

Z20 = 1

4

√
5

π
(3cos2θ − 1), (4a)

Z40 = 3

16

√
1

π
(35cos4θ − 30cos2θ + 3), (4b)

Z60 = 1

32

√
13

π
(231cos6θ − 315cos4θ + 105cos2θ − 5),

(4c)

Z65 = 3

32

√
2002

π
cos θsin5θ cos 5φ. (4d)

The expansion of VCF given by Eq. (3) is equally valid
for the icosahedral symmetry [13] since the RE ion in the
center of an icosahedron is located on a fivefold axis. For
the ideal icosahedral symmetry, where equal charges qj = q0

are located at the 12 vertices of the icosahedron at distances
Rj = R0 from the central RE atom, it is straightforward to
show that the coefficients γ20 and γ40 vanish due to the
high symmetry and Z60 and Z65 are the only contributing
multipole terms in Eq. (3) [13]. Using the Stevens’s “operator
equivalents” technique [36], the electrical multipoles Znm are
transformed into the corresponding total angular momentum
representations, the CF operators Om

n (J ). Thereby the Znm are
multiplied with the charge of one electron e and summed over
all 4f electrons, thus transforming the CF potential VCF into
a CF Hamiltonian HCF. The icosahedral CF Hamiltonian Hico

CF
is then given by [13]

Hico
CF = B6

(
O0

6 − 42O5
6

)
, (5)

where

B6 = A6γJ 〈r6〉, (6)

and, under the assumption that the point-charge model applies,

A6 = − 33

100

q0|e|
R7

0

. (7)

The quantity γJ is the Stevens coefficient [36] of the RE
ion under consideration and

〈r6〉 =
∫ ∞

0
R2

4f (r) r6 dr (8)

is an average of r6 over the normalized radial 4f wave function
R4f (r). The Stevens’ operators appearing in Eq. (5) are

O0
6 = 231J 6

z − 105[3J (J + 1) − 7]J 4
z

+ [105J 2(J + 1)2 − 525J (J + 1) + 294]J 2
z

− 5J 3(J + 1)3 + 40J 2(J + 1)2 − 60J (J + 1), (9a)

O5
6 = 1

4 [Jz(J
5
+ + J 5

−) + (J 5
+ + J 5

−)Jz]. (9b)

Here Jz and J± = Jx ± iJy are the total angular momentum
operators. The icosahedral CF energy level scheme is governed
by one CF parameter B6, only, which merely stretches the
ladder (or turns it upside down for a negative B6 value). The
CF schemes for the icosahedral crystalline potential have been
published for all RE ions [13].

In the case of pentagonal electrostatic potential, the coeffi-
cients γ20 and γ40 in Eq. (3) no longer vanish by symmetry, as
they do in the icosahedral case. By transforming into the total
angular momentum representation we obtain the pentagonal
CF Hamiltonian

H
(5)
CF = B0

2O0
2 + B0

4O0
4 + B0

6O0
6 + B5

6O5
6 , (10)

where

O0
2 = 3J 2

z − J (J + 1), (11)

O0
4 = 35J 4

z − [30J (J + 1) − 25]J 2
z

− 6J (J + 1) + 3J 2(J + 1)2, (12)

and O0
6 and O5

6 are given by Eqs. (9a) and (9b). The coefficients
Bm

n show the following dependence on the distance Rj of
the j th charge from the RE ion: B0

2 ∝ R−3
j , B0

4 ∝ R−5
j , and

B0
6 ,B5

6 ∝ R−7
j . When calculating the energy levels of H

(5)
CF in

the |J,m〉 basis, the three B0
nO

0
n terms give diagonal matrix

elements, whereas the nonzero matrix elements of B5
6O5

6 are
off-diagonal, so that the matrix has to be diagonalized.

The CF Hamiltonian for the pentagonal charge distribution
around the RE ion in Tsai-type i-QCs and approximants is
thus given by Eq. (10). It depends on four CF parameters,
B0

2 , B0
4 , B0

6 , and B5
6 , and since the conduction electrons

make significant contribution to the charge in the metal-
lic state, the point-charge model does not apply. Conse-
quently, no theoretical prediction for the parameters Bm

n can
be made.

IV. CF EFFECTS IN THE i-Zn-Ag-Sc-Tm ICOSAHEDRAL
QUASICRYSTAL AND THE 1/1 Zn-Sc-Tm APPROXIMANT

A. Samples selection and characterization

Our study of the CF effects on the low-temperature specific
heat and magnetic susceptibility has included two pairs
of samples, all with the Tsai-type structure. The first pair
consisted of icosahedral quasicrystals i-Zn74.5Ag9.5Sc12Tm4

(abbreviated in the following as i-Zn-Ag-Sc-Tm) and
i-Zn74.5Ag9.5Sc16 (i-Zn-Ag-Sc), whereas the second pair were
1/1 bcc approximants Zn85.5Sc11Tm3.5 (1/1 Zn-Sc-Tm) and
Zn85.5Sc14.5 (1/1 Zn-Sc). The two members of each pair
are isostructural, the difference being the population of
the (middle) icosahedral shell of the three-shell cluster. In
one sample of the pair (termed for convenience the “pure
compound”), the icosahedral shell is populated by Sc atoms
only, whereas in the complementary sample (the “substituted
compound”), a fraction of Sc atoms has been substituted by
the RE atom thulium (Tm). The CF effects were studied on
the Tm-substituted samples, whereas the samples without Tm
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were studied for comparison to demonstrate the effect of
the Tm substitution on the physical properties of the pure
phase.

The synthesis, formation, x-ray diffraction (XRD) data,
and electron microscopy characterization of the i-Zn-Ag-Sc
quasicrystal have been reported before [18,37], whereas the
description of i-Zn-Fe-Sc-RE (RE = Ho, Er, Tm) quasicrys-
tals, isostructural to our i-Zn-Ag-Sc-Tm, can be found in
another publication [25]. It was shown that after a proper
annealing process, these i-QCs are thermodynamically stable,
forming single phase with P-type (primitive type) icosahe-
dral symmetry m3̄5̄. The inner dodecahedron and the outer
icosidodecahedron of the three-shell cluster are populated
by a mixture of Zn and Ag atoms, whereas the middle
icosahedron is populated by Sc atoms in the pure compound
and by a mixture of Sc and Tm atoms in the substituted
compound. The 1/1 Zn-Sc and 1/1 Zn-Sc-Tm approximants
both possess the Zn17Sc3-type structure [29,38]. In both cases,
the inner dodecahedron and the outer icosidodecahedron of the
three-shell cluster are populated by Zn atoms only, whereas
the middle icosahedron is populated by Sc atoms in the
pure compound and by a Sc-Tm mixture in the substituted
compound.

