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Superconducting circuit simulator of Bose-Hubbard model with a flat band
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Recent advance in quantum simulations of interacting photons using superconducting circuits offers
opportunities for investigating the Bose-Hubbard model in various geometries with hopping coefficients and
self-interactions tuned to both signs. Here we investigate phenomena related to localized states associated
with a flat band supported by the sawtooth geometry. A localization-delocalization transition emerges in
the noninteracting regime as the sign of hopping coefficient is changed. In the presence of interactions,
patterns of localized states approach a uniform density distribution for repulsive interactions while interesting
localized density patterns can arise in a strongly attractive regime. The density patterns indicate the underlying
inhomogeneity of the simulator. Two-particle correlations can further distinguish the nature of the localized
states in attractive and repulsive interaction regimes. We also survey possible experimental implementations of
the simulator.
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I. INTRODUCTION

Over the past decade intensive research has been focused
on studying strongly correlated states of interacting photons
in lattices using various quantum systems as simulators [1–7].
Among various simulation schemes, superconducting quan-
tum circuits have became a particularly promising platform
with a close relation to quantum computation [3,4,6]. Many
creative ways to simulate quantum systems with superconduct-
ing circuits have been proposed or implemented. For instance,
a variational optimization over continuous matrix product
states has been implemented by using an open circuit quantum
electrodynamics (QED) system to simulate the ground state
of the Lieb-Liniger model [8,9]. Moreover, a digital quantum
simulator can be realized using qubits in a digital quantum
computation platform, where the corresponding quantum oper-
ators of the simulated system are encoded in the Pauli operators
of single qubits along with a series of one- or two-qubit gates. A
simulator for the Fermi-Hubbard model has been demonstrated
using a programmable X-mon array and a simulator of the
Bose-Hubbard model using a similar system has been proposed
as well [10].

On the other hand, an analog quantum simulator can provide
an intuitive description of many-body systems. One class of
simulators can be built with an array of superconducting circuit
elements usually fabricated on a chip [3,4,6,11]. The quanta of
the excitations on those circuit elements simulate an ensemble
of quantum particles. For example, coupled superconducting
qubits as an analog of a spin array can be a simulator of
the Ising model [12,13]. Alternatively, photonic excitations
in a circuit-QED array may serve as an analog of lattice
bosons [14–16], and effective photon interactions could be
created by utilizing strong light-matter couplings between
superconducting resonators and qubits [3,4,14–16]. By fabri-
cating circuit QED elements in desired patterns, various lattice
structures can be explored and local controls over coherent
or dissipative dynamics can also be studied [6,15–20] . The
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latter scheme further allows for simulations of a photonic or
polaritonic Bose-Hubbard model (BHM) [6,17].

The BHM has been an important paradigm in many-body
theories [21,22], in particular the Mott insulator-superfluid
(MI-SF) phase transition it describes. The Mott insulator is a
localized state occurring at integer fillings when interaction
energy dominates, while the superfluid is a delocalized state
where kinetic energy dominates. In superlattices or other
complex geometries, the BHM can exhibit many interesting
phases and phenomena [23–29]. In certain geometries with
multiple sites per unit cell, some of the bands known as flat
bands can become nondispersive. Particles in a flat band form
degenerate localized eigenstates, and this particular feature
may lead to interesting phases including a supersolid [30]
or topological insulator [31]. The degeneracy of a flat band,
on the other hand, is very sensitive to external perturbations
and can be lifted easily. The phase diagram of the BHM
is enriched if the system supports a flat band, which can
be constructed in several known geometries [23,31–33] . A
number of constructions of flat-band lattices using graph
theory also have been suggested [34–36] . Some of the
geometries supporting flat bands can be realized in quantum
simulators such as optical lattices for cold atoms or photonic
crystals using microcavities [37–40], although having broadly
tunable parameters and periodic boundary conditions remains
a great challenge.

Motivated by great opportunities from superconducting
circuit simulators, we investigate the BHM on the sawtooth
lattice using an array of superconducting circuit elements
with tunable couplers. From the analysis of a superconducting
circuit simulator of the BHM outlined in Ref. [17], the
simulator in the dispersive regime has a widely tunable
parameter range according to its architecture. The superfluid
(SF), Mott insulator (MI), and the MI-SF transition may be
demonstrated and manipulated [17]. A recent experiment has
shown possibilities of simulating attractive bosons modeled by
the BHM using an array of transmons [41]. Due to the intrinsic
anharmonicity of transmons, it is challenging for the simulator
of Ref. [41] to exhibit a MI-SF transition or investigate the
repulsive regime. A simulator capable of exploring the BHM
with attractive as well as repulsive interactions, positive as

2469-9950/2016/93(5)/054116(12) 054116-1 ©2016 American Physical Society

http://dx.doi.org/10.1103/PhysRevB.93.054116


XIU-HAO DENG, CHEN-YEN LAI, AND CHIH-CHUN CHIEN PHYSICAL REVIEW B 93, 054116 (2016)

well as negative hopping coefficients, and flexible geometry
allowing for a flat band [32] will elucidate rich physics of
the BHM. In the following we will outline a simulator based
on Ref. [17] that can simulate noninteracting photons and
photons with repulsive or attractive on-site interactions with
positive or negative photon hopping coefficients. Interesting
localization phenomena associated with flat bands in selected
geometries and energy competitions in strongly interacting
regimes can be demonstrated by the simulator with available
experimental parameters. Moreover, the interesting localiza-
tion and delocalization phenomena survive in the presence of
small fluctuations of system parameters.

This paper is organized as follows. Section II introduces
the Bose-Hubbard model on the sawtooth lattice and flat-
band physics in the thermodynamic limit. In Sec. III we
review the superconducting circuit simulator for the BHM
on periodic sawtooth lattices and its experimental parameter
range. Section III presents a discussion on a localization-
delocalization transition due to the presence of a flat band and
its experimental signatures. Moreover, different ground states
in the repulsive and attractive regimes can be distinguished
by two-particle correlation functions. Relevant issues on
experimental realizations of the simulator are also discussed.
Finally, Sec. V concludes our work.