All four investigated samples were in polygrain morphol-
ogy. For the i-Zn-Ag-Sc sample preparation, the starting
materials were put in an alumina crucible and sealed in a silica
tube in an argon atmosphere. After the melting and solidifying
operation, the sample was annealed at 746 °C for 20 h and then
slowly cooled to room temperature. Its XRD pattern was found
identical to that of the i-Zn74.5Ag9.5Sc16 published before [37]
and is not shown here, whereas the six-dimensional lattice
parameter was determined to be a6D = 0.7146 ± 0.0001 nm.
The Tm-substituted sample i-Zn-Ag-Sc-Tm was synthesized
under similar conditions except for the annealing at 709 °C
for 60 h and quenching into water. Its powder XRD pattern,
typical of an icosahedral quasicrystal, is shown in Fig. 2(a).
Its six-dimensional lattice parameter was determined to be
a6D = 0.7183 ± 0.0001 nm, very close to that of the pure
sample. The 1/1 Zn-Sc sample was annealed at 455 °C for
50 h and then slowly cooled to room temperature. Its powder
XRD pattern, typical of a 1/1 Tsai-type approximant, is shown
in Fig. 2(b) and its bcc lattice parameter was determined to
be a = 1.3852 ± 0.0001 nm. The Tm-substituted sample 1/1
Zn-Sc-Tm was annealed at 611 °C for 80 h and then quenched
into water. Its powder XRD pattern is shown in Fig. 2(c) and its
bcc lattice parameter was a = 1.3903 ± 0.0001 nm. Further
details of the samples synthesis and characterization of the
substituted compounds i-Zn-Ag-Sc-Tm and 1/1 Zn-Sc-Tm
will be published elsewhere. The XRD patterns of all four
investigated samples show sharp diffraction peaks, where most
of the peaks could be indexed to a single phase, revealing good
structural order. The six-dimensional lattice parameters of the
two i-QC samples are very close to each other, and the same
holds for the bcc lattice parameters of the two approximants,
indicating that in both cases the structures of the pure and
the Tm-substituted samples are the same and the small lattice
expansion of the Tm-substituted samples is due to a slightly
larger atomic radius of Tm (0.1746 nm), as compared to Sc
(0.1641 nm) [39]. The partial (random) Tm-for-Sc substitution
on the middle icosahedron of the three-shell cluster is thus the

FIG. 2. Powder XRD patterns of (a) i-Zn-Ag-Sc-Tm icosahedral
quasicrystal, (b) 1/1 Zn-Sc approximant, and (c) 1/1 Zn-Sc-Tm
approximant measured using Cu Kα radiation in a step scan mode at
steps of 0.01o.

only significant structural difference between the pure and the
substituted compounds.

Temperature-dependent electrical resistivity ρ is another
convenient quantity to characterize metallic samples. We have
measured the resistivity of all four investigated samples, but
since ρ is insensitive to the CF effects, we present the results
in the Supplemental Material (Fig. S1) [40].

B. Experiment

The measurements of the specific heat and the electrical
resistivity were conducted by a Quantum Design Physical
Property Measurement System PPMS 9T, equipped with a
9 T magnet and operating in the temperature range between
400 and 0.35 K. Low temperatures below 2 K were reached
by a 3He cryostat. Magnetic measurements were conducted
by a Quantum Design MPMS XL-5 SQUID magnetometer
equipped with a 5 T magnet and operating in the temperature
range 400–1.9 K.

C. Magnetic susceptibility

The magnetism of the Tm-containing i-Zn-Ag-Sc-Tm
icosahedral quasicrystal and its 1/1 Zn-Sc-Tm approximant is
originating from the thulium ions since the triply ionized Sc3+
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FIG. 3. Temperature-dependent magnetic susceptibility of the i-
Zn-Ag-Sc-Tm quasicrystal and the 1/1 Zn-Sc-Tm approximant in a
χ−1 versus T plot. The fits with Eq. (13) are shown by solid lines
(red online).

ions possess the electronic configuration of the noble gas argon
with no unpaired electrons and are hence diamagnetic. The
magnetic susceptibility χ of the i-Zn-Ag-Sc pure quasicrystal
was studied before and was indeed reported to be negative
diamagnetic [37].

The magnetic susceptibility χ = M/H of the i-Zn-Ag-Sc-
Tm and the 1/1 Zn-Sc-Tm was studied in the temperature
range 1.9–300 K in a magnetic field of μ0H = 10 mT. The
analysis was performed by assuming validity of the Curie-
Weiss law,

χ = CCW

T − θCW
, (13)

where CCW is the Curie-Weiss constant and θCW is the Curie-
Weiss temperature. There can be an additional temperature-
independent term χ0 added to the right side of Eq. (13),
accounting for the Larmor diamagnetic contribution χdia due to
the atomic cores and the two contributions from the conduction
electrons—the Landau diamagnetic contribution χL due to the
electron orbital circulation and the Pauli spin paramagnetic
contribution χP . The Larmor susceptibility was calculated
from literature tables to amount χdia = −1.4 × 10−11 m3/mol
for the i-Zn-Ag-Sc-Tm and χdia = −1.2 × 10−11 m3/mol for
the 1/1 Zn-Sc-Tm. The Landau and Pauli contributions are
of the same (absolute) order of magnitude as χdia, so that the
constant term χ0 is by several orders of magnitude smaller
than the Curie-Weiss susceptibility of the Tm atoms at low
temperatures. For that reason χ0 was omitted from Eq. (13).

The temperature-dependent magnetic susceptibility data
are shown in Fig. 3 in a χ−1 versus T plot. The fits with
Eq. (13) (solid lines) yielded the following parameter values
for the i-Zn-Ag-Sc-Tm: CCW = (3.3 ± 0.2) × 10−6 m3K/mol
[or CCW = (8.2 ± 0.5) × 10−5 m3K/mol Tm, when recalcu-
lated per mole of Tm] and θCW = −0.9 ± 1.0 K. For the
1/1 Zn-Sc-Tm, the fit parameters are CCW = (2.9 ± 0.2) ×
10−6 m3K/mol [or CCW = (8.4 ± 0.5) × 10−5 m3K/mol Tm]
and θCW = −0.7 ± 1.0 K.

The Curie-Weiss constant CCW was used to determine
the mean effective magnetic moment μ̄eff = p̄effμB per Tm
ion. Here p̄eff is the mean effective Bohr magneton num-

ber that can be calculated using the formula [41] p̄eff =√
3CCWkB/(NAμ2

Bμ0) (where NA is the Avogadro number
and CCW is given in units per mole of Tm atoms). For the
i-Zn-Ag-Sc-Tm we obtained p̄eff = 7.2 ± 0.2, whereas for
the 1/1 Zn-Sc-Tm it amounts to p̄eff = 7.3 ± 0.2. These
values are within the experimental uncertainty the same as
the measured Bohr magneton number of a bare Tm3+ ion
(p = 7.3), demonstrating that the Tm magnetic moments in
the i-Zn-Ag-Sc-Tm and the 1/1 Zn-Sc-Tm phases assume
their full free-ion values of 7.3 μB .

The Curie-Weiss temperature is an indication of either the
spin-spin exchange coupling or the CF effects (recall that an
effective Curie-Weiss behavior of the susceptibility is observed
for a nonmagnetic CF ground state). The fit-determined values
of θCW from the data in the entire investigated temperature
range 1.9–300 K for both the i-Zn-Ag-Sc-Tm and the 1/1 Zn-
Sc-Tm are within the experimental uncertainty equal to zero,
so that the temperature-dependent magnetic susceptibility in
fact obeys the Curie law χ = CCW/T , pertinent to an ensemble
of paramagnetic free (uncoupled) ions, rather than the Curie-
Weiss law. The small nonzero θCW values (θCW = −0.9 ±
1.0 K for the i-Zn-Ag-Sc-Tm and θCW = −0.7 ± 1.0 K for
the 1/1 Zn-Sc-Tm), where the experimental uncertainty is
larger than the mean value, should be considered merely as an
additional fit parameter in Eq. (13), which slightly improves the
fits, but not as an indication of a weak antiferromagnetic-type
exchange coupling between the Tm moments or the CF
effects. There is no Curie-Weiss deviation of the magnetic
susceptibility from the Curie behavior of free Tm3+ ions
down to the lowest investigated temperature of 1.9 K. Here
it is important to recall that the absence of the CF-induced
Curie-Weiss behavior of the susceptibility does not mean the
absence of CF effects, but merely excludes a nonmagnetic
CF-split ground state. The i-Zn-Ag-Sc-Tm and 1/1 Zn-Sc-Tm
samples can be thus to a good approximation classified as
Curie paramagnets (at least down to the lowest investigated
temperature of 1.9 K), where the Tm3+ moments assume their
full free-ion values of 7.3 μB .

Since the magnetic moments of the Tm3+ ions are sizable,
it is instructive to estimate the strength of the magnetic
dipole-dipole interaction between the nearest-neighbor Tm
moments on the icosahedral shell. For a qualitative estimate we
take the nearest-neighbor Tm-Tm distance to be r = 0.57 nm
(the value determined for the Ce-Ce distance in the 1/1
Ce15Au65Sn20 bcc approximant). The order of magnitude
of the dipole-dipole energy is then obtained as Edd/kB ≈
(μ0/4π )(p̄effμB)2/r3kB = 0.18 K.

D. Specific heat

Specific heat is a crucial quantity to observe the Schottky
effect. The low-temperature specific heat of a RE-containing
metallic alloy in the paramagnetic phase can be written as a
sum of the electronic, lattice, and Schottky contributions [42]

C = γ T + β3T
3 + CSch. (14)

Here γ is the electronic specific heat coefficient that is
related to the electronic density of states (DOS) g(εF ) at
the Fermi energy εF via the relation γ = (π2/3)k2

Bg(εF ),
whereas β3 is the lattice specific heat coefficient, which is
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within the Debye model related to the Debye temperature
via the expression θD = (12π4R/5β3)1/3 and R is the gas
constant. The Schottky specific heat, introduced by the RE
ions that occupy a set of discrete energy levels �i = εi/kB (in
temperature units), is written as [42]

CSch = R

T 2

∑
i,j

(
�2

i − �i�j

)
exp[−(�i + �j )/T ]∑

i,j exp[−(�i + �j )/T ]
, (15)

where

Z =
∑

i

exp(−�i/T ) (16)

is the partition function and i runs over all the levels. In
Eq. (15), CSch is written per one mole of RE atoms, whereas
in the case that the RE molar fraction in the substance is x,
the right side should be multiplied by x (i.e., a transformation
R → xR should be made). The temperature variation of CSch

as given by Eq. (15) can be understood by considering that
the specific heat measures the change of internal energy
of the system with temperature due to thermal excitations
between its energy levels. In the T → 0 limit, the ground
state is populated only and hence the transition probability
between levels is negligible, so that CSch → 0 as T → 0.

At high enough temperatures (for T much larger than the
energy differences between the levels), all levels are almost
equally populated and the transitions between the states do
not change their populations significantly anymore, so that
CSch → 0 as T → ∞. Only when T is on the scale of the
energy differences �i − �j , the transitions between the levels
alter their populations to an appreciable degree, leading to
a large CSch contribution that exhibits a broad maximum at
a temperature of a fraction of �i − �j . To illustrate, for a
two-level system with the separation δ = �2 − �1, the low-
and high-temperature limits of Eq. (15) are

CSch ≈ R

(
δ

T

)2

exp(−δ/T ), T � δ, (17a)

CSch ≈ R

(
δ

2T

)2

, T 	 δ, (17b)

and the CSch maximum appears at a temperature Tm ≈ 0.42 δ.
The energies εi of the set of discrete levels are calculated

from the RE-ion Hamiltonian, which contains the CF term and
the interaction between the ionic moment and the magnetic
field at the site of the ion that is a sum of the external field B

and the dipolar field Bdip. The Hamiltonian may also contain
the Heisenberg exchange term, but since the analysis of the
magnetic susceptibilities of i-Zn-Ag-Sc-Tm and 1/1 Zn-Sc-
Tm has yielded zero Curie-Weiss temperatures (a measure
of the exchange interaction strength), the exchange term will
be omitted. The dipolar field Bdip due to the Tm-Tm dipolar
interaction can also be neglected due to the relatively large
spatial separation between the Tm neighbors in the crystal
structure (according to the previously estimated magnitude
of the dipole-dipole energy, the peak in CSch due to the
dipole interaction in zero external magnetic field could occur
at temperatures below 100 mK). Writing the RE-ion moment

as
⇀

μ = −gJ μB

⇀

J , where gJ is the Landé g factor (gJ = 1.17
for the Tm3+ ions in the Hund’s ground state 3H6 with L = 5,

S = 1, J = 6), the total Hamiltonian is

H = gJ μBBJz′ + HCF. (18)

The CF Hamiltonian is to a good approximation given by
Eq. (10), which is written in the crystal-fixed coordinate system
(x,y,z) as defined in Fig. 1(d) (the z axis points along one of the
fivefold axes of the three-shell cluster). The Zeeman term is,
on the other hand, written in the laboratory system (x’,y’,z’),
where the z’ axis points along the direction of the external
magnetic field.