II. BOSE-HUBBARD MODEL ON SAWTOOTH LATTICE

In the infinite sawtooth lattice shown in Fig. 1(a) with
a particular ratio of hopping coefficients, a flat band is
separated from the other dispersive band as shown in Fig. 1(c).
Whether the flat band is the lowest or the highest energy band
depends on the sign of hopping coefficients, and interesting
phases can arise due to the flat band. A quantum simulator
using superconducting circuits, capable of demonstrating
sitewise manipulations of the BHM [17], is implemented
here to demonstrate signatures of the flat band structure
(FBS). In the following we consider realistic experimental
parameters. Localized states in the flat band are very sensitive
to inhomogeneity of the system, and we will show that the
patterns of density distributions can be used as a probe of
imperfections of the simulator.

In the tight-binding approximation, the BHM Hamiltonian
on the sawtooth lattice is

H0 = −t1
∑
〈ij〉

(a†
i aj + a

†
j ai) − t2

∑
〈ij〉

(a†
i bj + b

†
j ai)

+
∑

i

Uia
†
i ai(a

†
i ai − 1) +

∑
i

Uib
†
i bi(b

†
i bi − 1)

+
∑

i

μaia
†
i ai +

∑
i

μbib
†
i bi, (1)

where ai (a†
i ) and bi (b†i ) are the annihilation (creation)

operators on the sublattices A and B shown in Fig. 1(a).
To simplify the discussion, we choose μi = 0 across the
lattice. When t2 = √

2|t1| and U = 0, the lattice supports a
flat band [32], which is the lowest-energy band if t1 < 0. The
Hamiltonian has the energy spectrum

E(kx) = 2t1 and − 2t1(1 + cos kxa) (2)

FIG. 1. (a) A segment of the sawtooth lattice. (b) A periodic
sawtooth lattice. Here the squares (circles) denote the A sites (B
sites), and the solid (dashed) lines denote the A-B (A-A) links. (c)
Tight-binding bands of the sawtooth lattice in the thermodynamic
limit with a negative tunneling coefficient. (d) The elements forming
the A site in (b). (e) The elements forming the B site in (b). In (d) and
(e) the thick horizontal lines denote the TLRs and the couplers are
made of SQUIDs (with two Josephson junctions in each loop). Each
A site is connected to four neighbors by the SQUIDs coupled to the
positions depicted in (d). Each B site is connected to two neighbors
as depicted in (e). The sinusoidal curves illustrate the fundamental
modes in the TLRs. The charge qubits correspond to the SQUIDs
above the TLRs in (d) and (e), and they are coupled to the TLRs
via capacitors (the short horizontal lines above the TLRs) to tune the
effective on-site photon-photon interaction.

depicted in Fig. 1(c) with a negative value of t1. Here a is the
lattice constant and will serve as the length unit. In a finite
periodic lattice, the flat band appears as a set of degenerate
localized states that are eigenstates of the Hamiltonian. Due
to a lack of kinetic energy, flat-band states do not participate
in transport. In contrast to the Mott insulator existing only at
integer fillings, the flat-band states are due to the underlying ge-
ometry and could be understood from a single-particle picture.
To make connections with realistic superconducting circuit
simulators consisting of a finite numbers of elements [17], we
consider a periodic lattice, for example the one with three unit
cells shown in Fig. 1(b).

One important feature of the simulator discussed here
is that the hopping coefficients of bosons can be tuned to
positive (t1 > 0) or negative (t1 < 0) values. When there is no
interaction, the flat band is the lowest energy band if t1 < 0,
so in the ground state the system favors localized states in the
flat band. On the other hand, if t1 > 0, the lowest-energy band
is dispersive and a uniform ground-state density distribution
from delocalized states is expected. Therefore, a localization-
delocalization transition occurs as t1 changes sign, which could
be realized and observed in the proposed simulator by tuning
the coupler connecting adjacent lattice sites.
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III. SUPERCONDUCTING CIRCUIT SIMULATOR

Here we briefly review the superconducting circuit simu-
lator and details can be found in Ref. [17]. Figures 1(d)–1(e)
illustrate the elements and their couplings in the simulator,
which utilizes an array of superconducting transmission
line resonators (TLRs) representing the sites in the BHM.
Microwave photons in the TLRs will simulate the bosons in the
BHM [17]. Adjacent sites are connected via superconducting
quantum interference devices (SQUIDs). In addition, each
TLR is capacitively coupled to a tunable charge qubit with
a SQUID-like structure [17,42], which can be used to tune the
effective on-site interaction of the BHM.

The Hamiltonian of the simulator consists of on-site terms
and coupling terms

H =
∑

i

Hsite
i +

∑
〈ij〉

Vcouple
ij . (3)

Here 〈ij 〉 denotes neighboring pairs as shown in Fig. 1(b).
The on-site term Hsite

i models a combination of one TLR and
a superconducting charge qubit coupled via a capacitor. In
Figs. 1(d) and 1(e), a TLR is represented by a thick horizontal
line, the charge qubit is shown as the SQUID above the TLR,
and the capacitor is denoted by a short line in between them.
Details of the modeling are given in Appendix A.

A deeply off-resonant qubit in the dispersive regime
coupled to a TLR gives rise to the following Hamiltonian
with an effective on-site photon-photon interaction [17]:

Hsite
i =

∑
i

[
ω∗

i c
†
i ci + U

p

i c
†
i ci(c

†
i ci − 1)

]
. (4)

Here ω∗
i is the dressed TLR frequency [14]. With rotating wave

approximation and a dispersive condition, the on-site repulsion
strength U

p

i can be controlled by qubit-TLR coupling and de-
tuning as explained in Appendix A. By adjusting the detuning
between the qubit and TLR, U

p

i can be positive or negative.
The coupling term Vcouple

ij models a coupler SQUID
consisting of two Josephson junctions, which gives rise to
a sum of a fixed capacitive coupling and a tunable inductive
coupling between neighboring sites [17,43,44]. Explicitly,

Vcouple
ij = −(gcap + gind)(c†i cj + cic

†
j ), (5)

where gcap (gind) is the capacitive (inductive) coupling constant
across the link ij . Here we assume all the SQUID couplers
are identically fabricated. As shown in Fig. 1(d), the two
coupler SQUIDs below the middle of the TLR are placed
at 3/8 and 5/8 of the TLR, which fine tune the ratio of the
hopping coefficients between the A-A and A-B links in the
sawtooth lattice. Furthermore, the inductive coupling constant
gind can be tuned to positive or negative values by changing
the magnetic flux through the SQUID.

Here we limit Vcouple
ij to the weak coupling regime and keep

only the lowest order when modeling the on-site interaction
of Eq. (1). The total Hamiltonian now has the Bose-Hubbard
form

H =
∑

i

[ω∗
i c

†
i ci + Uic

†
i c

†
i (cici − 1)]

−
∑
〈ij〉

(gcap + gind)(c†i cj + cic
†
j ). (6)

Compared to Eq. (1), we can construct a mapping between this
circuit model and BHM where hopping coefficient ti = gcap +
gind, on-site energy μi = ω∗

i , and on-site coupling constant
Ui = U

p

i . Different values of t1 and t2 can be obtained by
adjusting gind and both signs of hopping coefficients can be
achieved by using typical experimental data summarized in
Appendix A. This feature makes the simulator particularly
suitable for studying flat-band induced phenomena because
by changing the sign of ti , relative orders of the energy bands
can be reversed. We remark that this circuit model is derived
in the deep dispersive regime, where the on-site qubit is not
excited due to a large detuning. The only on-site excitation
quanta are resonant photons behaving like bosons in the TLR.
Therefore, Eq. (6) describes the photonic BHM.

By consulting available experimental data (summarized in
Appendix A), in the following we estimate ti in the range of
−10 to 10 MHz and sample three regimes in the phase diagram
of interacting photons using the superconducting circuit
simulator with uniform Ui = U : (a) U ∈ [−5, − 0.1] MHz,
(b) U = 0, and (c) U ∈ [0.1,5] MHz. For |U | > 5 MHz, the
qubit-TLR detuning �i may be too small and the on-site
excitations could become polaritonlike [45–47]. Details of
how �i is derived can be found in Appendix A. Although
a polaritonic circuit QED lattice may also simulate the BHM
with attractive or repulsive effective interactions, the detailed
expressions of the on-site energy and interaction are different
from the photonic model presented here. The polaritonic
system is beyond the scope of our discussion and here we focus
on how the photonic simulator can reveal interesting phases in
the BHM when a flat band is present. In the photonic simulator,
it is difficult to approach the U = 0 point from finite U because
U depends monotonically on the detuning �i . Thus, opposite
signs of U have to be achieved by starting with opposite signs
of the detuning when ground-state behavior is investigated. To
access the U = 0 point, one may detach the qubit from the
TLR and completely shut down the on-site interaction (see
Appendix A for more details). Figure 3(a) shows finite-U
regimes and the noninteracting regime accessible by the
photonic simulator.

A realistic simulator will inevitably have imperfections
from its fabrication and operation. As a consequence, ω∗

i and
ti in each sample will fluctuate rather than being perfectly uni-
form. In addition, quantum fluctuations in Josephson junctions
can further contribute to imperfections of superconducting
circuit simulators. Here we assume variations of ω∗

i and
ti due to unwanted cross talks between the TLRs can be
minimized by carefully designing the chip shielded from
external devices. The fluctuations of ω∗

i in different TLRs are
estimated as δω/ω = 〈|ω∗

i − ω∗
j |/ω∗

i 〉 ∼ 0.1% based on the
following analysis. From available experimental data showing
typical TLR frequencies accurate up to 10−3 GHz even in a
multiresonator system [41,48], we estimate that the inaccuracy
of resonator frequency is around 0.1% considering the typical
value of the resonant frequency ∼10 GHz. The high quality
factors Q > 104 of TLRs [49] and photon lifetime up to
milliseconds [50] ensure that quantum fluctuations of ωi are
much smaller than fluctuations from fabrications. Thus, the
uncertainties are mainly due to geometrical variation of the
TLRs, which is around δl/ l ∼ 0.1% [51]. The inaccuracy of
resonator frequency due to variation of the TLR width can
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be minimized to about 10−4 GHz [52]. Hence, the variance
of resonant frequency ωr = 2π√

CrLr
due to nonuniformity of

the resonator length, which mainly affects the capacitance
Cr , is approximately δω/ω ∝ δl/ l ∼ 0.1%. Furthermore, the
dressed frequency ω∗ of the TLRs can be finely adjusted by
tuning the qubit energy [14], which indicates a feasible way to
calibrate the on-site energy μi . This leads to an even smaller
variance of δω/ω.

For the Josephson junctions in the simulator, there can
be more uncertainties in their fabrications leading to larger
deviations of the critical current and effective capacitance,
which in turn cause variation of ti to be about 1% [53–56]
. Another source of stochastic fluctuations is the magnetic
flux noise through a SQUID exhibiting a typical 1/f power
spectrum in the range of 1–10 Hz [57]. The flux noise gives
rise to variation of the Josephson energy of SQUIDs and leads
to variations of hopping coefficients ti on the order of 10 kHz
[55]. Inhomogeneity of ti due to the noise is estimated as
δt/t = 〈|ti − tj |/ti〉 ∼ 10 kHz /0.1 GHz = 0.01. Combining
imperfections from fabrication and noise, we estimate δt/t ∼
1%, which is about one order of magnitude larger than δω/ω. In
the following, our numerical simulations will present different
ground-state properties assuming fluctuations are dominated
by δt . Although there may also be imperfections in U , they
do not introduce more physics when U is finite, so δU will be
neglected.

IV. RESULTS AND DISCUSSIONS

A flat band can be seen clearly in energy spectrum in
the thermodynamic limit shown in Fig. 1(c). However, in a
finite system the boundaries will distort the flat band and blur
its features. To circumvent finite-size effects, it is desirable
to construct a simulator with periodic boundary condition.
Fabrication of superconducting circuits gives the simulator
considered here some advantages when compared to other
possible schemes such as optical lattices [37] where the peri-
odic boundary condition can be difficult. By considering the
small number of elements on superconducting chips in current
experiments [4,10,48], we start with the smallest periodic saw-
tooth lattice having only three unit cells as depicted in Fig. 1(b).
We choose |t2/t1|=

√
2 and μ1,2 =0, so a flat band is present.