The H
(5)
CF Hamiltonian is parametrized by four CF param-

eters, which experimentally cannot be extracted reliably from
fits of the specific heat. Since B0

2O0
2 is the leading term in the

pentagonal CF Hamiltonian, we shall perform in the following
an approximate analysis of the low-temperature specific heat
data by keeping this term only, so that the energy-level scheme
of the Tm3+ ions will be calculated for the Hamiltonian

H = gJ μBBJz′ + B0
2

[
3J 2

z − J (J + 1)
]
. (19)

In the absence of an external magnetic field (B = 0),
the energy levels are determined by the matrix elements
of the CF term, yielding εm = B0

2 [3m2 − J (J + 1)] with
m = −6, − 5, . . . ,5,6. Except for ε0, all other levels show
±m degeneracy, so that the energy level scheme is composed
of a nondegenerate level ε0 and six doubly degenerate levels
ε±m with m = 1, . . . ,6, which are unequally spaced [Fig. 4(a)].

When computing the energy levels in the presence of a
magnetic field, we need to take into account the fact that
the quantization axis z’ of the Zeeman Hamiltonian generally
differs from the quantization axis z of the CF Hamiltonian.
Analytical solutions can be obtained in the limits when the
Zeeman interaction is either weak or strong as compared to the
CF interaction. We consider first the case of a weak magnetic
field, where the Zeeman term is a perturbation to the CF term.
In this case, the moments are quantized along the z direction.
Defining x’ axis to lie in the plane containing z’ and z, and the
angle between z’ and z is α, we have

Jz′ = Jz cos α − Jx sin α. (20)

Inserting Eq. (20) into Eq. (19), we obtain the energy levels
in first-order perturbation

εm = gJ μBBm cos α + B0
2 [3m2 − J (J + 1)]. (21)

The ±m energy levels, which are doubly degenerate in the
absence of a magnetic field, are now split by the Zeeman energy
2gJ μBBm cos α, so that the energy level scheme contains the
ε0 level plus six Zeeman-split CF doublets, 13 nondegenerate
levels altogether [Fig. 4(b)].

In a strong magnetic field, the CF term is a perturbation to
the Zeeman term, so that the moments are quantized along the
z’ direction. Using the transformation

Jz = Jz′ cos α + Jx ′ sin α, (22)

and inserting it into Eq. (20), we obtain diagonal terms
Jz′ and J 2

z′ and also terms J 2
x ′ and Jz′Jx ′ + Jx ′Jz′ . Since

Jx ′ has vanishing diagonal elements, the terms involving
this operator do not contribute in first order. The J 2

x ′
operator has diagonal elements, which are evaluated as
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FIG. 4. Energy-level scheme of Tm3+ ions according to the
Hamiltonian of Eq. (19): (a) Pure CF energy levels in zero external
magnetic field (B = 0), assuming B0

2 < 0; (b) Zeeman-split CF
energy levels in the weak-field limit according to Eq. (21) for the
ratio gJ μBB/|B0

2 | = 0.7. (c) Pure Zeeman energy levels and (d)
CF-perturbed Zeeman levels in the strong-field limit according to
Eq. (23). B0

2 < 0 is assumed again and the ratio of the interactions
strengths was taken as |B0

2 |/gJ μBB = 0.006. In (a) and (b) the
vertical axis shows the normalized energy εm/|B0

2 |, whereas in (c) and
(d), εm/gJ μBB is given. The case cos α = 1 is assumed in Eqs. (21)
and (23).

〈m|J 2
x ′ |m〉 = (1/2)[J (J + 1) − m2]. By collecting terms, we

find in first-order perturbation

εm = gJ μBBm + B0
2

(
3 cos2α − 1

2

)
[3m2 − J (J + 1)].

(23)
The 13 equidistantly spaced pure Zeeman levels [Fig. 4(c)]

become shifted by the CF interaction, where the εm and ε−m

CF-perturbed Zeeman levels are shifted by the same amount
[Fig. 4(d)]. In the intermediate regime of comparable Zeeman
and CF interactions, no simple analytical solution can be
obtained and the energy levels are computed by diagonalizing
the Hamiltonian of Eq. (19).

The energy levels of a Tm3+ ion given by Eqs. (21) and
(23) depend on the orientation of the fivefold axis of the three-
shell cluster with respect to the magnetic field direction via

the cos α function. Since Tm atoms substitute randomly Sc
atoms on the icosahedral shell, many different orientations
are realized throughout the i-Zn-Ag-Sc-Tm and 1/1 Zn-Sc-
Tm structures. In addition, our investigated samples were in
a polygrain morphology with randomly oriented grains, so
that different values of u = cos α are equally probable on the
interval u ∈ [1, −1] with the probability density g(u) = 1/2.
Performing the powder average, we sum the Schottky specific
heat contributions over all Tm3+ ions to obtain

C
p

Sch =
∫ 1

−1
CSch(u) g(u)du = R

2T 2

∫ 1

−1
du

×
∑

i,j [�i(u)2−�i(u)�j (u)]exp{−[�i(u)+�j (u)]/T }∑
i,j exp{−[�i(u) + �j (u)]/T } ,

(24)

where the superscript p stands for “powder” and �i(u) =
εi(u)/kB are given by Eqs. (21) and (23).

In RE-containing solids, the Schottky specific heat contains
another term that additionally aggravates the analysis in the
T → 0 limit. This is the nuclear Schottky effect, which shows
up at very low temperatures, but can readily be observed
experimentally. The nuclear Schottky effect is treated in the
Appendix.