In the absence of any imperfection, the flat band consists of a
set of degenerate localized states. The degeneracy, however, is
sensitive to imperfections and will be lifted in the presence of
tiny inhomogeneity. In a real superconducting simulator, this
feature is to our advantage and one can map out the imper-
fection of a simulator by inspecting spatial patterns of photon
distributions.

To account for imperfections of realistic simulators, we
include a small fluctuation η=|δtα/tα| of the hopping co-
efficient t1 or t2. As estimated in Sec. III, fluctuations of
the hopping coefficients are about 1%. In the following we
define t>(<)

α = tα(1 ± η) and choose η = 1%. Imperfections
will distort the flat band and favor a particular localized
wave function as the ground state. Fluctuations of a given
simulator are the deviations of its parameters from the averaged
values. While fluctuations vary from one sample to another,

FIG. 2. Density distributions of noninteracting particles on peri-
odic sawtooth lattices with both signs of hopping coefficients t1 <0
and t1 >0. Bigger vertices represent larger particle density, and
different bond fluctuation scenarios are compared. Here |t2/t1| = √

2.
(a) A single weaker A-A bond t<

1 = t1(1 − η) indicated by the thin
orange line. (b) A pair of stronger A-B bonds t>

2 = t2(1 + η) marked
as the blue thick cyan lines. The density pattern is similar to (a).
(c) Single stronger A-A bond t>

1 = t1(1 + η) indicated as the thick
cyan line. (d) The dual case of (c) with a pair of bond fluctuations
t<
2 = t2(1 − η).

the magnitude of fluctuations in a given sample may be treated
as constant.

A. Single particle picture and noninteracting bosons

The single particle picture applies when there is only one
particle in the system and also to noninteracting bosons in
the ground state. By diagonalizing the tight-binding Hamilto-
nian (1) on a finite size array, the wave function, density distri-
bution, and energy spectrum of the system can be obtained. We
show the main result in Fig. 2. As mention previously, the flat
band becomes the lowest lying band when t1 < 0. In a finite-
size system, the flat band corresponds to several degenerate
states. Since any superposition of the degenerate states is still
a valid flat-band state, in a perfectly uniform system flat-band
states could be constructed from superpositions. In contrast,
fluctuations of the parameters due to imperfections of the
simulator will lift the degeneracy and select out a particular
ground state. Mapping out the correspondence between the
geometry and the pattern of localized states then allows one to
visualize features associated with the flat band.

In Fig. 2(a) t1 < 0 and the dominant fluctuation is on a
single A-A bond with t<1 = t1(1 − η), which makes the bond
weaker (the orange thin line) than the other A-A bonds (in
gray). The ground-state density distribution is shown, where
the sizes of vertices are proportional to the particle density.
Particles tend to accumulate on the tip of the triangle with
the weaker A-A bond. The reason for this localized state is
minimization of kinetic energy in the zero temperature limit.
When t1 > 0, the dispersive band becomes the lower-energy
band. Then particles will occupy the ground state of the
dispersive band, and the density distribution becomes uniform
as shown in Fig. 2(a). A localization-delocalization transition
of ground states can be observed by comparing density patterns
of the two cases with opposite signs of t1 while choosing all
A-B bonds with t2 = √

2|t1|.
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Next, we consider fluctuations of the two A-B bonds within
a triangle with t>2 = t2(1 + η) (the cyan thick lines), which
are stronger than the other A-B bonds (in black) as shown
in Fig. 2(b). In this case, localized states for t1 < 0 have a
similar particle distribution as the case with a weaker A-A bond
and delocalized states occur when t1 > 0. The two dual cases
have similar density distributions because of similar energy
shifts in the triangle with bond fluctuations. We also consider
another dual pairs by altering the signs of the fluctuations of
the previous two cases. For a stronger A-A bond in Fig. 2(c),
the density tends to localize on both ends (blue circles)
of the stronger bond (cyan thick line) when the flat band is
the lowest band (t1 < 0). This case is dual to the case with
a pair of weaker A-B bonds (orange thin lines) depicted in
Fig. 2(d). By measuring the particle density of a localized
state and identifying its pattern, one can infer the location of
the dominant imperfection on a simulator.

The single-particle picture is closely related to noninteract-
ing bosons because each boson will occupy the single-particle
ground state in the zero-temperature limit. The ground-state
density of many bosons is thus the number of particles multi-
plied by the single-particle ground-state density, which can be
measured in the superconducting simulator by mapping out the
photon number on each site. Thus the ground-state density of a
noninteracting bosonic system can be amplified by populating
more photons in the system and as a consequence, signatures
of the localization-delocalization transition from tuning the
signs of hopping coefficients will be more prominent.

B. Interacting bosons

When the on-site qubit couples to the TLR in the dispersive
regime [17,46], the photons acquire effective on-site
interactions and follow the BHM Hamiltonian, Eq. (1). Here
we focus on the case of uniform interactions where Ui = U ,
∀i. The interaction introduces correlations among the bosons
and invalidates the single-particle picture. We therefore
use the exact diagonalization (ED) to determine the energy
spectrum and ground-state wave function [58]. The main
results are summarized in Fig. 3, where the system has two
interacting bosons in both repulsive (U > 0) and attractive
(U < 0) regimes. Moreover, both positive and negative
hopping coefficients (t1 > 0 and t1 < 0) are considered. In
the noninteracting (U = 0) case, a localization-delocalization
transition occurs when the sign of the hopping coefficient
t1 changes. Noninteracting localized states are labeled by
the green solid line for t1 < 0 in Fig. 3. As the repulsive
interaction increases, we analyze if localized states can be
stable against the on-site self-interaction when t1 <0.

To facilitate a fair comparison with the noninteracting case,
two similar sets of fluctuations of the parameters modeling
imperfections of the simulator are also included. The first
one has a pair of stronger A-B bonds (t>2 ) and the other
has a single stronger A-A bond (t>1 ). The former is similar
to its dual case with a single weaker A-A bond (t<1 ) while
the latter shows similar localized wave functions as the case
with a pair of weaker A-B bonds (t<2 ). Similarities of particle-
density patterns of localized state between dual cases are still
observable even in the presence of weak self-interaction.