1. Low-temperature specific heat of the 1/1 Zn-Sc-Tm
and 1/1 Zn-Sc approximants

We present first the specific heat of the 1/1 Zn-Sc and
the 1/1 Zn-Sc-Tm approximants. The low-temperature data in
zero magnetic field are shown in Fig. 5(a) in a C versus T plot.
The specific heat of the 1/1 Zn-Sc-Tm substituted compound
exhibits a broad peak at the temperature of about 1.0 K,
whereas the specific heat of the 1/1 Zn-Sc pure compound
is much smaller and does not exhibit any such feature. A
broad peak in the specific heat at low temperatures is found in
some magnetic systems with exchange-coupled spins like in
spin glasses [43] where it originates from thermal excitations
of the collective spin state (spin reorientations), but the peak
can also be the Schottky specific heat contribution. For the
1/1 Zn-Sc-Tm, magnetic origin of the specific heat maximum
can be excluded, because the Curie-Weiss temperature of the
magnetic susceptibility was found zero and the susceptibility
shown in Fig. 3 is of a Curie type, demonstrating that the Tm3+
moments can be treated as uncoupled. The specific heat max-
imum is thus a single-ion property, which is straightforward
to associate with the Schottky specific heat. The specific heat
of the two compounds in the entire investigated temperature
range up to 300 K is shown in the inset of Fig. 5(a). The 1/1
Zn-Sc pure compound shows a sharp anomaly at Tc = 163 K,
appearing at the order-disorder phase transition associated with
freezing of the central Zn4 tetrahedron reorientations, whereas
no such transition is observed for the 1/1 Zn-Sc-Tm substituted
compound.

The low-temperature specific heat of the 1/1 Zn-Sc pure
compound is analyzed in the inset of Fig. 5(b), where the
data are presented in a C/T versus T 2 plot. For a regular
metallic alloy without the Schottky contribution (CSch = 0),
Eq. (14) yields C/T = γ + β3T

2, and the data fall on a
straight line in this kind of a plot. The electronic specific heat
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FIG. 5. (a) Low-temperature specific heat of the 1/1 Zn-Sc and
1/1 Zn-Sc-Tm approximants in zero magnetic field. The inset shows
the specific heats in the temperature range up to 300 K. (b) Analysis
of the low-temperature zero-field specific heat of the 1/1 Zn-Sc-Tm
substituted approximant by Eq. (14), using Eq. (15) for the Schottky
contribution (solid curve). The three contributions to the total specific
heat (the Schottky term CSch, the electronic term Cel = γ T , and the
lattice term Clatt = β3T

3) are also shown separately. The inset shows
the low-temperature specific heat of the 1/1 Zn-Sc pure approximant
in a C/T versus T 2 plot. Solid line is the fit with C/T = γ + β3T

2.

coefficient γ and the lattice coefficient β3 are then obtained
from the intercept of the vertical axis and the slope of the
line, respectively. The data of the 1/1 Zn-Sc indeed fall on a
straight line, confirming its regular metallic character, and the
analysis (solid line) has yielded γ = 0.50 mJ/mol K2 and β3 =
5.8 × 10−2 mJ/mol K4, wherefrom the Debye temperature
θD = 322 K is obtained.

The low-temperature specific heat of the 1/1 Zn-Sc-Tm
substituted compound is analyzed in the main panel of Fig. 5(b)
in a C versus T scale. The total specific heat C was reproduced
theoretically by Eq. (14), using Eq. (15) for the Schottky
contribution. The Hamiltonian of Eq. (19) by putting the
magnetic field B = 0 was taken for the calculation of the
energy levels of the Tm3+ ions, so that only the CF term
described by the parameter B0

2 remained and the energy
level scheme of Fig. 4(a) applies. The powder average of
the Schottky contribution was performed via Eq. (24). The
theoretical curve [solid curve in Fig. 5(b)] was obtained by the
set of fit parameters B0

2/kB = −(4.4 ± 0.1) × 10−2 K, γ =
21 ± 4 mJ/mol K2, and β3 = 0.30 ± 0.03 mJ/mol K4 (yield-

ing θD = 187 ± 6 K). The three contributions to the total
specific heat (the Schottky term CSch, the electronic term
Cel = γ T , and the lattice term Clatt = β3T

3) are also shown
separately in Fig. 5(b). CSch exhibits a peak at 1.0 K and its
“high-temperature” decaying tail extends up to about 5 K.
Cel grows linearly with the temperature (starting from zero
at T = 0), whereas Clatt contributes almost negligibly to the
total specific heat in the temperature region where CSch is
large. Around the CSch maximum, the Schottky contribution
prevails over the sum Cel + Clatt, accounting for about 70%
of the total specific heat at 1.0 K. Due to the dominance of
CSch, the fit-determined values of the γ and β3 coefficients are
uncertain and should be considered as indicative only, as their
values can change significantly in a fit procedure already by
a small change of the Schottky contribution. The theoretical
total specific heat curve reproduces well the experimental data
in the fitted temperature range up to 5 K, except below the CSch

maximum (below 1.0 K), where the theoretical curve decays
faster than the experimental data. Reasons for this discrepancy
can be numerous (the approximate analysis by using the
leading term B0

2O0
2 of the CF Hamiltonian only, the neglect

of the dipolar magnetic field Bdip, and other approximations
used to derive an analytical form of the CF Hamiltonian for
the CSch calculation).

In order to obtain trustworthy values of the γ and β3

coefficients, one might consider to isolate the Schottky specific
heat term from the experimental data by subtracting the
total low-temperature specific heat of the 1/1 Zn-Sc pure
compound from the specific heat of the 1/1 Zn-Sc-Tm
substituted compound. This technique would yield a valid
result in the case that the γ and β3 coefficients would not
be changed significantly by the partial Tm-for-Sc substitution.
A comparison of the specific heats of the pure and substituted
compounds in Fig. 5(a) shows that this is not the case, as the
introduction of 3.5 at. % of Tm has obviously changed the γ

and β3 quite drastically.
In the next step, the specific heat of the 1/1 Zn-Sc-Tm was

measured in a magnetic field at the following field values:
B = 0, 0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8, 0.9, 1, 1.3, 2, 3, 4, 5,
6, 7, 8, and 9 T. The low-temperature data in the temperature
interval between 0.4 and 2.0 K are shown in Fig. 6(a). For
clarity of presentation, the data for a selected set of field value
are only shown in the graph. We observe that the maximum
of CSch is shifting to higher temperatures with increasing field
and for fields larger than 1.0 T, the maximum has already
moved outside of the presented temperature interval, so that
only the low-temperature increasing part of CSch remains to
be observed. The specific heat in zero field and in a 9 T field
in a larger temperature interval up to 10 K is shown in the
inset of Fig. 6(a). The 9-T specific heat is smaller than the
zero-field specific heat between 0.4 and about 6 K, but crosses
it and becomes larger at temperatures above 6.5 K as the CSch

maximum has shifted to higher temperatures in the field.
The total specific heat C in a magnetic field was reproduced

theoretically using the theory presented in the preceding sec-
tion, by just including the Zeeman term into the Hamiltonian
of Eq. (19), whereas the values of the parameters B0