FIG. 3. Schematic phase diagram of the proposed superconduct-
ing circuit simulator of the BHM with two bosons on a periodic
sawtooth lattice supporting a flat band. Imperfections of the simulator
modeled as a weaker A-A bond t<

1 = t1(1 − η) have been included.
The gray areas indicated as inaccessible are beyond the validity
of the simulator. The green solid line indicates localized states
associated with the flat band, and the green dashed line indicates
delocalized states. In the regime labeled “Localized” below the dashed
yellow lines, strong attractive interactions leads to the domination
of superpositions of states with all the particles concentrating on
each site. For two particles in the system, second-order processes
favor uniformly distributed density, while for more than two particles
localized density patterns emerge.

For repulsive interaction U > 0, we plot the energy spectra
and density distributions for three selected values of the
interaction in Fig. 4 including two sets of parameter fluctu-
ations. When U = 0, the ground state is localized and the
density distribution shows localized patterns. As interaction
strength increases, the density distribution starts to spread
out. In Fig. 4(a) particles accumulate on the triangle with
a pair of stronger A-B bonds when U =0. The results
coincide with the single particle picture in this limit. Here
localized ground states resulting from the flat band manifest
themselves as degenerate eigenvalues shown in the energy
spectrum. We remark that, in the presence of imperfections
and interactions, the flat band is distorted so the ground state
can be uniquely determined. As the interaction increases to
U =0.05|t1| depicted in Fig. 4(c), the density distribution of
the ground state spreads out rather than localizing on a single
triangle. Before the density distribution becomes completely
uniform, particles tend to occupy the triangle on the opposite
side of the strongest fluctuation, which will be discussed later
in the context of a larger system.

Finally, when the interaction strength reaches the same or-
der as the hopping coefficient, U =|t1| in Fig. 4(e), the particle
distribution becomes uniform and the flat-band spectrum no
longer exists because localized states are not eigenstates of
the full Hamiltonian when the interaction is strong. Similar

054116-5



XIU-HAO DENG, CHEN-YEN LAI, AND CHIH-CHUN CHIEN PHYSICAL REVIEW B 93, 054116 (2016)

FIG. 4. Energy levels and ground-state density patterns (inset) of two bosons with t1 <0 and different interaction strength. Here |t2/t1| = √
2.

The left column shows a system with a pair of bond fluctuations t>
2 indicated by the thick cyan lines in the insets. The right column shows a

system with one bond fluctuation t>
1 indicated by the thick cyan line in the insets. A bigger vertex indicates a larger density in each inset. The

noninteracting cases (a) and (b) show nearly degenerate low energy states. Imperfections of the simulator lift the degeneracy of low-energy
eigenstates and single out a unique ground state. When U/t1 is small, splitting of low-energy levels is tiny and not discernible with the
resolution shown here. For a small repulsive interaction U = 0.05|t1| in (c) and (d), we still see localized ground-state density patterns, and
low-energy levels stay nearly degenerate. As the interaction gets stronger [U = |t1| in (e) and (f)], density patterns become uniformly distributed
and low-energy levels are dispersive. The insets in (e) and (f) inside the square frames show the density patterns of the attractive cases with
U = −|t1| and same imperfections. The density distributions are similar. (g) DCAL Nlink [defined in Eq. (7)] for t1 > 0. (h) DCAL for t1 < 0.

phenomena are also discovered in the other case shown in
Figs. 4(b), 4(d), and 4(f), where the system has only one single
stronger A-A bond. In the presence of strong self-interactions,
the ground state exhibits uniformly distributed particle density.

Similarly, the spreading of the density distribution can
be observed when the interaction is attractive. From the
real-space density distribution, one cannot discern the dif-
ference between the results from intermediate attractive and
repulsive interactions because both cases show almost uniform
distributions. However, a two-particle correlation called the
density correlation across the link (DCAL) can distinguish
features of the two interaction regimes. The DCAL is
defined as

Nlink =
∑
〈ij〉

〈n̂i n̂j 〉. (7)

Here the summation only includes the pairs of sites across
links, n̂i is the particle number operator on site i, and
〈· · · 〉 denotes ground-state expectation value. In the repulsive
regime, the DCAL varies slowly with the interaction and
reaches a finite steady value in the strongly interacting
regime. On the other hand, the DCAL in the attractive regime
keeps decreasing. Moreover, the DCAL vanishes when the
attraction exceeds a critical value, |U |> |Uc<|. This indicates
the dominance of superpositions of doubly occupied states
taking the form |�〉 = ∑

i ui |0, . . . ,ni =2, . . . ,0〉, where the
Fock states label the particle number on each site. In this case,
Nlink = 0. It has been proposed that for the attractive BHM

in the thermodynamic limit, the difference between states
with variable particle numbers per site and states consisting
of superpositions of fully occupied sites will become a
phase transition [59,60], and our results are in line with
the prediction. The yellow dashed lines in Fig. 3 indicate a
change of ground-state properties in the attractive regime. By
measuring the numbers of photons on all sites repeatedly and
constructing their products, the DCAL can be extracted.

When more than two particles are loaded into the system,
the localization-delocalization transition at U = 0 is still
observable as the hopping coefficient t1 changes sign. Figure 5
shows the case of three bosons on a periodic sawtooth
lattice. The spreading trend of the density at intermediate
U is also similar to the two-particle case. A difference
between N = 2 and N > 2, where N is the total number
of bosons in the system, is that localized density patterns
emerge again in the strongly attractive regimes (U < 0 and
|U/t1| 
 1) as shown in Figs. 5(i) and 5(j). The reason for the
re-entrance of localized density patterns can be understood
from second-order degenerate perturbation theory and the
presence of imperfections of the system parameters. Second-
order hopping processes select out sectors in the Fock space
consisting of states like |0, . . . ,0,N,0, . . . ,0〉 according to
the inhomogeneity of the hopping coefficients, which then
cause concentration or distillation of the density in the region
with the strongest fluctuations. Interestingly, when there are
only two bosons in the system, the selection process favors
uniform density distribution. Moreover, the localized density
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FIG. 5. Density distributions of three bosons on a periodic
sawtooth lattice. (a) and (b) Noninteracting cases, (c) and (d) weakly
repulsive cases, (e) and (f) weakly attractive cases, (g) and (h) strongly
repulsive cases, and (i) and (j) strongly attractive cases. Here t1 < 0
with bond fluctuations (cyan lines) t>

1 on a single A-A bond (left
column) and t>

2 on a pair of A-B bonds (right column). |t2/t1| = √
2.