2 , γ ,
and β3 were taken from those determined from the fit of the
zero-field specific heat [given by the solid curve in Fig. 5(b)].
Inspecting the relative magnitudes of the CF and the Zeeman
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FIG. 6. (a) Low-temperature specific heat of the 1/1 Zn-Sc-Tm
approximant in a magnetic field for a selected set of field values
(indicated on the graph). The inset shows the specific heat in zero
field and in a 9 T field in a larger temperature interval up to 10 K.
(b) Specific heat in the low-field region at B = 0, 0.1, 0.2, 0.3, 0.4, and
0.5 T. Theoretical fits (solid curves) were obtained by the analytical
model, where the Zeeman interaction is a perturbation of the CF term
as expressed by Eq. (21).

terms in the Hamiltonian of Eq. (19), we find that the CF
energy-level splittings (εm+1 − εm)/kB = (3B0

2/kB)(2m + 1)
amount to |ε6 − ε5|/kB = 1.45 K, |ε5 − ε4|/kB = 1.19 K,
|ε4 − ε3|/kB = 0.92 K, . . . . The Zeeman splitting be-
tween the adjacent levels is (εm+1 − εm)/kB = gJ μBB/kB =
0.79B[T] K (where B is inserted in Tesla units), which
amounts to 0.08 K in 0.1 T field, 0.4 K in 0.5 T, 0.8 K
in 1 T, and 7.1 K in a 9 T field. These values suggest that
the analytical perturbative treatment of the magnetic-field
influence on the specific heat, where the Zeeman interaction is
a small perturbation of the CF term as expressed by Eq. (21)
[and the energy level scheme of Fig. 4(b) applies] is justified
in the low-field regime of our experiments up to about 0.5 T.
Theoretical fits of the specific heat in the low-field region for
B = 0, 0.1, 0.2, 0.3, 0.4, and 0.5 T are shown in Fig. 6(b).
We observe that the Schottky peak moves with increasing field
to higher temperatures and the energy-level scheme shown in
Fig. 4(b) [calculated from Eq. (21)] reproduces reasonably well
the experimental data. For higher magnetic fields, the Zeeman
and the CF terms become comparable, so that the weak-field
analytical perturbative treatment is no longer adequate. The

strong-field perturbative treatment as given by Eq. (23) may
in principle become adequate in the high-field limit of our
experiments (recall that in a 9 T field, the Zeeman splitting
amounts to 7.1 K, as compared to the CF splittings of about 1
K), but the Schottky peak in the high field has already moved to
temperatures where the low-temperature cubic approximation
of the lattice specific heat Clatt = β3T

3 may no longer be
satisfactory (usually a β5T

5 correction needs to be added
at higher temperatures, which introduces an additional fit
parameter), so we skip that analysis.

In addition to the ionic Schottky specific heat CSch just
described, the total specific heat of the 1/1 Zn-Sc-Tm also con-
tains the nuclear Schottky term Cn

Sch due to the discrete energy
levels of the 169Tm nuclei in a large effective magnetic field
Beff arising from the orbiting 4f electrons (see the Appendix).
The Zeeman splitting of the 169Tm nuclear levels in a magnetic
field B is δn = γn�B/kB . The nuclear gyromagnetic ratio γn

can be calculated from NMR frequency tables (γn = 2πν0/B,
where ν0 is the nuclear Larmor frequency in a field B), yielding
for the 169Tm isotope δn = 1.7 × 10−5 B[T] K. For the labora-
tory field of, e.g., 9 T, δn = 1.5 mK is negligibly small, but for
the effective field Beff of several 100 T it becomes significant.
For the investigated 1/1 Zn-Sc-Tm, the precise value of Beff is
not known, but for the lanthanide series, Beff can generally be
well in excess of 300 T. For a 300 T field, δn = 85 mK, so that a
part of the “high-temperature” decaying tail Cn

Sch ∝ T −2 might
be observed experimentally as a low-temperature upturn in the
total specific heat on our accessible temperature scale down to
0.4 K. For the 1/1 Zn-Sc-Tm, the low-temperature upturn in
the total specific heat due to the nuclear Schottky contribution
is best observed in the specific heat data taken in external
magnetic fields larger than 5 T, because the ionic Schottky peak
at such fields has already moved away from the T → 0 region,
so that the effect of the much smaller nuclear contribution be-
comes readily observed. The low-temperature experimental to-
tal specific heat in magnetic fields 6, 7, 8, and 9 T is shown on an
expanded scale in Fig. 7(a), where the T −2-type upturn in the
T → 0 limit is clearly observed. The nuclear Schottky upturn
is a small effect, which can usually be neglected, but it is impor-
tant in cases when the electronic properties in the T → 0 limit
are derived from the specific heat, as both the ionic and the nu-
clear Schottky effects can be mistakenly interpreted as an elec-
tronic effect due to interacting electrons, as will be discussed in
Sec. V.

2. Low-temperature specific heat of the i-Zn-Ag-Sc-Tm
and i-Zn-Ag-Sc quasicrystals

The low-temperature specific heat was investigated also
for the i-Zn-Ag-Sc-Tm and i-Zn-Ag-Sc pair of icosahedral
quasicrystals by performing the same set of experiments and
analysis steps as for the pair of the approximants. The results
are qualitatively similar to those for the approximants, with
some quantitative differences. The low-temperature data in
zero magnetic field are shown in Fig. 8(a) in a C versus T plot.
The specific heat of the i-Zn-Ag-Sc-Tm substituted compound
exhibits a Schottky contribution with the peak at about 0.8 K,
whereas the specific heat of the i-Zn-Ag-Sc pure compound is
much smaller and does not exhibit any anomaly. The specific
heats up to 300 K are shown in the inset of Fig. 8(a). Neither

054208-10



SCHOTTKY EFFECT IN THE i-Zn-Ag-Sc-Tm . . . PHYSICAL REVIEW B 93, 054208 (2016)

FIG. 7. Low-temperature specific heat of (a) 1/1 Zn-Sc-Tm
approximant and (b) i-Zn-Ag-Sc-Tm quasicrystal in magnetic fields
between 6 and 9 T, showing the T −2-type upturn in the T → 0 limit
due to the nuclear Schottky contribution (encircled on the graphs).