The localized states in the noninteracting cases have the same
structure as the case with two particles. In the repulsive regime, the
density patterns gradually become uniformly distributed. In contrast,
another regime with localized density patterns emerges in the strongly
attractive regimes. The DCAL Nlink [defined in Eq. (7)] for t1 > 0 and
t1 < 0 are shown in (k) and (l), respectively. The repulsive case (red
circles) and attractive case (blue triangles) approach different values
in the strongly interacting regimes.

patterns in the strongly attractive regime for N > 2 can be
observed with negative as well as positive hopping coefficients,
but the localized density patterns are different when the
hopping coefficients change sign. A more rigorous analysis of
a three-site system is given in Appendix B. No re-entrance of
localized density patterns are observed in the repulsive regime
for N = 2,3 and this should also apply to N > 3.

The DCAL in the strongly repulsive regime saturates to
a value depending on the total particle number, but in the
attractive case the DCAL always decays toward zero as shown
in Figs. 5(k) and 5(l). Therefore, the DCAL reveals the
subtle difference between states in the attractive and repulsive
regimes accessible by the superconducting circuit simulator
with or without inhomogeneity in the parameters. We remark
that weakening of localized states by interactions in the BHM
has been proposed in Refs. [21,23].

C. Larger arrays of the simulator

By considering systems with four, five, and six unit cells
of the sawtooth lattice, we can further address the behavior
of localized states. The density distributions of three bosons

FIG. 6. Density distributions of three bosons on different lattices:
Four unit cells in the left column, five unit cells in the middle
column, and six unit cells in the right column. Here t1 <0 with bond
fluctuations t>

2 on a pair of A-B bonds (cyan lines) and |t2/t1| =√
2. The interaction strength are: (a)–(c) U =0 (noninteracting),

(d)–(f) U =0.5|t1| (repulsive), (g)–(i) U =−0.5|t1| (attractive), (j)–(l)
U =10|t1| (repulsive), and (m)–(o) U =−10|t1| (attractive). Bigger
vertices correspond to larger densities. The spreading to the triangle
opposite to the triangle with dominant bond fluctuations in the
presence of repulsion can be clearly observed by comparing the first
and second rows. For attractive interactions, the first and third rows
show the spreading occurs near the triangle with dominant bond
fluctuations, while the last row shows the re-entrance of localized
density patterns. For a system with only two bosons, the density
pattern remains uniform in the strongly attractive regime.

without interaction (U = 0) and hopping coefficient t1 < 0
are shown in Figs. 6(a)–6(c) with different numbers of unit
cells, respectively. As mentioned before, localized states are
favorable on the triangle with the strongest bond fluctuations
due to imperfections of the simulator. Fluctuations of the
hopping coefficient with realistic parameters can be controlled
to be within 1%.
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In the weakly repulsive regime, for instance U = 0.1|t1|
shown in Figs. 6(d)–6(f), the particles tend to occupy the
opposite side of the triangle with the most fluctuations in
order to stay away from each other. This tendency avoids the
on-site self-interaction already at the zeroth order. On the other
hand, for the attractive cases shown in Figs. 6(g)–6(i) we also
see spreading of localized states with U = −0.5|t1|. Although
the density patterns in both strongly attractive and repulsive
regimes are similar, the trends are different. In the attractive
regime the density starts to populate the region near the triangle
with the largest bond fluctuations rather than occupying
the opposite triangle in the repulsive cases.

As the repulsive interaction gets stronger, for example
U = 10|t1| shown in Figs. 6(j)–6(l), the density distributions
eventually become uniform. On the other hand, strongly
attractive interaction drives the system with N > 2 into
another regime with localized density patterns as shown in
Figs. 6(m)–6(o) with U = −10|t1|. For N = 2, the density
distribution remains uniform in the strongly attractive regime.
The strongly attractive regime with t1 > 0 or t1 < 0 are labeled
as “Localized” in Fig. 3 to emphasize the emergence of
localized density patterns when more than two interacting
bosons are present.

D. Implications for experimental implementations

Before closing our discussion, we briefly comment on
experimental realizations of the simulator.

State preparation. Innovative ways have been investigated
for preparing a deterministic product Fock state in multi-TLR
systems [4,48,52]. For instance, in Ref. [17] the TLRs in the
simulator (the on-site TLR) may be connected to auxiliary
control TLRs via additional tunable couplers which can be
formed by several SQUIDs. It has been assumed that one can
generate any number of photons in the control TLR [56]. By
adjusting the qubit energy and sending in pump signals to
compensate for the detuning between the on-site TLR and
the control TLR, one can swap the photon states between the
on-site TLR and control TLR [61] and prepare a deterministic
Fock state in the on-site TLR. In this scheme, the numbers
of photons on different sites can be different. A product Fock
state can be prepared as the initial state of the simulator by
applying this process on all the sites simultaneously.

The measurement of the photon number on each site
may be performed in a similar way to map out the state
in Fock space [17]. Alternatively, quantum nondemolition
(QND) measurements may be performed on the on-site TLRs
so the photon numbers on each TLR could be measured with a
weakly coupled and off-resonant probe signal and the photons
in the simulator will not be demolished [62–64].

Cooling. Localized versus delocalized ground states of
photons have been contrasted in Figs. 2 to 4. Once the
simulator is prepared in a product Fock state, photons are
either localized on certain sites or spreading among different
sites. In order to study ground-state properties, one needs to
cool the system down to the ground state without losing the
photons in the system. Hence, a cooling scheme needs: (i)
Collective excitations of the simulator need to be reduced
while conserving the total photon number, which could be
achieved by using a cavity-assisted side-band cooling scheme.

An experiment has demonstrated a collective ground state of
the BHM in the attractive regime simulated by an array of trans-
mons [41]. There have been other theoretical studies [65–67]
on number-conserving manipulations of the photon excitations
in superconducting circuits providing feasible alternatives.
(ii) The cooling rate, defined as the sum of the stimulated
(pump-assisted) transmission from higher levels to the ground
state [41], of the whole lattice has to be faster than the decay
rate of photons. Considering the high Q nature of the TLR,
the lifetime of photons can be around milliseconds [49,50,68].
Thus the cooling rate needs to be in the range of kHz to MHz.