of the two quasicrystalline compounds exhibits any specific-
heat anomaly at elevated temperatures that would indicate a
phase transition similar to the one observed in the 1/1 Zn-Sc
approximant (occurring due to freezing of the central Zn4

tetrahedron reorientations).
The low-temperature specific heat of the i-Zn-Ag-Sc

pure quasicrystal is analyzed in the inset of Fig. 8(b) in a
C/T versus T 2 plot. The analysis (solid line) has yielded
γ = 0.90 mJ/mol K2 and β3 = 0.17 mJ/mol K4, wherefrom
the Debye temperature θD = 224 K is obtained. The low-
temperature specific heat of the i-Zn-Ag-Sc-Tm substituted
compound is analyzed in the main panel of Fig. 8(b) in
a C versus T scale. The theoretical curve [solid curve in
Fig. 8(b)] was obtained by the set of fit parameters B0

2/kB =
−(3.4 ± 0.2) × 10−2 K, γ = 20 ± 5 mJ/mol K2, and β3 =
0.21 ± 0.02 mJ/mol K4 (yielding θD = 210 ± 7 K). The CSch,
Cel, and Clatt contributions to the total specific heat are also
shown separately in Fig. 8(b). Around the CSch maximum
at 0.8 K, the Schottky contribution prevails over the sum
Cel + Clatt, accounting for about 85% of the total specific
heat. The theoretical total specific heat curve again does not
reproduce satisfactory the experimental data below the CSch

maximum, where it decays faster than the experimental data.
This discrepancy is even slightly larger than for the 1/1 Zn-Sc-
Tm approximant. One of the reasons for the worse matching of

FIG. 8. (a) Low-temperature specific heat of the i-Zn-Ag-Sc and
i-Zn-Ag-Sc-Tm quasicrystals in zero magnetic field. The inset shows
the specific heats in the temperature range up to 300 K (the curves are
indistinguishable on the graphs). (b) Analysis of the low-temperature
zero-field specific heat of the i-Zn-Ag-Sc-Tm substituted quasicrystal
by Eq. (14), using Eq. (15) for the Schottky contribution (solid curve).
The three contributions to the total specific heat (the Schottky term
CSch, the electronic term Cel = γ T , and the lattice term Clatt = β3T

3)
are also shown separately. The inset shows the low-temperature
specific heat of the i-Zn-Ag-Sc pure quasicrystal in a C/T versus
T 2 plot. Solid line is the fit with C/T = γ + β3T

2.

the theory to the experiment in the quasicrystal as compared
to the approximant could be the fact that the employed CF
Hamiltonian was derived for the RE atoms located on the
icosahedron of the basic three-shell cluster of the structure. In
the approximant, all RE atoms are located on the icosahedra
(i.e., all of them occupy the same crystallographic site), while
in the i-QC, majority of the RE atoms occupy this site, whereas
some are located in the glue that fills the gaps between the
clusters, for which the first coordination shell does not possess
the symmetry of the crystallographic site on the icosahedron.
Our CF Hamiltonian is thus valid (at least approximately) for
all Tm atoms in the 1/1 Zn-Sc-Tm substituted approximant,
whereas in the i-Zn-Ag-Sc-Tm substituted quasicrystal it is
valid for about 70% of the Tm atoms, thus making the
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FIG. 9. (a) Low-temperature specific heat of the i-Zn-Ag-Sc-Tm
quasicrystal in a magnetic field for a selected set of field values
(indicated on the graph). The inset shows the specific heat in zero
field and in a 9 T field in a larger temperature interval up to 10 K.
(b) The specific heat in the low-field region at B = 0, 0.1, 0.2, 0.3,
0.4, and 0.5 T. Theoretical fits (solid curves) were obtained by the
analytical model, where the Zeeman interaction is a perturbation of
the CF term as expressed by Eq. (21).

employed theoretical model for the CSch calculation in the
latter case less applicable.

The low-temperature specific heat of the i-Zn-Ag-Sc-Tm
quasicrystal in a magnetic field is shown in Fig. 9(a). The
maximum due to the CSch term is again shifted to higher tem-
peratures with increasing field and for fields larger than 1.0 T,
it has already moved outside of the presented temperature
interval. The specific heat in zero field and in a 9 T field in a
larger temperature interval up to 10 K is shown in the inset of
Fig. 9(a). The crossover between the zero field and the 9-T data
due to the magnetic-field induced shift of the CSch maximum
to higher temperatures occurs in the quasicrystal at about 4.5 K,
which is a bit lower than in the approximant. Theoretical
fits of the total specific heat in the low-field region up to
0.5 T, by using the same analytical steps as in the case of the
approximant, are shown in Fig. 9(b). The field-induced shift of
the Schottky peak to higher temperatures is theoretically well
reproduced. The nuclear Schottky effect is also observed in the
i-Zn-AgSc-Tm quasicrystal as the low-temperature upturn in
the total specific heat, best observed in the specific heat data
taken in external magnetic fields higher than 5 T [Fig. 7(b)].

FIG. 10. Low-temperature zero-field specific heat of the 1/1
Zn-Sc-Tm “Schottky” system in a C/T versus T 2 scale. Solid
curve is the fit with the expression C/T = γ + AT 2ln(T/Tsf ), valid
for an exchange-enhanced system (the fit parameters of the curve
are γ = 127.7 mJ/mol K2, A = 46 mJ/mol K4, and Tsf = 3.3 K).
Dashed curve is the fit with a power-law function C/T = BT −n[the
fit parameters of the curve are B = 66.9 mJ/mol K2 (where the
temperature is considered to be dimensionless) and n = 0.7], as
used in the study of quantum critical phenomena arising from strongly
correlated 4f electrons in Fermi-liquid systems.

V. DISCUSSION

We have demonstrated that the specific heat of the 1/1
Zn-Sc-Tm approximant and the i-Zn-Ag-Sc-Tm icosahedral
quasicrystal contains the Schottky specific heat term, which
becomes the dominant contribution to the total specific heat
in the low-temperature limit at about 1.0 K and below.
The presence of the Schottky term makes extraction of the
electronic and lattice specific heat coefficients γ and β3

uncertain, so that trustworthy values of these parameters
cannot be derived from the analysis. Since the Schottky effect
is frequently present in solids containing RE elements, the
interpretation of low-temperature electronic properties of the
RE-containing quasicrystals from the electronic specific heat
in the T → 0 limit should be done with great care.