Tunability of parameters. Broad tunability of the simulator
is made possible by the following mechanisms. (i) The qubit
coupled to the TLR introduces an effective tunable on-site
interaction. The repulsive or attractive interaction depends
on whether the qubit is red-detuned or blue-detuned from
the resonator, and the interaction strength depends on the
magnitude of the detuning. (ii) The SQUIDs coupling neighbor
sites allow the hopping coefficient to be tuned from negative
values to positive values. The Josephson junction in a SQUID
is modeled as a combination of a capacitor and a tunable
nonlinear inductor [42]. When the inductor dominates, the
SQUID coupler of the simulator becomes a low pass filter so
photons, which are ac electromagnetic signals in the TLR, tend
to be blocked by the inductor and yields a positive hopping
coefficient. When the capacitor dominates the coupling, the
coupler becomes a high pass filter. Therefore, photons tend to
hop between different sites and reduce overall energy by hop-
ping, which yields a negative hopping coefficient. Combining
those features allows the proposed superconducting system to
simulate various phases of the Bose-Hubbard model.

V. CONCLUSION

Simulations of the BHM on periodic sawtooth lattices
supporting a flat band are feasible by using the versatile
superconducting circuit simulator with broadly tunable param-
eters discussed here. A localization-delocalization transition
of noninteracting bosons associated with the flat band of
sawtooth lattices is made possible because the sign of hopping
coefficients in the simulator can be controlled. In the pres-
ence of on-site interactions, density patterns from localized
states are still observable and sensitive to inhomogeneity of
the underlying elements. One may exploit this feature and
use the density pattern as a diagnosis tool for identifying
imperfections.

The rich phase diagram of the BHM with a flat band
illustrated in Fig. 3 elucidates interesting interplays between
geometry and interaction. Delicate differences between ground
states in repulsive and attractive regimes, although not vis-
ible in the density distribution, can be discerned by two-
particle correlations. Moreover, this work may inspire similar
studies in superconducting circuit simulators of fermionic
systems [10,69,70].
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APPENDIX A: TUNABILITY AND APPLICABILITY OF
SUPERCONDUCTING CIRCUIT

Here we summarize the modeling, approximation, and
experimental parameters of the superconducting circuit sim-
ulator. The on-site term describes a TLR coupled to a
superconducting qubit in Eq. (3) as

Hsite
i = ωr

i b
†
i bi + ω

q

i

2
σ z

i + g
q

i σ x
i (b†i + bi), (A1)

with the TLR frequency ωr = 2π√
CrLr

=2π
√

Er
CEr

L, qubit fre-

quency ωq =2E
q

J cos(φe

2 ) when the qubit is capacitively biased
at the charge degeneracy point [71,72], and the coupling
between the TLR and qubit g

q

i = 2e
Cg

C
q

�

√
ωrCr . The Pauli

operators σ {x,y,z} represent the qubit coupled to each TLR.
Cr and Lr are the total capacitance and inductance of the
TLR. Er

C = (2e)2

Cr and Er
L = 1

Lr (2e)2 are capacitive and inductive

energies of the TLR. E
q

J is the Josephson energy of each
junction in the qubit. Cg is the coupling capacitance and
C

q

� is the sum of the total effective capacitance between
the TLR and the ground. φe is the magnetic flux through
the SQUID loop. After the rotating-wave approximation, the
on-site interaction coupling constant in Eq. (4) is given by

U
p

i = g
q

i ( g
q

i

�
)3, which can be attractive or repulsive by varying

the detuning � = ωr − ωq to be negative or positive.
The coupler SQUID in Eq. (5),Vcouple

ij , contains the capacity

coupling constant gcap = G0ω
rE

jj

C /Er
c and inductive coupling

constant gind = 4G0ω
rE

jj

J cos(φe

2 )/Er
L. E

jj

J and E
jj

C are the
inductive and capacitive energy of the Josephson junction
in the SQUID coupler. The amplitude factor G0 depends on
where on the TLR the qubit is coupled to. If it is placed at the
antinode [14], the factor G0 = 1. In Fig. 1(d), the two SQUIDs
below the middle of the TLR are placed at 3/8 and 5/8 of
the TLR, hence G0 = cos(π/4) for them. By tuning φe in
the domain [0,2π ], gind can be tuned positive or negative. The
superconducting circuit model is derived in the large dispersive
regime, where �i 
 g

q

i 
 ti .
We now turn to experimental parameters. Available exper-

imental data [14–16,41,44,48,56,73] allow one to set ωr =
5 GHz, Ec

C = 0.2 GHz, Ec
J = 10 GHz, Er

L = 50 GHz, Er
c =

0.5 GHz, Ec
C = 0.2 GHz, gind ∈ [−1.2,1.2] GHz, gcap =

0.6 GHz, then the hopping coefficient ti = gcap + gind ∈
[−0.3,1.5] GHz. We consider an appropriate range of φe,
so ti can be tuned in the range [−0.6,0.6] GHz. Notice that
gcap needs to be smaller than the tunable inductive term
gind so the hopping coefficient can be switched between
positive and negative values. A small Ec

C can be achieved
by coupling capacitors between the SQUID and TLR. Using
only capacitors [4] or SQUIDs [44] coupled to TLRs has been
demonstrated in experiments. Here we consider a tunable
coupler from a combination of a capacitor and a SQUID
in order to access both regimes with positive and negative
hopping coefficients. The effective capacitance between two
TLRs coupled by a combined coupler can be increased and a
low capacitive energy Ec

C = (2e)2/2C can be achieved.
Similar to the SQUID coupler, a flux bias through the

qubit can be used to tune the qubit frequency. In order to
apply the simulator to the BHM, additional approximation

conditions are imposed: (a) The atomic limit g
q

i 
 ti , where
photon hopping can be treated as a perturbation [46]. (b) The
dispersive condition �i 
 g

q

i , which decouples the qubit from
the TLR and allows a perturbative treatment of the on-site
Hamiltonian and the effective on-site interaction U [4,14,46].
(c) The perturbative condition, which requires the hopping
coefficient ti to be about the same order of or smaller than the
on-site interaction g

q

i ( g
q

i

�i
)3 as the TLR is coupled to the qubit.

Then perturbation theory is applicable [17].
The capacitive coupling between the qubit and resonator

g
q

i is fixed once elements are fabricated. Here we take a
typical experimental value g

q

i = 130 MHz [14,56]. In order
to keep the simulator in the dispersive regime, the detuning
|�i | should be tuned within [0.4,5) GHz [14,41]. Therefore,
the on-site interaction Ui ∈ [−5,0) ∪ (0,5] MHz and ti can
be tuned within [−10,10] MHz. We remark that the on-site
coupling constant Ui = g

q

i ( g
q

i

�
)3 can be attractive or repulsive

depending on whether the qubit is in the red-detuned (� < 0)
or blue-detuned (� > 0) regime. By increasing the detuning
�, |Ui | can be reduced. One may expect when the qubit is far
off-resonant from the TLR, Ui can approach 0. However, a
continuous scanning control of the flux bias used to tune the
SQUID frequency does not change the sign of Ui . Moreover, in
the presence of the qubit there is always a nonvanishing value
of Ui . To circumvent difficulties of reducing U towards 0, one
may detach the qubit from the resonator to shut down photon
interactions in the resonator completely and reach the limit
Ui = 0. Recent experiments [44,73] have shown ultrastrong
tunable coupling between two TLRs and they support the
estimation of hopping coefficients used here. On the other
hand, in the ultrastrong coupling regime, different nonlinear
effects [44,73,74] other than simple photon hopping could
arise and validity for the BHM simulator breaks down. To
explore the phase diagram of the BHM with a flat band,
parameters of the simulator should remain in the weak
coupling regime, where coupling between neighboring sites
(photon hopping) is weaker compared to the on-site qubit-TLR
coupling.

APPENDIX B: SECOND-ORDER DEGENERATE
PERTURBATION IN THE STRONGLY

ATTRACTIVE REGIME

According to Appendix A, the hopping coefficients t1,2

of the simulator can be continuously tuned around t1,2 = 0,
which enables us to study the strongly interaction regime
|U/t1,2| 
 1 by tuning the ratio. In the strongly attractive
regimes, a regime with localized density patterns emerges
when the system has more than two particles. Here we use
second-order degenerate perturbation theory [75] to explain
the emergence of the regime and why it is only observable
for N > 2. Here we consider the BHM on a three-site lattice
forming a triangle. The Hamiltonian is

H = H0 + HI , H0 = U

2

∑
i

ni(ni − 1), (B1)

HI = −
∑
〈i,j〉

tij (b†i bj + H.c.), (B2)
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with on-site coupling constant U and hopping coefficient tij
with i,j denoting the two sites connected by a bond. In the
strongly attractive regime with |U/tij | 
 1, we treat HI as
a perturbation. When all the hopping coefficients vanish, the
unperturbed ground state is any superposition of the three
Fock states |1〉 = |N,0,0〉, |2〉 = |0,N,0〉, and |3〉 = |0,0,N〉
because of the attractive interaction. Thus, we take the space
spanned by the three states and consider corrections due
small tij . The unperturbed Hamiltonian is degenerate in the
{|1〉,|2〉,|3〉} basis and the matrix representation takes the form

H0 =

⎛
⎜⎝

EN 0 0

0 EN 0

0 0 EN

⎞
⎟⎠, (B3)

with EN = UN (N − 1)/2. For the three degenerate unper-
turbed states, all first-order terms vanish because they cannot
be connected by exchanging only one particle.

The hopping terms, however, introduce second-order
processes with the assistance from higher-energy unper-
turbed states like |N − 1,1,0〉, etc. For instance, �E11 =∑

f 〈N,0,0|HI |f 〉〈f |HI |N,0,0〉/(Ef − EN ), where the in-
termediate states are f ∈ {|N − 1,1,0〉, |N − 1,0,1〉} with
energy Ef = U (N − 1)(N − 2)/2. The ground state can then
be found by diagonalizing the matrix [75]

⎛
⎜⎝

�E11 �E12 �E13

�E21 �E22 �E23

�E31 �E32 �E33

⎞
⎟⎠. (B4)

In constructing �Eij , the unperturbed degenerate states are
excluded from being used as intermediate states. The diagonal
terms �Ejj are of the order of |t2

ij /U |. The off-diagonal
terms, however, are sensitive to the total particle number N .
When N = 2, one can see that two degenerate unperturbed
states can be connected via an intermediate higher-energy

state. For instance, |2,0,0〉 can hop to |1,1,0〉 and then to
|0,2,0〉. Therefore, all �Eij are of the order of |t2

ij /U | and
the second-order ground state after diagonalizing the matrix is
still a superposition of the three unperturbed ground states. As
a consequence, the density is mostly uniform.

In contrast, two different unperturbed degenerate states
cannot be connected via second-order processes when N > 2.
For example, when N = 3, there is no intermediate state
|f 〉 connecting |3,0,0〉 and |0,3,0〉 with two hopping events.
Therefore, �Eij = 0 if i �= j at the second-order level. The
diagonal terms, however, are finite at the second-order level.
Moreover, in the presence of fluctuations of the hopping
coefficients, tij are different and this leads to different �Ejj .
Therefore, the matrix (B4) picks up a preferred state in its
diagonalization. For example, if �E11 is the smallest among
�Ejj , the ground state up to the second order would be
|N,0,0〉. When N and the number of sites are large, the
ground state may remain degenerate up to the second order
in a subspace of the original set of unperturbed states, and
higher-order perturbations will further lift the degeneracy. The
important point is that the ground state, up to the second
order, only includes a subset of the unperturbed states, which
means the density is concentrated or distilled on certain sites.
Therefore, the ground state in the presence of weak hopping
coefficients and imperfections of the parameters exhibits
localized density patterns when N � 3.

When there are more than three sites, the second-order
degenerate perturbation theory still applies and one expects
localized density patterns in the strongly attractive regime
when N > 2. Moreover, the perturbation theory works for
both negative as well as positive tij . The localization patterns,
though, are different when the sign of tij changes because
higher-order processes sensitive to the sign will further refine
the selection of the ground state. When the interaction is
repulsive, the ground state always tends to spread out the
density and no localization is found in the strongly repulsive
regime.
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