In metallic systems it is customary to analyze the low-
temperature specific heat in a C/T versus T 2 scale, which
for nonmagnetic metals and alloys in the absence of the
Schottky contribution (CSch = 0) yields a straight line C/T =
γ + β3T

2, according to Eq. (14). In the presence of the
Schottky contribution, the specific heat data presented in this
scale show a low-temperature upturn. This is demonstrated in
Fig. 10 on the example of the 1/1 Zn-Sc-Tm approximant,
where the zero-field specific heat is shown in such kind of a
plot. In metallic systems with incompletely filled d or f shells,
electron-electron exchange interactions may provide another
term to the specific heat that also produces a low-temperature
upturn in the C/T versus T 2 scale. Such systems are known
as the exchange-enhanced systems [44] and show instability
to magnetism, i.e., they are close to a phase transition
between a paramagnetic and a magnetically ordered phase. The
interacting electrons give rise to long-lived spin fluctuations
(similar to spin waves), which in the quantized form are
called paramagnons or virtual magnons. The interaction of
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the electrons with paramagnons gives rise to an enhanced
effective mass of the electrons (manifested in an increased
γ value) and a logarithmic term in the electronic specific heat
at low temperatures, which can be represented by a general
equation of the form [44]

C = γ T + AT 3 ln (T/Tsf) + β3T
3, (25)

where Tsf is the spin fluctuation temperature. The logarithmic
term is negative for T < Tsf , so that the total specific heat
shows an upturn at low temperatures when plotted as C/T

versus T 2. The logarithmic term in the electronic specific heat
was derived also without invoking the idea of paramagnons; it
was found in 3He due to temperature-dependent interparticle
interaction [45] suggesting that the T 3lnT behavior of the
low-temperature specific heat may be a general feature of the
Fermi-liquid systems.

In order to demonstrate the difficulty of distinguishing be-
tween the Schottky effect and the electron-electron interactions
when analyzing the low-temperature upturn in the specific
heat of our investigated Tm-containing quasicrystal and its
approximant, we present in Fig. 10 the fit of the zero-field
specific heat of the 1/1 Zn-Sc-Tm “Schottky” system with
Eq. (25) rewritten in the form C/T = γ + AT 2ln(T/Tsf),
valid for an exchange-enhanced system. The fit is shown
by a solid curve (the fit parameters are given in the figure
caption), where it is seen that the logarithmic term reproduces
excellently the low-temperature upturn due to the Schottky
effect in a limited temperature interval. The low-temperature
upturn can also be reproduced qualitatively by a power-law
function of a form C/T = BT −n(with n > 0), as used in the
study of quantum critical phenomena arising from strongly
correlated 4f electrons in Fermi-liquid systems, where the
zero-field C/T diverges as a power law in the T → 0 limit
[24]. The fit of the 1/1 Zn-Sc-Tm C/T data with the
power-law function is shown in Fig. 10 as a dashed curve
(the fit parameters are given in the figure caption), where it
is evident that it qualitatively reproduces the low-temperature
upturn. The analysis of the low-temperature specific heat of
RE-containing quasicrystals and approximants may thus be
ambiguous, as the Schottky effect and the electron-electron
interactions both yield a very similar upturn in the C/T versus
T 2 scale.

The origin of the upturn can be unraveled from the
magnetic-field dependence of the low-temperature specific
heat, where the Schottky effect (a single-ion property in a
system of noninteracting electrons) and the electron-electron
interactions in an exchange-enhanced system yield different
behavior. This issue is elaborated in the Supplemental Material
(see Fig. S2), where the specific heat of the 1/1 Zn-Sc-Tm
quasicrystalline approximant is compared to the specific heat
of the YbCu4.25 heavy-fermion compound, belonging to the
class of strongly correlated systems.

VI. CONCLUSIONS

The low-temperature electronic properties of quasicrystals
remain an interesting open question with regard to the nature
of the electronic state at T = 0, where the wave function
can either be extended, localized, or critical, i.e., localized
on an intermediate scale over many interatomic distances.

The phenomena arising from electron-electron interactions
between the 4f electrons and the conduction electrons in
RE-containing quasicrystals are another incompletely solved
problem. The purpose of this paper was to show that extraction
of the electronic properties of RE-containing quasicrystals
from their low-temperature specific heat may be uncertain in
the presence of the Schottky effect. We have first derived the
CF Hamiltonian pertinent to the class of Tsai-type icosahedral
quasicrystals and their approximants, which includes most
of the known RE-containing quasicrystalline systems. In the
Tsai-type atomic clusters, the RE elements are located on
fivefold axes of an icosahedron, so that we have derived the
CF Hamiltonian for the pentagonal symmetry of the crystalline
electric field. Using the leading term of this Hamiltonian, we
have calculated analytically the Schottky specific heat in the
presence of an external magnetic field and made comparison
to the experimental specific heat of the i-Zn-Ag-Sc-Tm icosa-
hedral quasicrystal and its 1/1 Zn-Sc-Tm approximant, both
being classified as “Schottky” systems. We also show that even
the nuclear Schottky effect, being much smaller effect than the
ionic Schottky effect, was observed experimentally in the spe-
cific heat of the i-Zn-Ag-Sc-Tm and 1/1 Zn-Sc-Tm at T → 0.

APPENDIX

The nuclear Schottky effect originates from the discrete
energy levels of the RE-ion nuclear magnetic dipole moment
experiencing a large effective magnetic field Beff arising
from the orbiting 4f electrons. The nuclear Schottky effect
produces another specific heat contribution Cn

Sch that adds to
Eq. (14) [42]. In the lanthanide series, the field produced by
the 4f electrons at the position of the atomic nucleus can be
enormous, well in excess of 300 T in a number of cases. In
addition, the nuclear electric quadrupole moment couples to
the electric field gradient (EFG) of the surrounding charges
in the lattice, which also affects the energies of the discrete
set of nuclear energy levels. In the case of the Tm nuclei,
the 169Tm isotope (of 100% natural abundance) possesses
nuclear spin I = 1/2, so that the nuclear charge distribution
is spherically symmetric and the nuclear electric quadrupole
interaction vanishes. The Zeeman interaction between the
nuclear magnetic moment

⇀

μn = γn�

⇀

I (where γn is the nuclear

gyromagnetic ratio and
⇀

I is the nuclear spin operator) and
⇀

Beff then produces two energy levels with the splitting δn =
(ε−1/2 − ε1/2)/kB = γn�Beff/kB . The Schottky specific heat of
a two-level system is given by Eqs. (17a) and (17b). Due to
the smallness of δn, the high-temperature limit T 	 δn applies
within the investigated range of temperatures down to 0.4 K
in our experiments, so that the nuclear Schottky specific heat
term will assume the asymptotic form

Cn
Sch ≈ R

(
δn

2T

)2

, (A1)

i.e., only the “high-temperature” decaying tail Cn
Sch ∝ T −2

might be observed experimentally.
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